Articles | Volume 14, issue 8
https://doi.org/10.5194/amt-14-5735-2021
https://doi.org/10.5194/amt-14-5735-2021
Research article
 | 
20 Aug 2021
Research article |  | 20 Aug 2021

Interpreting estimated observation error statistics of weather radar measurements using the ICON-LAM-KENDA system

Yuefei Zeng, Tijana Janjic, Yuxuan Feng, Ulrich Blahak, Alberto de Lozar, Elisabeth Bauernschubert, Klaus Stephan, and Jinzhong Min

Related authors

Exploring the characteristics of Fengyun-4A Advanced Geostationary Radiation Imager (AGRI) visible reflectance using the China Meteorological Administration Mesoscale (CMA-MESO) forecasts and its implications for data assimilation
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024,https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary
Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021,https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Applying a new integrated mass-flux adjustment filter in rapid update cycling of convective-scale data assimilation for the COSMO model (v5.07)
Yuefei Zeng, Alberto de Lozar, Tijana Janjic, and Axel Seifert
Geosci. Model Dev., 14, 1295–1307, https://doi.org/10.5194/gmd-14-1295-2021,https://doi.org/10.5194/gmd-14-1295-2021, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Improving the estimate of higher-order moments from lidar observations near the top of the convective boundary layer
Tessa E. Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
Atmos. Meas. Tech., 17, 6595–6602, https://doi.org/10.5194/amt-17-6595-2024,https://doi.org/10.5194/amt-17-6595-2024, 2024
Short summary
Closing the gap in the tropics: the added value of radio-occultation data for wind field monitoring across the Equator
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024,https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Verification of weather-radar-based hail metrics with crowdsourced observations from Switzerland
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024,https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Enhanced Quantitative Precipitation Estimation (QPE) through the opportunistic use of Ku TV-sat links via a Dual-Channel Procedure
Louise Gelbart, Laurent Barthès, François Mercier-Tigrine, Aymeric Chazottes, and Cecile Mallet
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-88,https://doi.org/10.5194/amt-2024-88, 2024
Revised manuscript accepted for AMT
Short summary
Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary

Cited articles

Aksoy, A., Dowell, D. C., and Snyder, C.: A multiscale comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses, Mon. Weather Rev., 137, 1805–1824, 2009. a
Baldlauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediciton with the COSMO model: description and sensitivities, Mon. Weather Rev., 139, 3887–3905, 2011. a
Bick, T., Simmer, C., Trömel, S., Wapler, K., Stephan, K., Blahak, U., Zeng, Y., and Potthast, R.: Assimilation of 3D-Radar Reflectivities with an Ensemble Kalman Filter on the Convective Scale, Q. J. Roy. Meteor. Soc., 142, 1490–1504, 2016. a
Bormann, N., Bonavita, M., Dragani, R., Eresmaa, R., Matricardi, M., and McNally, A.: Enhancing the impact of IASI observations through an updated observation-error covariance matrix, Q. J. Roy. Meteor. Soc., 142, 1767–1780, 2016. a, b, c
Caumont, O., Ducrocq, V., Wattrelot, E., Jaubert, G., and Pradier-Vabre, S.: 1D + 3DVar assimilation of radar reflectivity data: a proof of concept, Tellus, 62, 173–187, 2010. a
Download
Short summary
Observation errors (OEs) of radar measurements are correlated. The Desroziers method has been often used to estimate statistics of OE in data assimilation. However, the resulting statistics consist of contributions from different sources and are difficult to interpret. Here, we use an approach based on samples for truncation error to approximate the representation error due to unresolved scales and processes (RE) and compare its statistics with OE statistics estimated by the Desroziers method.