Articles | Volume 14, issue 9
Atmos. Meas. Tech., 14, 6213–6232, 2021
https://doi.org/10.5194/amt-14-6213-2021
Atmos. Meas. Tech., 14, 6213–6232, 2021
https://doi.org/10.5194/amt-14-6213-2021
Research article
28 Sep 2021
Research article | 28 Sep 2021

A compact static birefringent interferometer for the measurement of upper atmospheric winds: concept, design and lab performance

Tingyu Yan et al.

Related authors

THEORETICAL MODEL AND DESIGN OF A NOVEL STATIC POLARIZATION WIND IMAGING INTERFEROMETER (NSPWII)
C. Zhang, T. Yan, T. Mu, and Y. He
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 383–388, https://doi.org/10.5194/isprs-annals-V-1-2020-383-2020,https://doi.org/10.5194/isprs-annals-V-1-2020-383-2020, 2020

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Complementarity of wind measurements from co-located X-band weather radar and Doppler lidar
Jenna Ritvanen, Ewan O'Connor, Dmitri Moisseev, Raisa Lehtinen, Jani Tyynelä, and Ludovic Thobois
Atmos. Meas. Tech., 15, 6507–6519, https://doi.org/10.5194/amt-15-6507-2022,https://doi.org/10.5194/amt-15-6507-2022, 2022
Short summary
Evaluation of the New York State Mesonet Profiler Network data
Bhupal Shrestha, Jerald A. Brotzge, and Junhong Wang
Atmos. Meas. Tech., 15, 6011–6033, https://doi.org/10.5194/amt-15-6011-2022,https://doi.org/10.5194/amt-15-6011-2022, 2022
Short summary
Quantification of motion-induced measurement error on floating lidar systems
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 15, 5323–5341, https://doi.org/10.5194/amt-15-5323-2022,https://doi.org/10.5194/amt-15-5323-2022, 2022
Short summary
Observation error analysis for the WInd VElocity Radar Nephoscope W-band Doppler conically scanning spaceborne radar via end-to-end simulations
Alessandro Battaglia, Paolo Martire, Eric Caubet, Laurent Phalippou, Fabrizio Stesina, Pavlos Kollias, and Anthony Illingworth
Atmos. Meas. Tech., 15, 3011–3030, https://doi.org/10.5194/amt-15-3011-2022,https://doi.org/10.5194/amt-15-3011-2022, 2022
Short summary
Evaluating convective planetary boundary layer height estimations resolved by both active and passive remote sensing instruments during the CHEESEHEAD19 field campaign
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022,https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary

Cited articles

Anderson, C., Conde, M., and McHarg, M.: Neutral thermospheric dynamics observed with two scanning Doppler imagers: 1. Monostatic and bistatic winds, J. Geophys. Res.-Space, 117, A03304, https://doi.org/10.1029/2011JA017041,​​​​​​​ 2012. 
Aruliah, A. L., Griffin, E. M., Yiu, H.-C. I., McWhirter, I., and Charalambous, A.: SCANDI – an all-sky Doppler imager for studies of thermospheric spatial structure, Ann. Geophys., 28, 549–567, https://doi.org/10.5194/angeo-28-549-2010, 2010. 
Babcock, D. D.: Mesospheric imaging Michelson interferometer instrument development and observations, PhD thesis, York University, Toronto, Canada,​​​​​​​ 2006. 
Englert, C. R., Babcock, D. D., and Harlander, J. M.: Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration, Appl. Optics, 46, 7297–7307, 2007. 
Englert, C. R., Harlander, J. M., Brown, C. M., Marr, K. D., Miller, I. J., Stump, J. E., Hancock, J., Peterson, J. Q., Kumler, J., Morrow, W. H., Mooney, T. A., Ellis, S., Mende, S. B., Harris, S. E., Stevens, M. H., Makela, J. J., Harding, B. J., and Immel, T. J.: Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration, Space Science Reviews, 212, 553–584, https://doi.org/10.1007/s11214-017-0358-4, 2017. 
Download
Short summary
High-resolution interferometers are routinely used to measure upper atmospheric motions by measuring small Doppler shifts in spectrally isolated airglow emissions. The birefringent interferometer presented in this paper has similar capabilities as several existing state-of-the-art instruments but is smaller and less complex to construct and operate. This paper presents the measurement technique and characterization of a lab prototype and examines the performance of the instrument.