Articles | Volume 14, issue 4
https://doi.org/10.5194/amt-14-2787-2021
https://doi.org/10.5194/amt-14-2787-2021
Research article
 | 
12 Apr 2021
Research article |  | 12 Apr 2021

Reducing cloud contamination in aerosol optical depth (AOD) measurements

Verena Schenzinger and Axel Kreuter

Related authors

Extended aerosol optical depth (AOD) time series analysis in an Alpine valley: a comparative study from 2007 to 2023
Jochen Wagner, Alma Anna Ubele, Verena Schenzinger, and Axel Kreuter
Aerosol Research, 2, 153–159, https://doi.org/10.5194/ar-2-153-2024,https://doi.org/10.5194/ar-2-153-2024, 2024
Short summary
Combining a ground-based UV network with satellite maps: A case study for Germany
Barbara Klotz, Verena Schenzinger, Michael Schwarzmann, and Axel Kreuter
EGUsphere, https://doi.org/10.5194/egusphere-2023-3130,https://doi.org/10.5194/egusphere-2023-3130, 2024
Preprint withdrawn
Short summary
On the production and validation of satellite based UV index maps
Verena Schenzinger, Axel Kreuter, Barbara Klotz, Michael Schwarzmann, and Julian Gröbner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-188,https://doi.org/10.5194/amt-2023-188, 2023
Revised manuscript not accepted
Short summary
Surface impacts of the Quasi Biennial Oscillation
Lesley J. Gray, James A. Anstey, Yoshio Kawatani, Hua Lu, Scott Osprey, and Verena Schenzinger
Atmos. Chem. Phys., 18, 8227–8247, https://doi.org/10.5194/acp-18-8227-2018,https://doi.org/10.5194/acp-18-8227-2018, 2018
Short summary
Defining metrics of the Quasi-Biennial Oscillation in global climate models
Verena Schenzinger, Scott Osprey, Lesley Gray, and Neal Butchart
Geosci. Model Dev., 10, 2157–2168, https://doi.org/10.5194/gmd-10-2157-2017,https://doi.org/10.5194/gmd-10-2157-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Multi-angle aerosol optical depth retrieval method based on improved surface reflectance
Lijuan Chen, Ren Wang, Ying Fei, Peng Fang, Yong Zha, and Haishan Chen
Atmos. Meas. Tech., 17, 4411–4424, https://doi.org/10.5194/amt-17-4411-2024,https://doi.org/10.5194/amt-17-4411-2024, 2024
Short summary
Comparison of diurnal aerosol products retrieved from combinations of micro-pulse lidar and sun photometer observations over the KAUST observation site
Anton Lopatin, Oleg Dubovik, Georgiy Stenchikov, Ellsworth J. Welton, Illia Shevchenko, David Fuertes, Marcos Herreras-Giralda, Tatsiana Lapyonok, and Alexander Smirnov
Atmos. Meas. Tech., 17, 4445–4470, https://doi.org/10.5194/amt-17-4445-2024,https://doi.org/10.5194/amt-17-4445-2024, 2024
Short summary
First atmospheric aerosol-monitoring results from the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia
Yeseul Cho, Jhoon Kim, Sujung Go, Mijin Kim, Seoyoung Lee, Minseok Kim, Heesung Chong, Won-Jin Lee, Dong-Won Lee, Omar Torres, and Sang Seo Park
Atmos. Meas. Tech., 17, 4369–4390, https://doi.org/10.5194/amt-17-4369-2024,https://doi.org/10.5194/amt-17-4369-2024, 2024
Short summary
Aerosol optical depth data fusion with Geostationary Korea Multi-Purpose Satellite (GEO-KOMPSAT-2) instruments GEMS, AMI, and GOCI-II: statistical and deep neural network methods
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, Yeseul Cho, Yun-Gon Lee, Sujung Go, and Kyunghwa Lee
Atmos. Meas. Tech., 17, 4317–4335, https://doi.org/10.5194/amt-17-4317-2024,https://doi.org/10.5194/amt-17-4317-2024, 2024
Short summary
Stratospheric aerosol characteristics from SCIAMACHY limb observations: two-parameter retrieval
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024,https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary

Cited articles

Ångström, A.: On the Atmospheric Transmission of Sun Radiation and on Dust in the Air, Geogr. Ann., 11, 156–166, https://doi.org/10.1080/20014422.1929.11880498, 1929. a
Ångström, A.: The parameters of atmospheric turbidity, Tellus, 16, 64–75, https://doi.org/10.3402/tellusa.v16i1.8885, 1964. a
Ansmann, A., Bösenberg, J., Chaikovsky, A., Comerón, A., Eckhardt, S., Eixmann, R., Freudenthaler, V., Ginoux, P., Komguem, L., Linné, H., Márquez, M. Á. L., Matthias, V., Mattis, I., Mitev, V., Müller, D., Music, S., Nickovic, S., Pelon, J., Sauvage, L., Sobolewsky, P., Srivastava, M. K., Stohl, A., Torres, O., Vaughan, G., Wandinger, U., and Wiegner, M.: Long-range transport of Saharan dust to northern Europe: The 11–16 October 2001 outbreak observed with EARLINET, J. Geophys. Res.-Atmos., 108, 4783, https://doi.org/10.1029/2003JD003757, 2003. a
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh Optical Depth Calculations, J. Atmos. Ocean. Tech., 16, 1854–1861, https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2, 1999. a
Chew, B. N., Campbell, J. R., Reid, J. S., Giles, D. M., Welton, E. J., Salinas, S. V., and Liew, S. C.: Tropical cirrus cloud contamination in sun photometer data, Atmos. Environ., 45, 6724–6731, https://doi.org/10.1016/j.atmosenv.2011.08.017, 2011. a, b, c
Download
Short summary
When measuring the aerosol optical depth of the atmosphere, clouds in front of the sun lead to erroneously high values. Therefore, measurements that are potentially affected by clouds need to be removed from the dataset by an automatic process. As the currently used algorithm cannot reliably identify thin clouds, we developed a new one based on a method borrowed from machine learning. Tests with 10 years of data show improved performance of the new routine and therefore higher data quality.