Articles | Volume 14, issue 5
Atmos. Meas. Tech., 14, 3795–3814, 2021
Atmos. Meas. Tech., 14, 3795–3814, 2021
Research article
26 May 2021
Research article | 26 May 2021

Distributed wind measurements with multiple quadrotor unmanned aerial vehicles in the atmospheric boundary layer

Tamino Wetz et al.

Related authors

Towards vertical wind and turbulent flux estimation with multicopter UAS
Norman Wildmann and Tamino Wetz
EGUsphere,,, 2022
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Infrasound measurement system for real-time in situ tornado measurements
Brandon C. White, Brian R. Elbing, and Imraan A. Faruque
Atmos. Meas. Tech., 15, 2923–2938,,, 2022
Short summary
Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432,,, 2022
Short summary
On the quality of RS41 radiosonde descent data
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183,,, 2022
Short summary
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Karlie N. Rees and Timothy J. Garrett
Atmos. Meas. Tech., 14, 7681–7691,,, 2021
Short summary
Use of thermal signal for the investigation of near-surface turbulence
Matthias Zeeman
Atmos. Meas. Tech., 14, 7475–7493,,, 2021
Short summary

Cited articles

Abichandani, P., Lobo, D., Ford, G., Bucci, D., and Kam, M.: Wind Measurement and Simulation Techniques in Multi-Rotor Small Unmanned Aerial Vehicles, IEEE Access, 8, 54910–54927, 2020. a
Barbieri, L., Kral, S., Bailey, S., Frazier, A., Jacob, J., Reuder, J., Brus, D., Chilson, P., Crick, C., Detweiler, C., Doddi, A., Elston, J., Foroutan, H., González-Rocha, J., Greene, B., Guzman, M., Houston, A., Islam, A., Kemppinen, O., Lawrence, D., Pillar-Little, E., Ross, S., Sama, M., Schmale, D., Schuyler, T., Shankar, A., Smith, S., Waugh, S., Dixon, C., Borenstein, S., and de Boer, G.: Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign, Sensors, 19, 2179,, 2019. a
Bartholmai, M. and Neumann, P. P.: Adaptive ortsaufgelöste Gaskonzentrationsmessung mit einer Mikrodrohne, Tech. Mess., 78, 470–478,, 2011. a
Bell, T. M., Greene, B. R., Klein, P. M., Carney, M., and Chilson, P. B.: Confronting the boundary layer data gap: evaluating new and existing methodologies of probing the lower atmosphere, Atmos. Meas. Tech., 13, 3855–3872,, 2020. a
Beyrich, F. and Adam, W.: Site and Data Report for the Lindenberg Reference Site in CEOP – Phase I, Selbstverlag des Deutschen Wetterdienstes: Berichte des Deutschen Wetterdienstes, Offenbach a. M., Germany, 55 pp., 2007. a
Short summary
A fleet of quadrotors is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to calculate the horizontal wind is based on the principle of aerodynamic drag and the related quadrotor dynamics. The validation reveals that an average accuracy of < 0.3 m s−1 for the wind speed and < 8° for the wind direction was achieved.