Articles | Volume 14, issue 8
Atmos. Meas. Tech., 14, 5735–5756, 2021
https://doi.org/10.5194/amt-14-5735-2021

Special issue: Fusion of radar polarimetry and numerical atmospheric modelling...

Atmos. Meas. Tech., 14, 5735–5756, 2021
https://doi.org/10.5194/amt-14-5735-2021
Research article
20 Aug 2021
Research article | 20 Aug 2021

Interpreting estimated observation error statistics of weather radar measurements using the ICON-LAM-KENDA system

Yuefei Zeng et al.

Related authors

Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021,https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Applying a new integrated mass-flux adjustment filter in rapid update cycling of convective-scale data assimilation for the COSMO model (v5.07)
Yuefei Zeng, Alberto de Lozar, Tijana Janjic, and Axel Seifert
Geosci. Model Dev., 14, 1295–1307, https://doi.org/10.5194/gmd-14-1295-2021,https://doi.org/10.5194/gmd-14-1295-2021, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Scan strategies for wind profiling with Doppler lidar – an large-eddy simulation (LES)-based evaluation
Charlotte Rahlves, Frank Beyrich, and Siegfried Raasch
Atmos. Meas. Tech., 15, 2839–2856, https://doi.org/10.5194/amt-15-2839-2022,https://doi.org/10.5194/amt-15-2839-2022, 2022
Short summary
Exploiting Aeolus level-2b winds to better characterize atmospheric motion vector bias and uncertainty
Katherine E. Lukens, Kayo Ide, Kevin Garrett, Hui Liu, David Santek, Brett Hoover, and Ross N. Hoffman
Atmos. Meas. Tech., 15, 2719–2743, https://doi.org/10.5194/amt-15-2719-2022,https://doi.org/10.5194/amt-15-2719-2022, 2022
Short summary
Comparison of global UV irradiance measurements between a BTS CCD-array and a Brewer spectroradiometers
Carmen González, José M. Vilaplana, José A. Bogeat, and Antonio Serrano
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-105,https://doi.org/10.5194/amt-2022-105, 2022
Revised manuscript accepted for AMT
Short summary
Modelling the spectral shape of continuous-wave lidar measurements in a turbulent wind tunnel
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022,https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary
Evaluation of Aeolus L2B wind product with wind profiling radar measurements and numerical weather prediction model equivalents over Australia
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-63,https://doi.org/10.5194/amt-2022-63, 2022
Revised manuscript accepted for AMT
Short summary

Cited articles

Aksoy, A., Dowell, D. C., and Snyder, C.: A multiscale comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses, Mon. Weather Rev., 137, 1805–1824, 2009. a
Baldlauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediciton with the COSMO model: description and sensitivities, Mon. Weather Rev., 139, 3887–3905, 2011. a
Bick, T., Simmer, C., Trömel, S., Wapler, K., Stephan, K., Blahak, U., Zeng, Y., and Potthast, R.: Assimilation of 3D-Radar Reflectivities with an Ensemble Kalman Filter on the Convective Scale, Q. J. Roy. Meteor. Soc., 142, 1490–1504, 2016. a
Bormann, N., Bonavita, M., Dragani, R., Eresmaa, R., Matricardi, M., and McNally, A.: Enhancing the impact of IASI observations through an updated observation-error covariance matrix, Q. J. Roy. Meteor. Soc., 142, 1767–1780, 2016. a, b, c
Caumont, O., Ducrocq, V., Wattrelot, E., Jaubert, G., and Pradier-Vabre, S.: 1D + 3DVar assimilation of radar reflectivity data: a proof of concept, Tellus, 62, 173–187, 2010. a
Download
Short summary
Observation errors (OEs) of radar measurements are correlated. The Desroziers method has been often used to estimate statistics of OE in data assimilation. However, the resulting statistics consist of contributions from different sources and are difficult to interpret. Here, we use an approach based on samples for truncation error to approximate the representation error due to unresolved scales and processes (RE) and compare its statistics with OE statistics estimated by the Desroziers method.