Articles | Volume 13, issue 11
https://doi.org/10.5194/amt-13-5779-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5779-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Commercial microwave links as a tool for operational rainfall monitoring in Northern Italy
Giacomo Roversi
Department of Physics and Astronomy, University of Bologna, Bologna, 40100, Italy
Pier Paolo Alberoni
Struttura Idro-Meteo-Clima, Arpae Emilia Romagna, Bologna, 40122, Italy
Anna Fornasiero
Struttura Idro-Meteo-Clima, Arpae Emilia Romagna, Bologna, 40122, Italy
Department of Physics and Astronomy, University of Bologna, Bologna, 40100, Italy
Related authors
No articles found.
Gabriele Franch, Elena Tomasi, Rishabh Wanjari, Virginia Poli, Chiara Cardinali, Pier Paolo Alberoni, and Marco Cristoforetti
Geosci. Model Dev., 18, 5351–5371, https://doi.org/10.5194/gmd-18-5351-2025, https://doi.org/10.5194/gmd-18-5351-2025, 2025
Short summary
Short summary
Our research introduces GPTCast, a novel method for very short term precipitation forecasting using radar data. By applying advanced machine learning techniques inspired by large language models, we developed a system that generates accurate and realistic weather predictions. We trained the model using 6 years of radar data from northern Italy, demonstrating its superior performance over leading ensemble extrapolation methods.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Laura Tositti, Erika Brattich, Claudio Cassardo, Pietro Morozzi, Alessandro Bracci, Angela Marinoni, Silvana Di Sabatino, Federico Porcù, and Alessandro Zappi
Atmos. Chem. Phys., 22, 4047–4073, https://doi.org/10.5194/acp-22-4047-2022, https://doi.org/10.5194/acp-22-4047-2022, 2022
Short summary
Short summary
We present a thorough investigation of an anomalous transport of mineral dust over a region renowned for excess airborne particulate matter, the Italian Po Valley, which occurred in late March 2021. Both the origin of this dust outbreak, which was localized in central Asia (i.e., the so-called Aralkum Desert), and the upstream synoptic conditions, investigated here in extreme detail using multiple integrated observations including in situ measurements and remote sensing, were atypical.
Cited articles
Abdulrahman, A., Bin Abdulrahman, T., Bin Abdulrahim, S., and Kesavan, U.:
Comparison of measured rain attenuation and ITU-R predictions on experimental
microwave links in Malaysia, Int. J. Microw. Wirel.
T., 3, 477–483, https://doi.org/10.1017/S1759078711000171, 2011. a
Alberoni, P. P., Andersson, T., Mezzasalma, P., Michelson, D. B., and Nanni, S.: Use of the vertical reflectivity profile for identification of anomalous
propagation, Meteorol. Appl., 8, 257–266,
https://doi.org/10.1017/S1350482701003012, 2001. a
Alberoni, P. P., Fornasiero, A., Roversi, G., Pasetti, S., Folegani, M., and
Porcù, F.: Comparison between different QPE based on: Microwave Links, Radar adjusted and Gauges, in: 10th European Conference on Radar in Meteorology and
Hydrology, KNMI, 1–6 July 2018, Ede, the Netherlands, 851–860, https://doi.org/10.18174/454537, 2018. a
Amorati, R., Alberoni, P., and Fornasiero, A.: Operational Bias Correction of
Hourly Radar Precipitation Estimate using Rain Gauges, in: Proceedings of the Seventh Eropean Conference on Radar in meteorology and Hydrology, 24–29 June 2012, Toulouse, France, available at:
http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/QPE_007_ext_abs.pdf
(last access: 22 October 2020), 2012. a
Antolini, G., Auteri, L., Pavan, V., Tomei, F., Tomozeiu, R., and Marletto, V.:
A daily high-resolution gridded climatic data set for Emilia Romagna, Italy,
during 1961-2010, Int. J. Climatol., 36, 1970–1986, 2016. a
Bech, J., Codina, B., Lorente, J., and Bebbington, D.: The Sensitivity of
Single Polarization Weather Radar Beam Blockage Correction to Variability in the Vertical Refractivity Gradient, J. Atmos. Ocean.
Tech., 20, 845–855,
https://doi.org/10.1175/1520-0426(2003)020{<}0845:TSOSPW{>}2.0.CO;2, 2003. a
Berne, A. and Uijlenhoet, R.: Path-averaged rainfall estimation using microwave
links: Uncertainty due to spatial rainfall variability, Geophys. Res.
Lett., 34, L07403, https://doi.org/10.1029/2007GL029409, 2007. a
Bianchi, B., Jan van Leeuwen, P., Hogan, R. J., and Berne, A.: A Variational
Approach to Retrieve Rain Rate by Combining Information from Rain Gauges,
Radars, and Microwave Links, J. Hydrometeorol., 14, 1897–1909,
https://doi.org/10.1175/JHM-D-12-094.1, 2013. a
Bowman, D. and Lees, J.: Near real time weather and ocean model data access
with rNOMADS, Comput. Geosci., 78, 88–95,
https://doi.org/10.1016/j.cageo.2015.02.013, 2015. a
Caracciolo, C., Prodi, F., and Uijlenhoet, R.: Comparison between Pludix and
impact/optical disdrometers during rainfall measurement campaigns, 14th International Conference on Clouds and Precipitation,
Atmos. Res., 82, 137–163,
https://doi.org/10.1016/j.atmosres.2005.09.007, 2006. a
Chwala, C. and Kunstmann, H.: Commercial microwave link networks for rainfall
observation: Assessment of the current status and future challenges, WIREs
Water, 6, e1337, https://doi.org/10.1002/wat2.1337, 2019. a
Cummings, R., Upton, G., Holt, A., and Kitchen, M.: Using microwave links to
adjust the radar rainfall field, Adv. Water Resour., 32, 1003–1010, https://doi.org/10.1016/j.advwatres.2008.08.010, 2009. a
de Vos, L., Raupach, T., Leijnse, H., Overeem, A., Berne, A., and Uijlenhoet,
R.: High-Resolution Simulation Study Exploring the Potential of Radars,
Crowdsourced Personal Weather Stations, and Commercial Microwave Links to
Monitor Small-Scale Urban Rainfall, Water Resour. Res., 54,
10293–10312, https://doi.org/10.1029/2018WR023393, 2018. a
de Vos, L. W., Overeem, A., Leijnse, H., and Uijlenhoet, R.: Rainfall
Estimation Accuracy of a Nationwide Instantaneously Sampling Commercial
Microwave Link Network: Error Dependency on Known Characteristics, J. Atmos. Ocean. Tech., 36, 1267–1283,
https://doi.org/10.1175/JTECH-D-18-0197.1, 2019. a, b
Doumounia, A., Gosset, M., Cazenave, F., Kacou, M., and Zougmore, F.: Rainfall monitoring based on microwave links from cellular telecommunication networks: First results from a West African test bed, Geophys. Res. Lett., 41, 6015–6021, https://doi.org/10.1002/2014GL060724, 2014. a
Feidas, H., Porcu, F., Puca, S., Rinollo, A., Lagouvardos, C., and Kotroni, V.:
Validation of the H-SAF precipitation product H03 over Greece using rain
gauge data, Theor. Appl. Climatol., 131, 377–398,
https://doi.org/10.1007/s00704-016-1981-9, 2018. a
Fencl, M., Rieckermann, J., Schleiss, M., Stránský, D., and Bareš, V.:
Assessing the potential of using telecommunication microwave links in urban
drainage modelling, Water Sci. Technol., 68, 1810–8,
https://doi.org/10.2166/wst.2013.429, 2013. a, b
Fencl, M., Dohnal, M., Rieckermann, J., and Bareš, V.: Gauge-adjusted rainfall estimates from commercial microwave links, Hydrol. Earth Syst. Sci., 21, 617–634, https://doi.org/10.5194/hess-21-617-2017, 2017. a
Fenicia, F., Pfister, L., Kavetski, D., Matgen, P., Iffly, J.-F., Hoffmann, L.,
and Uijlenhoet, R.: Microwave links for rainfall estimation in an urban
environment: Insights from an experimental setup in Luxembourg-City, J.
Hydrol., 464–465, 69–78,
https://doi.org/10.1016/j.jhydrol.2012.06.047, 2012. a
Figueras i Ventura, J., Boumahmoud, A., Fradon, B., Dupuy, P., and Tabary, P.:
Long-term monitoring of French polarimetric radar data quality and evaluation
of several polarimetric quantitative precipitation estimators in ideal
conditions for operational implementation at C-band, Q. J. Roy. Meteor. Soc., 138, 2212–2228, https://doi.org/10.1002/qj.1934, 2012. a
Fornasiero, A., Bech, J., and Alberoni, P. P.: Enhanced radar precipitation estimates using a combined clutter and beam blockage correction technique, Nat. Hazards Earth Syst. Sci., 6, 697–710, https://doi.org/10.5194/nhess-6-697-2006, 2006. a
Gou, Y., Chen, H., and Zheng, J.: Polarimetric Radar Signatures and Performance
of Various Radar Rainfall Estimators during an Extreme Precipitation Event
over the Thousand-Island Lake Area in Eastern China, Remote Sens.-Basel, 11, 2335, https://doi.org/10.3390/rs11202335, 2019. a
Grecu, M., Olson, W., Munchak, s., Ringerud, S., Liao, L., Haddad, Z., Kelley, B., and McLaughlin, S.: The GPM combined algorithm, J. Atmos. Ocean. Tech., 33, 2225–2245, https://doi.org/10.1175/JTECH-D-16-0019.1,
2016. a
Grum, M., Kraemer, S., Verworn, H.-R., and Redder, A.: Combined use of point
rain gauges, radar, microwave link and level measurements in urban
hydrological modelling, Atmos. Res., 77, 313–321,
https://doi.org/10.1016/j.atmosres.2004.10.013, 2005. a, b
Haese, B., Hörning, S., Chwala, C., Bardossy, A., Schalge, B., , and
Kunstmann, H.: Stochastic Reconstruction and Interpolation of Precipitation
Fields Using Combined Information of Commercial Microwave Links and Rain
Gauges, Water Resour. Res., 53, 10740–10756,
https://doi.org/10.1002/2017WR021015, 2017. a
Harden, B., Norbury, J., and White, W.: Attenuation/rain-rate relationships on
terrestrial microwave links in the frequency range 10–40 GHz, Electron.
Lett., 14, 154–155, https://doi.org/10.1049/el:19780103, 1978. a
Huuskonen, A., Saltikoff, E., and Holleman, I.: The Operational Weather Radar
Network in Europe, B. Am. Meteorol. Soc., 95,
897–907, https://doi.org/10.1175/BAMS-D-12-00216.1, 2014. a
Jameson, A. R.: Estimating the Path-Average Rainwater Content and Updraft Speed
along a Microwave Link, J. Atmos. Ocean. Tech., 10,
478–485, https://doi.org/10.1175/1520-0426(1993)010<0478:ETPARC>2.0.CO;2, 1993. a
Koistinen, J. and Puhakka, T.: An improved spatial gauge-radar adjustment
technique, in: Preprints of the 20th Conference on Radar Meteorology, 30 November–3 December 1981, Boston, MA, USA, Am. Meteorol. Soc., 179–186, 1981. a
Lanza, L. and Stagi, L.: Non-parametric error distribution analysis from the
laboratory calibration of various rainfall intensity gauges, Water Sci. Technol., 65, 1745–52, https://doi.org/10.2166/wst.2012.075, 2012. a
Leijnse, H., Uijlenhoet, R., and Stricker, J.: Microwave link rainfall
estimation: Effects of link length and frequency, temporal sampling, power
resolution, and wet antenna attenuation, Adv. Water Resour., 31,
1481–1493, https://doi.org/10.1016/j.advwatres.2008.03.004, 2008. a, b, c
Leijnse, H., Uijlenhoet, R., and Berne, A.: Errors and Uncertainties in
Microwave Link Rainfall Estimation Explored Using Drop Size Measurements and
High-Resolution Radar Data, J. Hydrometeorol., 11, 1330–1344,
https://doi.org/10.1175/2010JHM1243.1, 2010. a, b
Leinse, H.: Hydro-meteorological application of microwave links – Measurement
of evaporation and precipitation, PhD thesis, Wageningen University, Wageningen, the Netherlands, 2007. a
Mugnai, A., Casella, D., Cattani, E., Dietrich, S., Laviola, S., Levizzani, V., Panegrossi, G., Petracca, M., Sanò, P., Di Paola, F., Biron, D., De Leonibus, L., Melfi, D., Rosci, P., Vocino, A., Zauli, F., Pagliara, P., Puca, S., Rinollo, A., Milani, L., Porcù, F., and Gattari, F.: Precipitation products from the hydrology SAF, Nat. Hazards Earth Syst. Sci., 13, 1959–1981, https://doi.org/10.5194/nhess-13-1959-2013, 2013. a
Mulangu, C. and Afullo, T.: Variability of the propagation coefficients due to
rain for microwave links in southern Africa, Radio Sci., 44, RS3006,
https://doi.org/10.1029/2008RS003912, 2009. a
Osservatorio Clima: ERG5 – Dataset meteo orario e giornaliero dal 2001, available at: https://dati.arpae.it/dataset/erg5-interpolazione-su-griglia-di-dati-meteo,
last access: 20 October 2020. a
Overeem, A., Leijnse, H., and Uijlenhoet, R.: Measuring urban rainfall using
microwave links from commercial cellular communication networks, Water
Resour. Res., 47, W12505, https://doi.org/10.1029/2010WR010350, 2011. a
Overeem, A., Leijnse, H., and Uijlenhoet, R.: Country-wide rainfall maps from
cellular communication networks, P. Natl. Acad.
Sci. USA, 110, 2741–2745, https://doi.org/10.1073/pnas.1217961110, 2013. a, b
Petracca, M., D'Adderio, L., Porcu, F., Vulpiani, G., Stefano, S., and Puca,
S.: Validation of GPM Dual-Frequency Precipitation Radar (DPR) Rainfall
Products over Italy, J. Hydrometeorol., 19, 907–925,
https://doi.org/10.1175/JHM-D-17-0144.1, 2018. a
Porcù, F., Milani, L., and Petracca, M.: On the uncertainties in validating
satellite instantaneous rainfall estimates with raingauge operational
network, Atmos. Res., 144, 73–81,
https://doi.org/10.1016/j.atmosres.2013.12.007, 2014. a
Puca, S., Porcu, F., Rinollo, A., Vulpiani, G., Baguis, P., Balabanova, S., Campione, E., Ertürk, A., Gabellani, S., Iwanski, R., Jurašek, M., Kaňák, J., Kerényi, J., Koshinchanov, G., Kozinarova, G., Krahe, P., Lapeta, B., Lábó, E., Milani, L., Okon, L'., Öztopal, A., Pagliara, P., Pignone, F., Rachimow, C., Rebora, N., Roulin, E., Sönmez, I., Toniazzo, A., Biron, D., Casella, D., Cattani, E., Dietrich, S., Di Paola, F., Laviola, S., Levizzani, V., Melfi, D., Mugnai, A., Panegrossi, G., Petracca, M., Sanò, P., Zauli, F., Rosci, P., De Leonibus, L., Agosta, E., and Gattari, F.: The validation service of the hydrological SAF geostationary and polar satellite precipitation products, Nat. Hazards Earth Syst. Sci., 14, 871–889, https://doi.org/10.5194/nhess-14-871-2014, 2014. a, b
Rahimi, A. R., Holt, A. R., Upton, G. J. G., and Cummings, R. J.: Use of
dual-frequency microwave links for measuring path-averaged rainfall, J.
Geophys. Res.-Atmos., 108, 4467, https://doi.org/10.1029/2002JD003202,
2003. a
Rincon, R. and Lang, R.: Microwave link dual-wavelength measurements of
path-average attenuation for the estimation of drop size distributions and
rainfall, IEEE T. Geosci. Remote, 40, 760–770, https://doi.org/10.1109/TGRS.2002.1006324, 2002. a
Rios Gaona, M. F., Overeem, A., Raupach, T. H., Leijnse, H., and Uijlenhoet, R.: Rainfall retrieval with commercial microwave links in São Paulo,
Brazil, Atmos. Meas. Tech., 11, 4465–4476, https://doi.org/10.5194/amt-11-4465-2018,
2018. a
Roversi, G.: RAINLINK 1.14 – forked version for Emilia Romagna (Italy), Zenodo, https://doi.org/10.5281/zenodo.4153473, 2020.
Saltikoff, E., Haase, G., Delobbe, L., Gaussiat, N., Martet, M., Idziorek, D.,
Leijnse, H., Novák, P., Lukach, M., and Stephan, K.: OPERA the Radar
Project, Atmosphere, 10, 320, https://doi.org/10.3390/atmos10060320, 2019. a
Serafin, R. J. and Wilson, J. W.: Operational Weather Radar in the United
States: Progress and Opportunity, B. Am. Meteorol.
Soc., 81, 501–518, https://doi.org/10.1175/1520-0477(2000)081<0501:OWRITU>2.3.CO;2,
2000. a
Shepard, D.: A Two-Dimensional Interpolation Function for Irregularly-Spaced
Data, in: Proceedings of the 1968 23rd ACM National Conference, ACM '68, Association for Computing Machinery, 27–29 August 1968, New York, NY, USA,
517–524, https://doi.org/10.1145/800186.810616, 1968. a
SI@SIMC@ARPAE: Dext3r beta, available at: https://simc.arpae.it/dext3r/, last access: 22 October 2020. a
SIMC – Unità Radarmeteorologia Radarpluviometria Nowcasting e Reti Non Convenzionali: Radar meteo, available at: https://dati.arpae.it/dataset/radar-meteo, last access: 22 October 2020. a
Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F.,
Kirschbaum, D. B., Kakar, R., Braun, S. A., Huffman, G. J., Iguchi, T.,
Kirstetter, P. E., Kummerow, C., Meneghini, R., Oki, R., Olson, W. S.,
Takayabu, Y. N., Furukawa, K., and Wilheit, T.: The Global Precipitation
Measurement (GPM) Mission for Science and Society, B. Am. Meteorol. Soc., 98, 1679–1695, https://doi.org/10.1175/BAMS-D-15-00306.1,
2017. a
Speirs, P., Gabella, M., and Berne, A.: A comparison between the GPM
dual-frequency precipitation radar and ground-based radar precipitation rate
estimates in the Swiss Alps and Plateau, J. Hydrometeorol., 18,
1247–1269, https://doi.org/10.1175/JHM-D-16-0085.1, 2017. a
Tang, G., Clark, M. P., Papalexiou, S. M., Ma, Z., and Hong, Y.:
Hydro-Meteorological Assessment of Three GPM Satellite Precipitation Products
in the Kelantan River Basin, Malaysia, Remote Sens. Environ., 240,
11697, https://doi.org/10.1016/j.rse.2020.111697, 2020. a
Tokay, A., D'Adderio, L. P., Porcù, F., Wolff, D. B., and Petersen, W. A.: A
Field Study of Footprint-Scale Variability of Raindrop Size Distribution,
J. Hydrometeorol., 18, 3165–3179, https://doi.org/10.1175/JHM-D-17-0003.1,
2017. a
Turner, D. J. W. and Turner, D.: Attenuation due to rainfall on a 24 km
microwave link working at 11, 18 and 36 GHz, Electron. Lett., 6,
297–298, https://doi.org/10.1049/el:19700208, 1970. a
Upton, G., Holt, A., Cummings, R., Rahimi, A., and Goddard, J.: Microwave
links: The future for urban rainfall measurement?, Atmos. Res., 77,
300–312, https://doi.org/10.1016/j.atmosres.2004.10.009, 2005. a
van de Beek, C., Leijnse, H., Torfs, P., and Uijlenhoet, R.: Seasonal
semi-variance of Dutch rainfall at hourly to daily scales, Adv. Water
Resour., 45, 76–85, https://doi.org/10.1016/j.advwatres.2012.03.023, 2012. a
van Leth, T. C., Leijnse, H., Overeem, A., and Uijlenhoet, R.: Estimating raindrop size distributions using microwave link measurements: potential and limitations, Atmos. Meas. Tech., 13, 1797–1815, https://doi.org/10.5194/amt-13-1797-2020, 2020. a
Short summary
The microwave signal travelling between two antennas of the commercial mobile backhaul network is strongly attenuated by rainfall. The open-source RAINLINK algorithm extracts rainfall rate maps, processing the attenuation data recorded by the transmission system. In this work, we applied RAINLINK to 357 Vodafone links in northern Italy and compared the outputs with the operational rain products of the local weather service (Arpae), outlining pros and cons and discussing error structure.
The microwave signal travelling between two antennas of the commercial mobile backhaul network...