Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1715-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-1715-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Natalie Kaifler
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Related authors
Jens Fiedler, Gerd Baumgarten, Michael Gerding, Torsten Köpnick, Reik Ostermann, and Bernd Kaifler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1995, https://doi.org/10.5194/egusphere-2025-1995, 2025
Short summary
Short summary
We developed a system for frequency control and monitoring of pulsed high-power lasers. It works in real-time, controls the laser cavity length, and performs a spectral analyzes of each individual laser pulse. The motivation for this work was to improve the retrieval of Doppler winds measured by lidar in the middle atmosphere by taking the frequency stability of the lidar transmitter into account.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024, https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Short summary
Noctilucent clouds (NLCs) are silvery clouds that can be viewed during twilight and indicate atmospheric conditions like temperature and water vapor in the upper mesosphere. High-resolution measurements from a remote sensing laser instrument provide NLC height, brightness, and occurrence rate since 2017. Most observations occur in the morning hours, likely caused by strong tidal winds, and NLC ice particles are thus transported from elsewhere to the observing location in the Southern Hemisphere.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023, https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary
Short summary
We used a lidar to measure polar mesospheric clouds from a balloon floating in the upper stratosphere. The thin-layered ice clouds at 83 km altitude are perturbed by waves. The high-resolution lidar soundings reveal small-scale structures induced by the breaking of those waves. We study these patterns and find that they occur very often. We show their morphology and discuss associated dynamical physical processes, which help to interpret case studies and to guide modelling.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Earth Syst. Sci. Data, 14, 4923–4934, https://doi.org/10.5194/essd-14-4923-2022, https://doi.org/10.5194/essd-14-4923-2022, 2022
Short summary
Short summary
We measured polar mesospheric clouds (PMCs), our Earth’s highest clouds at the edge of space, with a Rayleigh lidar from a stratospheric balloon. We describe how we derive the cloud’s brightness and discuss the stability of the gondola pointing and the sensitivity of our measurements. We present our high-resolution PMC dataset that is used to study dynamical processes in the upper mesosphere, e.g. regarding gravity waves, mesospheric bores, vortex rings, and Kelvin–Helmholtz instabilities.
Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano
Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022, https://doi.org/10.5194/acp-22-7417-2022, 2022
Short summary
Short summary
We present and discuss 2 years of long-term lidar observations of the largest stratospheric perturbation by wildfire smoke ever observed. The smoke originated from the record-breaking Australian fires in 2019–2020 and affects climate conditions and even the ozone layer in the Southern Hemisphere. The obvious link between dense smoke occurrence in the stratosphere and strong ozone depletion found in the Arctic and in the Antarctic in 2020 can be regarded as a new aspect of climate change.
Stefanie Knobloch, Bernd Kaifler, and Markus Rapp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-310, https://doi.org/10.5194/amt-2021-310, 2022
Preprint withdrawn
Short summary
Short summary
The study tests the quality of temperature measurements from the airborne Rayleigh lidar ALIMA. The ALIMA system was first used during the SouthTRAC campaign in September 2019 in the vicinity of the Southern Andes, Drake Passage and Antarctic Peninsula. The raw lidar measurements are additionally simulated based on reanalysis data for one research flight. Different types of uncertainty influencing the accuracy of the temperature measurements are studied, e.g. atmospheric and technical sources.
Emranul Sarkar, Alexander Kozlovsky, Thomas Ulich, Ilkka Virtanen, Mark Lester, and Bernd Kaifler
Atmos. Meas. Tech., 14, 4157–4169, https://doi.org/10.5194/amt-14-4157-2021, https://doi.org/10.5194/amt-14-4157-2021, 2021
Short summary
Short summary
The biasing effect in meteor radar temperature has been a pressing issue for the last 2 decades. This paper has addressed the underlying reasons for such a biasing effect on both theoretical and experimental grounds. An improved statistical method has been developed which allows atmospheric temperatures at around 90 km to be measured with meteor radar in an independent way such that any subsequent bias correction or calibration is no longer required.
Bernd Kaifler, Dimitry Rempel, Philipp Roßi, Christian Büdenbender, Natalie Kaifler, and Volodymyr Baturkin
Atmos. Meas. Tech., 13, 5681–5695, https://doi.org/10.5194/amt-13-5681-2020, https://doi.org/10.5194/amt-13-5681-2020, 2020
Short summary
Short summary
The Balloon Lidar Experiment was the first lidar dedicated to measurements in the mesosphere flown on a balloon. During a 6 d flight, it made high-resolution observations of polar mesospheric clouds which form at high latitudes during summer at ~ 83 km altitude and are the highest clouds in Earth's atmosphere. We describe the instrument and assess its performance. We could detect fainter clouds with higher resolution than what is possible with ground-based instruments.
Jens Fiedler, Gerd Baumgarten, Michael Gerding, Torsten Köpnick, Reik Ostermann, and Bernd Kaifler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1995, https://doi.org/10.5194/egusphere-2025-1995, 2025
Short summary
Short summary
We developed a system for frequency control and monitoring of pulsed high-power lasers. It works in real-time, controls the laser cavity length, and performs a spectral analyzes of each individual laser pulse. The motivation for this work was to improve the retrieval of Doppler winds measured by lidar in the middle atmosphere by taking the frequency stability of the lidar transmitter into account.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024, https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Short summary
Noctilucent clouds (NLCs) are silvery clouds that can be viewed during twilight and indicate atmospheric conditions like temperature and water vapor in the upper mesosphere. High-resolution measurements from a remote sensing laser instrument provide NLC height, brightness, and occurrence rate since 2017. Most observations occur in the morning hours, likely caused by strong tidal winds, and NLC ice particles are thus transported from elsewhere to the observing location in the Southern Hemisphere.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023, https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary
Short summary
We used a lidar to measure polar mesospheric clouds from a balloon floating in the upper stratosphere. The thin-layered ice clouds at 83 km altitude are perturbed by waves. The high-resolution lidar soundings reveal small-scale structures induced by the breaking of those waves. We study these patterns and find that they occur very often. We show their morphology and discuss associated dynamical physical processes, which help to interpret case studies and to guide modelling.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Earth Syst. Sci. Data, 14, 4923–4934, https://doi.org/10.5194/essd-14-4923-2022, https://doi.org/10.5194/essd-14-4923-2022, 2022
Short summary
Short summary
We measured polar mesospheric clouds (PMCs), our Earth’s highest clouds at the edge of space, with a Rayleigh lidar from a stratospheric balloon. We describe how we derive the cloud’s brightness and discuss the stability of the gondola pointing and the sensitivity of our measurements. We present our high-resolution PMC dataset that is used to study dynamical processes in the upper mesosphere, e.g. regarding gravity waves, mesospheric bores, vortex rings, and Kelvin–Helmholtz instabilities.
Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano
Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022, https://doi.org/10.5194/acp-22-7417-2022, 2022
Short summary
Short summary
We present and discuss 2 years of long-term lidar observations of the largest stratospheric perturbation by wildfire smoke ever observed. The smoke originated from the record-breaking Australian fires in 2019–2020 and affects climate conditions and even the ozone layer in the Southern Hemisphere. The obvious link between dense smoke occurrence in the stratosphere and strong ozone depletion found in the Arctic and in the Antarctic in 2020 can be regarded as a new aspect of climate change.
Stefanie Knobloch, Bernd Kaifler, and Markus Rapp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-310, https://doi.org/10.5194/amt-2021-310, 2022
Preprint withdrawn
Short summary
Short summary
The study tests the quality of temperature measurements from the airborne Rayleigh lidar ALIMA. The ALIMA system was first used during the SouthTRAC campaign in September 2019 in the vicinity of the Southern Andes, Drake Passage and Antarctic Peninsula. The raw lidar measurements are additionally simulated based on reanalysis data for one research flight. Different types of uncertainty influencing the accuracy of the temperature measurements are studied, e.g. atmospheric and technical sources.
Emranul Sarkar, Alexander Kozlovsky, Thomas Ulich, Ilkka Virtanen, Mark Lester, and Bernd Kaifler
Atmos. Meas. Tech., 14, 4157–4169, https://doi.org/10.5194/amt-14-4157-2021, https://doi.org/10.5194/amt-14-4157-2021, 2021
Short summary
Short summary
The biasing effect in meteor radar temperature has been a pressing issue for the last 2 decades. This paper has addressed the underlying reasons for such a biasing effect on both theoretical and experimental grounds. An improved statistical method has been developed which allows atmospheric temperatures at around 90 km to be measured with meteor radar in an independent way such that any subsequent bias correction or calibration is no longer required.
Bernd Kaifler, Dimitry Rempel, Philipp Roßi, Christian Büdenbender, Natalie Kaifler, and Volodymyr Baturkin
Atmos. Meas. Tech., 13, 5681–5695, https://doi.org/10.5194/amt-13-5681-2020, https://doi.org/10.5194/amt-13-5681-2020, 2020
Short summary
Short summary
The Balloon Lidar Experiment was the first lidar dedicated to measurements in the mesosphere flown on a balloon. During a 6 d flight, it made high-resolution observations of polar mesospheric clouds which form at high latitudes during summer at ~ 83 km altitude and are the highest clouds in Earth's atmosphere. We describe the instrument and assess its performance. We could detect fainter clouds with higher resolution than what is possible with ground-based instruments.
Cited articles
Alexander, S. P., Klekociuk, A. R., and Murphy, D. J.: Rayleigh lidar
observations of gravity wave activity in the winter upper stratosphere and
lower mesosphere above Davis, Antarctica (69∘S, 78∘E), J.
Geophys. Res.-Atmos., 116, D13109,
https://doi.org/10.1029/2010JD015164, 2011. a, b
Collis, R. T. H.: Lidar Observation of Cloud, Science, 149, 978–981,
https://doi.org/10.1126/science.149.3687.978, 1965. a
Duck, T. J., Sipler, D. P., Salah, J. E., and Meriwether, J. W.: Rayleigh lidar
observations of a mesospheric inversion layer during night and day,
Geophys. Res. Lett., 28, 3597–3600,
https://doi.org/10.1029/2001GL013409, 2001. a
Eckermann, S. D., Ma, J., Hoppel, K. W., Kuhl, D. D., Allen, D. R., Doyle,
J. A., Viner, K. C., Ruston, B. C., Baker, N. L., Swadley, S. D., Whitcomb,
T. R., Reynolds, C. A., Xu, L., Kaifler, N., Kaifler, B., Reid, I. M.,
Murphy, D. J., and Love, P. T.: High-Altitude (0–100 km) Global Atmospheric
Reanalysis System: Description and Application to the 2014 Austral Winter of
the Deep Propagating Gravity Wave Experiment (DEEPWAVE), Mon. Weather
Rev., 146, 2639–2666, https://doi.org/10.1175/MWR-D-17-0386.1, 2018. a
Ehard, B., Kaifler, B., Dörnbrack, A., Preusse, P., Eckermann, S., Bramberger,
M., Gisinger, S., Kaifler, N., Liley, B., Wagner, J., and Rapp, M.:
Horizontal propagation of large-amplitude mountain waves into the polar night
jet, J. Geophys. Res., 122, 1423–1436,
https://doi.org/10.1002/2016JD025621, 2017. a
Ehard, B., Malardel, S., Dörnbrack, A., Kaifler, B., Kaifler, N., and Wedi,
N.: Comparing ECMWF high-resolution analyses with lidar temperature
measurements in the middle atmosphere, Q. J. Roy.
Meteor. Soc., 144, 633–640, https://doi.org/10.1002/qj.3206, 2018. a, b
Engelmann, R., Kanitz, T., Baars, H., Heese, B., Althausen, D., Skupin, A., Wandinger, U., Komppula, M., Stachlewska, I. S., Amiridis, V., Marinou, E., Mattis, I., Linné, H., and Ansmann, A.: The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation, Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, 2016. a
Fritts, D., Wang, L., Taylor, M., Pautet, P.-D., Criddle, N., Kaifler, B.,
Eckermann, S., and Liley, B.: Large-Amplitude Mountain Waves in the
Mesosphere Observed on 21 June 2014 During DEEPWAVE: 2. Nonlinear Dynamics,
Wave Breaking, and Instabilities, J. Geophys. Res.-Atmos., 124, 10006–10032, https://doi.org/10.1029/2019JD030899,
2019. a
Fritts, D. C., Smith, R. B., Taylor, M. J., Doyle, J. D., Eckermann, S. D.,
Dörnbrack, A., Rapp, M., Williams, B. P., Pautet, P.-D., Bossert, K.,
Criddle, N. R., Reynolds, C. A., Reinecke, P. A., Uddstrom, M., Revell,
M. J., Turner, R., Kaifler, B., Wagner, J. S., Mixa, T., Kruse, C. G.,
Nugent, A. D., Watson, C. D., Gisinger, S., Smith, S. M., Lieberman, R. S.,
Laughman, B., Moore, J. J., Brown, W. O., Haggerty, J. A., Rockwell, A.,
Stossmeister, G. J., Williams, S. F., Hernandez, G., Murphy, D. J.,
Klekociuk, A. R., Reid, I. M., and Ma, J.: The Deep Propagating Gravity Wave
Experiment (DEEPWAVE): An Airborne and Ground-Based Exploration of Gravity
Wave Propagation and Effects from Their Sources throughout the Lower and
Middle Atmosphere, B. Am. Meteorol. Soc., 97,
425–453, https://doi.org/10.1175/BAMS-D-14-00269.1, 2016. a
Fujii, T.: Laser Remote Sensing, CRC Press, Abingdon, UK,
2005. a
Gawronski, W. and Craparo, E. M.: Antenna scanning techniques for
estimation of spacecraft position, IEEE Antennas and Propagation Magazine,
44, 38–45, https://doi.org/10.1109/MAP.2002.1167263, 2002. a, b
German Aerospace Center: The HALO Database, Mission: SOUTHWAVE, available at: https://halo-db.pa.op.dlr.de/mission/111, last access: 22 February 2021. a
Goldsmith, J. E. M., Blair, F. H., Bisson, S. E., and Turner, D. D.: Turn-key
Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,
Appl. Opt., 37, 4979–4990, https://doi.org/10.1364/AO.37.004979, 1998. a
Hauchecorne, A. and Chanin, M.-L.: Density and temperature profiles obtained by
lidar between 35 and 70 km, Geophys. Res. Lett., 7, 565–568,
https://doi.org/10.1029/GL007i008p00565, 1980. a, b, c
Innis, J. L., Cunningham, A. P., Graham, A. D., and Klekociuk, A. R.:
Automatically guiding a telescope to a laser beam on a biaxial antarctic
light detection and ranging system, Opt. Eng., 46, 1–8,
https://doi.org/10.1117/1.2801411, 2007. a, b, c
Jalali, A., Sica, R. J., and Haefele, A.: Improvements to a long-term Rayleigh-scatter lidar temperature climatology by using an optimal estimation method, Atmos. Meas. Tech., 11, 6043–6058, https://doi.org/10.5194/amt-11-6043-2018, 2018. a
Kaifler, B., Kaifler, N., Ehard, B., Dörnbrack, A., Rapp, M., and Fritts,
D. C.: Influences of source conditions on mountain wave penetration into the
stratosphere and mesosphere, Geophys. Res. Lett., 42, 9488–9494,
https://doi.org/10.1002/2015GL066465, 2015a. a, b
Kaifler, B., Lübken, F.-J., Höffner, J., Morris, R. J., and Viehl, T. P.:
Lidar observations of gravity wave activity in the middle atmosphere over
Davis (69∘S, 78∘E), Antarctica, J. Geophys. Res.-Atmos., 120, 4506–4521, https://doi.org/10.1002/2014JD022879, 2015b. a, b
Kaifler, N., Kaifler, B., Ehard, B., Gisinger, S., Dörnbrack, A., Rapp, M.,
Kivi, R., Kozlovsky, A., Lester, M., and Liley, B.: Observational indications
of downward-propagating gravity waves in middle atmosphere lidar data,
J. Atmos. Sol.-Terr. Phy., 162, 16–27,
https://doi.org/10.1016/j.jastp.2017.03.003, 2017. a
Kaifler, N., Kaifler, B., Wilms, H., Rapp, M., Stober, G., and Jacobi, C.:
Mesospheric Temperature During the Extreme Midlatitude Noctilucent Cloud
Event on 18/19 July 2016, J. Geophys. Res.-Atmos., 123,
13775–13789, https://doi.org/10.1029/2018JD029717, 2018. a
Kaifler, N., Kaifler, B., Dörnbrack, A., Rapp, M., Hormaechea, J. L., and
de la Torre, A.: Lidar observations of large-amplitude mountain waves in the
stratosphere above Tierra del Fuego, Argentina, Sci. Rep., 10,
14529, https://doi.org/10.1038/s41598-020-71443-7, 2020. a, b
Leblanc, T., McDermid, I. S., Hauchecorne, A., and Keckhut, P.: Evaluation of
optimization of lidar temperature analysis algorithms using simulated data,
J. Geophys. Res.-Atmos., 103, 6177–6187,
https://doi.org/10.1029/97JD03494, 1998. a
Li, T., Leblanc, T., McDermid, I. S., Wu, D. L., Dou, X., and Wang, S.:
Seasonal and interannual variability of gravity wave activity revealed by
long-term lidar observations over Mauna Loa Observatory, Hawaii, J.
Geophys. Res.-Atmos., 115, D13103,
https://doi.org/10.1029/2009JD013586, 2010. a
Li, T., Ban, C., Fang, X., Li, J., Wu, Z., Feng, W., Plane, J. M. C., Xiong, J., Marsh, D. R., Mills, M. J., and Dou, X.: Climatology of mesopause region nocturnal temperature, zonal wind and sodium density observed by sodium lidar over Hefei, China (32∘ N, 117∘ E), Atmos. Chem. Phys., 18, 11683–11695, https://doi.org/10.5194/acp-18-11683-2018, 2018. a
Llamedo, P., Salvador, J., de la Torre, A., Quiroga, J., Alexander, P., Hierro,
R., Schmidt, T., Pazmiño, A., and Quel, E.: 11 Years of Rayleigh Lidar
Observations of Gravity Wave Activity Above the Southern Tip of South
America, J. Geophys. Res.-Atmos., 124, 451–467,
https://doi.org/10.1029/2018JD028673, 2019. a
Markwardt, C.: Non-linear least squares fitting in IDL with MPFIT, in: Proceedings
of Astronomical Data Analysis Software and Systems, Québec City, QC, Canada, 2–5 November 2008, Astronomical Data Analysis Software and Systems XVIII ASP Conference Series, Vol. 411, edited by: Bohlender, D. A., Durand, D., and Dowler, P., Astronomical Society of the Pacific, San Francisco, 251 pp., 2009. a
Montenbruck, O. and Pfleger, T.: Astronomy on the Personal Computer, Springer, Berlin, Heidelberg, Germany,
https://doi.org/10.1007/978-3-642-03436-7, 2013. a
Mzé, N., Hauchecorne, A., Keckhut, P., and Thétis, M.: Vertical distribution
of gravity wave potential energy from long-term Rayleigh lidar data at a
northern middle-latitude site, J. Geophys. Res.-Atmos.,
119, 12069–12083, https://doi.org/10.1002/2014JD022035, 2014. a
Pautet, P.-D., Taylor, M. J., Pendleton, W. R., Zhao, Y., Yuan, T., Esplin, R.,
and McLain, D.: Advanced mesospheric temperature mapper for high-latitude
airglow studies, Appl. Opt., 53, 5934–5943, https://doi.org/10.1364/AO.53.005934,
2014. a
Rapp, M., Kaifler, B., Dörnbrack, A., Gisinger, S., Mixa, T., Reichert, R.,
Kaifler, N., Knobloch, S., Eckert, R., Wildmann, N., Giez, A., Krasauskas,
L., Preusse, P., Geldenhuys, M., Riese, M., Woiwode, W., Friedl-Vallon, F.,
Sinnhuber, B.-M., de la Torre, A., Alexander, P., Hormaechea, J. L., Janches,
D., Garhammer, M., Chau, J. L., Conte, J. F., Hoor, P., and Engel, A.:
SOUTHTRAC-GW: An airborne field campaign to explore gravity wave dynamics at
the world's strongest hotspot, B. Am. Meteorol.
Soc., 1–60, https://doi.org/10.1175/BAMS-D-20-0034.1, online first, 2020. a
Rauthe, M., Gerding, M., and Lübken, F.-J.: Seasonal changes in gravity wave activity measured by lidars at mid-latitudes, Atmos. Chem. Phys., 8, 6775–6787, https://doi.org/10.5194/acp-8-6775-2008, 2008. a
Reichardt, J., Wandinger, U., Klein, V., Mattis, I., Hilber, B., and Begbie,
R.: RAMSES: German Meteorological Service autonomous Raman lidar for water
vapor, temperature, aerosol, and cloud measurements, Appl. Opt., 51,
8111–8131, https://doi.org/10.1364/AO.51.008111, 2012. a
Reichert, R., Kaifler, B., Kaifler, N., Rapp, M., Pautet, P.-D., Taylor, M. J., Kozlovsky, A., Lester, M., and Kivi, R.: Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data, Atmos. Meas. Tech., 12, 5997–6015, https://doi.org/10.5194/amt-12-5997-2019, 2019. a
Schuster, B. G.: Detection of tropospheric and stratospheric aerosol layers by
optical radar (Lidar), J. Geophys. Res., 75,
3123–3132, https://doi.org/10.1029/JC075i015p03123, 1970. a
Sivakumar, V., Rao, P. B., and Bencherif, H.: Lidar observations of middle atmospheric gravity wave activity over a low-latitude site (Gadanki, 13.5∘ N, 79.2∘ E), Ann. Geophys., 24, 823–834, https://doi.org/10.5194/angeo-24-823-2006, 2006.
a
Standard Commands for Programmable Instruments (SCPI): Standard Commands for Programmable Instruments (SCPI), Volume 1: Syntax and Style, VERSION 1999.0,
printed in USA, Copyright 1999 SCPI Consortium, available at: https://www.ivifoundation.org/docs/scpi-99.pdf (last access: 25 February 2021), 1999. a
Strawbridge, K. B.: Developing a portable, autonomous aerosol backscatter lidar for network or remote operations, Atmos. Meas. Tech., 6, 801–816, https://doi.org/10.5194/amt-6-801-2013, 2013. a, b
Strawbridge, K. B., Travis, M. S., Firanski, B. J., Brook, J. R., Staebler, R., and Leblanc, T.: A fully autonomous ozone, aerosol and nighttime water vapor lidar: a synergistic approach to profiling the atmosphere in the Canadian oil sands region, Atmos. Meas. Tech., 11, 6735–6759, https://doi.org/10.5194/amt-11-6735-2018, 2018. a
Taylor, M., Pautet, P.-D., Fritts, D., Kaifler, B., Smith, S., Zhao, Y.,
Criddle, N., McLaughlin, P., Pendleton, W. R. J., McCarthy, M., Hernandez,
G., Eckermann, S., Doyle, J., Rapp, M., Liley, B., and Russell, J. M.:
Large-Amplitude Mountain Waves in the Mesosphere Observed on 21 June 2014
During DEEPWAVE: 1. Wave Development, Scales, Momentum Fluxes, and
Environmental Sensitivity, J. Geophys. Res.-Atmos., 124,
10364–10384, https://doi.org/10.1029/2019JD030932, 2019. a
von Zahn, U., von Cossart, G., Fiedler, J., Fricke, K. H., Nelke, G.,
Baumgarten, G., Rees, D., Hauchecorne, A., and Adolfsen, K.: The ALOMAR
Rayleigh/Mie/Raman lidar: objectives, configuration, and performance, Ann.
Geophys., 18, 815–833, https://doi.org/10.1007/s00585-000-0815-2, 2000. a
Wilson, R., Chanin, M. L., and Hauchecorne, A.: Gravity waves in the middle
atmosphere observed by Rayleigh lidar: 2. Climatology, J. Geophys.
Res.-Atmos., 96, 5169–5183,
https://doi.org/10.1029/90JD02610, 1991. a
Short summary
This paper describes the Compact Rayleigh Autonomous Lidar (CORAL), which is the first lidar instrument to make fully automatic high-resolution measurements of atmospheric density and temperature between 15 and 90 km altitude. CORAL achieves a much larger measurement cadence than conventional lidars and thus facilitates studies of rare atmospheric phenomena.
This paper describes the Compact Rayleigh Autonomous Lidar (CORAL), which is the first lidar...