Articles | Volume 12, issue 9
Atmos. Meas. Tech., 12, 5039–5054, 2019
https://doi.org/10.5194/amt-12-5039-2019
Atmos. Meas. Tech., 12, 5039–5054, 2019
https://doi.org/10.5194/amt-12-5039-2019

Research article 19 Sep 2019

Research article | 19 Sep 2019

Use of spectral cloud emissivities and their related uncertainties to infer ice cloud boundaries: methodology and assessment using CALIPSO cloud products

Hye-Sil Kim et al.

Related authors

Improvement in tropospheric moisture retrievals from VIIRS through the use of infrared absorption bands constructed from VIIRS and CrIS data fusion
E. Eva Borbas, Elisabeth Weisz, Chris Moeller, W. Paul Menzel, and Bryan A. Baum
Atmos. Meas. Tech., 14, 1191–1203, https://doi.org/10.5194/amt-14-1191-2021,https://doi.org/10.5194/amt-14-1191-2021, 2021
Short summary
A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid- and far-infrared
Richard J. Bantges, Helen E. Brindley, Jonathan E. Murray, Alan E. Last, Jacqueline E. Russell, Cathryn Fox, Stuart Fox, Chawn Harlow, Sebastian J. O'Shea, Keith N. Bower, Bryan A. Baum, Ping Yang, Hilke Oetjen, and Juliet C. Pickering
Atmos. Chem. Phys., 20, 12889–12903, https://doi.org/10.5194/acp-20-12889-2020,https://doi.org/10.5194/acp-20-12889-2020, 2020
Short summary
Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion
Yue Li, Bryan A. Baum, Andrew K. Heidinger, W. Paul Menzel, and Elisabeth Weisz
Atmos. Meas. Tech., 13, 4035–4049, https://doi.org/10.5194/amt-13-4035-2020,https://doi.org/10.5194/amt-13-4035-2020, 2020
Short summary
Altered sub-seasonal predictability of Community Atmosphere Model 5 (CAM5) in CESM 1.2.1 by the choices of dynamical core
Ha-Rim Kim, Baek-Min Kim, Sang-Yoon Jun, and Yong-Sang Choi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-22,https://doi.org/10.5194/gmd-2020-22, 2020
Preprint withdrawn
Short summary
Examination of effects of aerosols on a pyroCb and their dependence on fire intensity and aerosol perturbation
Seoung Soo Lee, George Kablick III, Zhanqing Li, Chang Hoon Jung, Yong-Sang Choi, Junshik Um, and Won Jun Choi
Atmos. Chem. Phys., 20, 3357–3371, https://doi.org/10.5194/acp-20-3357-2020,https://doi.org/10.5194/acp-20-3357-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving cloud type classification of ground-based images using region covariance descriptors
Yuzhu Tang, Pinglv Yang, Zeming Zhou, Delu Pan, Jianyu Chen, and Xiaofeng Zhao
Atmos. Meas. Tech., 14, 737–747, https://doi.org/10.5194/amt-14-737-2021,https://doi.org/10.5194/amt-14-737-2021, 2021
Short summary
Global cloud property models for real-time triage on board visible–shortwave infrared spectrometers
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, and Winston Olson-Duvall
Atmos. Meas. Tech., 13, 7047–7057, https://doi.org/10.5194/amt-13-7047-2020,https://doi.org/10.5194/amt-13-7047-2020, 2020
Short summary
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020,https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Microwave single-scattering properties of non-spheroidal raindrops
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020,https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary
Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020,https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary

Cited articles

Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., and McGill, M.: Cloud detection with MODIS, Part 2: Validation, J. Atmos. Ocean. Tech., 25, 1073–1086, 2008. 
Adler, R. F., Markus, M. J., Fen, D. D., Szejwach, G., and Shenk, W. E.: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer, J. Appl. Meteorol. Clim., 22, 579–593, 1983. 
Baker, M. B.: Cloud microphysics and climate, Science, 276, 1072–1078, 1997. 
Baum, B. A., Soulen, P. F., Strabala, K. I., King, M. D., Ackerman, S. A., Menzel, W. P., and Yang, P.: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase, J. Geophys. Res., 105, 11781–11792, 2000. 
Baum, B. A., Menzel, P., Frey, R. A., Tobin, D., Holz, R. E., Ackerman, S., Heidinger, A., and Yang, P.: MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteorol. Clim., 51, 1145–1163, 2012. 
Download
Short summary
This study demonstrates that ice cloud emissivity uncertainties at 11, 12, and 13.3 µm can be used to provide a reasonable range of ice cloud layer boundaries. We test this methodology using MODIS Collection 6 cloud properties over the western North Pacific Ocean during August 2015. The cloud boundaries for single-layer optically thin ice clouds show good agreement with those from CALIOP version 4 products, with biases increasing for optically thick and multilayered clouds.