Articles | Volume 12, issue 4
https://doi.org/10.5194/amt-12-2287-2019
https://doi.org/10.5194/amt-12-2287-2019
Research article
 | 
12 Apr 2019
Research article |  | 12 Apr 2019

Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: systematic intercomparison of calibration methods for US measurement network samples

Matteo Reggente, Ann M. Dillner, and Satoshi Takahama

Related authors

Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: method development for probabilistic modeling of organic carbon and organic matter concentrations
Charlotte Bürki, Matteo Reggente, Ann M. Dillner, Jenny L. Hand, Stephanie L. Shaw, and Satoshi Takahama
Atmos. Meas. Tech., 13, 1517–1538, https://doi.org/10.5194/amt-13-1517-2020,https://doi.org/10.5194/amt-13-1517-2020, 2020
Short summary
Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 1: Methods
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Carley D. Fredrickson, Martin Esparza-Sanchez, Charlotte Burki, Matteo Reggente, Stephanie L. Shaw, Eric S. Edgerton, and Ann M. Dillner
Atmos. Meas. Tech., 12, 5391–5415, https://doi.org/10.5194/amt-12-5391-2019,https://doi.org/10.5194/amt-12-5391-2019, 2019
Short summary
An open platform for Aerosol InfraRed Spectroscopy analysis – AIRSpec
Matteo Reggente, Rudolf Höhn, and Satoshi Takahama
Atmos. Meas. Tech., 12, 2313–2329, https://doi.org/10.5194/amt-12-2313-2019,https://doi.org/10.5194/amt-12-2313-2019, 2019
Short summary
Atmospheric particulate matter characterization by Fourier transform infrared spectroscopy: a review of statistical calibration strategies for carbonaceous aerosol quantification in US measurement networks
Satoshi Takahama, Ann M. Dillner, Andrew T. Weakley, Matteo Reggente, Charlotte Bürki, Mária Lbadaoui-Darvas, Bruno Debus, Adele Kuzmiakova, and Anthony S. Wexler
Atmos. Meas. Tech., 12, 525–567, https://doi.org/10.5194/amt-12-525-2019,https://doi.org/10.5194/amt-12-525-2019, 2019
Short summary
Predicting ambient aerosol thermal–optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites
Matteo Reggente, Ann M. Dillner, and Satoshi Takahama
Atmos. Meas. Tech., 9, 441–454, https://doi.org/10.5194/amt-9-441-2016,https://doi.org/10.5194/amt-9-441-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Classification accuracy and compatibility across devices of a new Rapid-E+ flow cytometer
Branko Sikoparija, Predrag Matavulj, Isidora Simovic, Predrag Radisic, Sanja Brdar, Vladan Minic, Danijela Tesendic, Evgeny Kadantsev, Julia Palamarchuk, and Mikhail Sofiev
Atmos. Meas. Tech., 17, 5051–5070, https://doi.org/10.5194/amt-17-5051-2024,https://doi.org/10.5194/amt-17-5051-2024, 2024
Short summary
A 2-year intercomparison of three methods for measuring black carbon concentration at a high-altitude research station in Europe
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Véronique Pont, Mathilde Arnaud, Thierry Bourrianne, Maria Dias Alves, and Eric Gardrat
Atmos. Meas. Tech., 17, 3897–3915, https://doi.org/10.5194/amt-17-3897-2024,https://doi.org/10.5194/amt-17-3897-2024, 2024
Short summary
Comparison of the LEO and CPMA-SP2 techniques for black-carbon mixing-state measurements
Arash Naseri, Joel C. Corbin, and Jason S. Olfert
Atmos. Meas. Tech., 17, 3719–3738, https://doi.org/10.5194/amt-17-3719-2024,https://doi.org/10.5194/amt-17-3719-2024, 2024
Short summary
Aerosol trace element solubility determined using ultrapure water batch leaching: an intercomparison study of four different leaching protocols
Rui Li, Prema Piyusha Panda, Yizhu Chen, Zhenming Zhu, Fu Wang, Yujiao Zhu, He Meng, Yan Ren, Ashwini Kumar, and Mingjin Tang
Atmos. Meas. Tech., 17, 3147–3156, https://doi.org/10.5194/amt-17-3147-2024,https://doi.org/10.5194/amt-17-3147-2024, 2024
Short summary
Field comparison of dual- and single-spot Aethalometers: equivalent black carbon, light absorption, Ångström exponent and secondary brown carbon estimations
Liangbin Wu, Cheng Wu, Tao Deng, Dui Wu, Mei Li, Yong Jie Li, and Zhen Zhou
Atmos. Meas. Tech., 17, 2917–2936, https://doi.org/10.5194/amt-17-2917-2024,https://doi.org/10.5194/amt-17-2917-2024, 2024
Short summary

Cited articles

Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O∕C and OM∕OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008. a, b, c
Allen, D. T. and Palen, E.: Recent advances in aerosol analysis by infrared spectroscopy, J. Aerosol Sci., 20, 441–455, https://doi.org/10.1016/0021-8502(89)90078-5, 1989. a, b
Allen, D. T., Palen, E. J., Haimov, M. I., Hering, S. V., and Young, J. R.: Fourier-transform Infrared-spectroscopy of Aerosol Collected In A Low-pressure Impactor (LPI/FTIR) – Method Development and Field Calibration, Aerosol Sci. Technol., 21, 325–342, https://doi.org/10.1080/02786829408959719, 1994. a, b
Alsberg, B. K., Winson, M. K., and Kell, D. B.: Improving the interpretation of multivariate and rule induction models by using a peak parameter representation, Chemometr. Intell. Lab., 36, 95–109, https://doi.org/10.1016/S0169-7439(97)00024-5, 1997. a
Arlot, S. and Celisse, A.: A survey of cross-validation procedures for model selection, Stat. Surv., 4, 40–79, https://doi.org/10.1214/09-SS054, 2010. a
Short summary
We compare state-of-the-art models for predicting functional group composition in atmospheric particulate matter across urban and rural samples collected in a US monitoring network. While trends across models are consistent, absolute abundances can be sensitive to selection of calibration standards, spectral processing procedures, and calibration algorithms. Recommendations for further method development for reducing uncertainties are outlined.