Articles | Volume 14, issue 11
https://doi.org/10.5194/amt-14-6991-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-6991-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Calibration and evaluation of a broad supersaturation scanning (BS2) cloud condensation nuclei counter for rapid measurement of particle hygroscopicity and cloud condensation nuclei (CCN) activity
Najin Kim
Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
Yafang Cheng
Minerva Research Group, Max Planck Institute for Chemistry, 55128 Mainz, Germany
Nan Ma
Center for Air Pollution and Climate Change Research (APCC), Institute for Environmental and Climate Research (ECI), Jinan University, Guangzhou, 511443, China
Mira L. Pöhlker
Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
Thomas Klimach
Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
Thomas F. Mentel
Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungzentrum Jülich GmbH, 52425 Jülich, Germany
Ovid O. Krüger
Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
Ulrich Pöschl
Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
Related authors
Najin Kim, Hang Su, Nan Ma, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 16, 2771–2780, https://doi.org/10.5194/amt-16-2771-2023, https://doi.org/10.5194/amt-16-2771-2023, 2023
Short summary
Short summary
We propose a multiple-charging correction algorithm for a broad-supersaturation scanning cloud condensation nuclei (BS2-CCN) system which can obtain high time-resolution aerosol hygroscopicity and CCN activity. The correction algorithm aims at deriving the activation fraction's true value for each particle size. The meaningful differences between corrected and original κ values (single hygroscopicity parameter) emphasize the correction algorithm's importance for ambient aerosol measurement.
Najin Kim, Seong Soo Yum, Minsu Park, Jong Sung Park, Hye Jung Shin, and Joon Young Ahn
Atmos. Chem. Phys., 20, 11245–11262, https://doi.org/10.5194/acp-20-11245-2020, https://doi.org/10.5194/acp-20-11245-2020, 2020
Short summary
Short summary
Chemical effects on the size-resolved hygroscopicity of urban aerosols were examined based on the KORUS-AQ field campaign data (HTDMA and HR-ToF-AMS). The size-resolved chemical composition data were found to be critical in explaining the size-dependent hygroscopicity, as well as the diurnal variation of κ for small particles. Aerosol mixing state information was associated with the size-resolved chemical composition data to reveal chemical information of different hygroscopicity modes.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3027, https://doi.org/10.5194/egusphere-2024-3027, 2024
Short summary
Short summary
Aerosol hygroscopicity has been investigated at the sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 24, 10667–10687, https://doi.org/10.5194/acp-24-10667-2024, https://doi.org/10.5194/acp-24-10667-2024, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. NPF features differ between site categories, implying the crucial role of local environmental factors such as the degree of emissions and meteorological conditions. The results also underscore the importance of local environments when assessing the impact of NPF on climate in models.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Baseerat Romshoo, Jaikrishna Patil, Tobias Michels, Thomas Müller, Marius Kloft, and Mira Pöhlker
Atmos. Chem. Phys., 24, 8821–8846, https://doi.org/10.5194/acp-24-8821-2024, https://doi.org/10.5194/acp-24-8821-2024, 2024
Short summary
Short summary
Through the use of our machine-learning-based optical model, realistic BC morphologies can be incorporated into atmospheric science applications that require highly accurate results with minimal computational resources. The results of the study demonstrate that the predictions of single-scattering albedo (ω) and mass absorption cross-section (MAC) were improved over the conventional Mie-based predictions when using the machine learning method.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Ming Chu, Xing Wei, Shangfei Hai, Yang Gao, Huiwang Gao, Yujiao Zhu, Biwu Chu, Nan Ma, Juan Hong, Yele Sun, and Xiaohong Yao
Atmos. Chem. Phys., 24, 6769–6786, https://doi.org/10.5194/acp-24-6769-2024, https://doi.org/10.5194/acp-24-6769-2024, 2024
Short summary
Short summary
We used a 20-bin WRF-Chem model to simulate NPF events in the NCP during a three-week observational period in the summer of 2019. The model was able to reproduce the observations during June 29–July 6, which was characterized by a high frequency of NPF occurrence.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
EGUsphere, https://doi.org/10.5194/egusphere-2024-752, https://doi.org/10.5194/egusphere-2024-752, 2024
Short summary
Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets, and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecules (INMs) and aggregates of varying size that can nucleate ice at temperatures of up to -5.4 °C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate stronger than previously thought.
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024, https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules are important contributors to secondary organic aerosol. Their yield depends on detailed atmospheric chemical composition. One important parameter is the ratio of hydroperoxy radicals to organic peroxy radicals (HO2/RO2), and we show that higher HO2/RO2 ratios lower the secondary organic aerosol yield. This is of importance as laboratory studies are often biased towards organic peroxy radicals.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Rongrong Wu, Sören R. Zorn, Sungah Kang, Astrid Kiendler-Scharr, Andreas Wahner, and Thomas F. Mentel
Atmos. Meas. Tech., 17, 1811–1835, https://doi.org/10.5194/amt-17-1811-2024, https://doi.org/10.5194/amt-17-1811-2024, 2024
Short summary
Short summary
Recent advances in high-resolution time-of-flight chemical ionization mass spectrometry (CIMS) enable the detection of highly oxygenated organic molecules, which efficiently contribute to secondary organic aerosol. Here we present an application of fuzzy c-means (FCM) clustering to deconvolve CIMS data. FCM not only reduces the complexity of mass spectrometric data but also the chemical and kinetic information retrieved by clustering gives insights into the chemical processes involved.
Markku Kulmala, Diego Aliaga, Santeri Tuovinen, Runlong Cai, Heikki Junninen, Chao Yan, Federico Bianchi, Yafang Cheng, Aijun Ding, Douglas R. Worsnop, Tuukka Petäjä, Katrianne Lehtipalo, Pauli Paasonen, and Veli-Matti Kerminen
Aerosol Research, 2, 49–58, https://doi.org/10.5194/ar-2-49-2024, https://doi.org/10.5194/ar-2-49-2024, 2024
Short summary
Short summary
Atmospheric new particle formation (NPF), together with secondary production of particulate matter in the atmosphere, dominates aerosol particle number concentrations and submicron particle mass loads in many environments globally. In this opinion paper, we describe the paradigm shift to understand NPF in a continuous way instead of using traditional binary event–non-event analysis.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-516, https://doi.org/10.5194/egusphere-2024-516, 2024
Preprint archived
Short summary
Short summary
This study assesses atmospheric composition using air quality models during aircraft campaigns in Europe and Asia, focusing on carbonaceous aerosols and trace gases. While carbon monoxide is well modeled, other pollutants have moderate to weak agreement with observations. Wind speed modeling is reliable for identifying pollution plumes, where models tend to overestimate concentrations. This highlights challenges in accurately modeling aerosol and trace gas composition, particularly in cities.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-521, https://doi.org/10.5194/egusphere-2024-521, 2024
Short summary
Short summary
This study explores the proportional relationships between carbonaceous aerosols (black and organic carbon) and trace gases using airborne measurements from two campaigns in Europe and East Asia. Differences between regions were found, but air quality models struggled to reproduce them accurately. We show that these proportional relationships can help to constrain models and can be used to infer aerosol concentrations from satellite observations of trace gases, especially in urban areas.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Rolf Müller, Ulrich Pöschl, Thomas Koop, Thomas Peter, and Ken Carslaw
Atmos. Chem. Phys., 23, 15445–15453, https://doi.org/10.5194/acp-23-15445-2023, https://doi.org/10.5194/acp-23-15445-2023, 2023
Short summary
Short summary
Paul J. Crutzen was a pioneer in atmospheric sciences and a kind-hearted, humorous person with empathy for the private lives of his colleagues and students. He made fundamental scientific contributions to a wide range of scientific topics in all parts of the atmosphere. Paul was among the founders of the journal Atmospheric Chemistry and Physics. His work will continue to be a guide for generations of scientists and environmental policymakers to come.
Weilun Zhao, Ying Li, Gang Zhao, Song Guo, Nan Ma, Shuya Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 23, 14889–14902, https://doi.org/10.5194/acp-23-14889-2023, https://doi.org/10.5194/acp-23-14889-2023, 2023
Short summary
Short summary
Studies have concentrated on particles containing black carbon (BC) smaller than 700 nm because of technical limitations. In this study, BC-containing particles larger than 700 nm (BC>700) were measured, highlighting their importance to total BC mass and absorption. The contribution of BC>700 to the BC direct radiative effect was estimated, highlighting the necessity to consider the whole size range of BC-containing particles in the model estimation of BC radiative effects.
Matthias Kohl, Jos Lelieveld, Sourangsu Chowdhury, Sebastian Ehrhart, Disha Sharma, Yafang Cheng, Sachchida Nand Tripathi, Mathew Sebastian, Govindan Pandithurai, Hongli Wang, and Andrea Pozzer
Atmos. Chem. Phys., 23, 13191–13215, https://doi.org/10.5194/acp-23-13191-2023, https://doi.org/10.5194/acp-23-13191-2023, 2023
Short summary
Short summary
Knowledge on atmospheric ultrafine particles (UFPs) with a diameter smaller than 100 nm is crucial for public health and the hydrological cycle. We present a new global dataset of UFP concentrations at the Earth's surface derived with a comprehensive chemistry–climate model and evaluated with ground-based observations. The evaluation results are combined with high-resolution primary emissions to downscale UFP concentrations to an unprecedented horizontal resolution of 0.1° × 0.1°.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Xurong Wang, Qiaoqiao Wang, Maria Prass, Christopher Pöhlker, Daniel Moran-Zuloaga, Paulo Artaxo, Jianwei Gu, Ning Yang, Xiajie Yang, Jiangchuan Tao, Juan Hong, Nan Ma, Yafang Cheng, Hang Su, and Meinrat O. Andreae
Atmos. Chem. Phys., 23, 9993–10014, https://doi.org/10.5194/acp-23-9993-2023, https://doi.org/10.5194/acp-23-9993-2023, 2023
Short summary
Short summary
In this work, with an optimized particle mass size distribution, we captured observed aerosol optical depth (AOD) and coarse aerosol concentrations over source and/or receptor regions well, demonstrating good performance in simulating export of African dust toward the Amazon Basin. In addition to factors controlling the transatlantic transport of African dust, the study investigated the impact of African dust over the Amazon Basin, including the nutrient inputs associated with dust deposition.
Hao Luo, Luc Vereecken, Hongru Shen, Sungah Kang, Iida Pullinen, Mattias Hallquist, Hendrik Fuchs, Andreas Wahner, Astrid Kiendler-Scharr, Thomas F. Mentel, and Defeng Zhao
Atmos. Chem. Phys., 23, 7297–7319, https://doi.org/10.5194/acp-23-7297-2023, https://doi.org/10.5194/acp-23-7297-2023, 2023
Short summary
Short summary
Oxidation of limonene, an element emitted by trees and chemical products, by OH, a daytime oxidant, forms many highly oxygenated organic molecules (HOMs), including C10-20 compounds. HOMs play an important role in new particle formation and growth. HOM formation can be explained by the chemistry of peroxy radicals. We found that a minor branching ratio initial pathway plays an unexpected, significant role. Considering this pathway enables accurate simulations of HOMs and other concentrations.
Samira Atabakhsh, Laurent Poulain, Gang Chen, Francesco Canonaco, André S. H. Prévôt, Mira Pöhlker, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6963–6988, https://doi.org/10.5194/acp-23-6963-2023, https://doi.org/10.5194/acp-23-6963-2023, 2023
Short summary
Short summary
The study focuses on the aerosol chemical variations found in the rural-background station of Melpitz based on ACSM and MAAP measurements. Source apportionment on both organic aerosol (OA) and black carbon (eBC) was performed, and source seasonality was also linked to air mass trajectories. Overall, three anthropogenic sources were identified in OA and eBC plus two additional aged OA. Our results demonstrate the influence of transported coal-combustion-related OA even during summer time.
Najin Kim, Hang Su, Nan Ma, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 16, 2771–2780, https://doi.org/10.5194/amt-16-2771-2023, https://doi.org/10.5194/amt-16-2771-2023, 2023
Short summary
Short summary
We propose a multiple-charging correction algorithm for a broad-supersaturation scanning cloud condensation nuclei (BS2-CCN) system which can obtain high time-resolution aerosol hygroscopicity and CCN activity. The correction algorithm aims at deriving the activation fraction's true value for each particle size. The meaningful differences between corrected and original κ values (single hygroscopicity parameter) emphasize the correction algorithm's importance for ambient aerosol measurement.
Juan Hong, Min Tang, Qiaoqiao Wang, Nan Ma, Shaowen Zhu, Shaobin Zhang, Xihao Pan, Linhong Xie, Guo Li, Uwe Kuhn, Chao Yan, Jiangchuan Tao, Ye Kuang, Yao He, Wanyun Xu, Runlong Cai, Yaqing Zhou, Zhibin Wang, Guangsheng Zhou, Bin Yuan, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 23, 5699–5713, https://doi.org/10.5194/acp-23-5699-2023, https://doi.org/10.5194/acp-23-5699-2023, 2023
Short summary
Short summary
A comprehensive investigation of the characteristics of new particle formation (NPF) events was conducted at a rural site on the North China Plain (NCP), China, during the wintertime of 2018 by covering the particle number size distribution down to sub–3 nm. Potential mechanisms for NPF under the current environment were explored, followed by a further discussion on the factors governing the occurrence of NPF at this rural site compared with other regions (e.g., urban areas) in the NCP region.
Ting Lei, Hang Su, Nan Ma, Ulrich Pöschl, Alfred Wiedensohler, and Yafang Cheng
Atmos. Chem. Phys., 23, 4763–4774, https://doi.org/10.5194/acp-23-4763-2023, https://doi.org/10.5194/acp-23-4763-2023, 2023
Short summary
Short summary
We investigate the hygroscopic behavior of levoglucosan and D-glucose nanoparticles using a nano-HTDMA. There is a weak size dependence of the hygroscopic growth factor of levoglucosan and D-glucose with diameters down to 20 nm, while a strong size dependence of the hygroscopic growth factor of D-glucose has been clearly observed in the size range 6 to 20 nm. The use of the DKA method leads to good agreement with the hygroscopic growth factor of glucose nanoparticles with diameters down to 6 nm.
Thomas Berkemeier, Matteo Krüger, Aryeh Feinberg, Marcel Müller, Ulrich Pöschl, and Ulrich K. Krieger
Geosci. Model Dev., 16, 2037–2054, https://doi.org/10.5194/gmd-16-2037-2023, https://doi.org/10.5194/gmd-16-2037-2023, 2023
Short summary
Short summary
Kinetic multi-layer models (KMs) successfully describe heterogeneous and multiphase atmospheric chemistry. In applications requiring repeated execution, however, these models can be too expensive. We trained machine learning surrogate models on output of the model KM-SUB and achieved high correlations. The surrogate models run orders of magnitude faster, which suggests potential applicability in global optimization tasks and as sub-modules in large-scale atmospheric models.
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
Chuan-Yao Lin, Wan-Chin Chen, Yi-Yun Chien, Charles C. K. Chou, Chian-Yi Liu, Helmut Ziereis, Hans Schlager, Eric Förster, Florian Obersteiner, Ovid O. Krüger, Bruna A. Holanda, Mira L. Pöhlker, Katharina Kaiser, Johannes Schneider, Birger Bohn, Klaus Pfeilsticker, Benjamin Weyland, Maria Dolores Andrés Hernández, and John P. Burrows
Atmos. Chem. Phys., 23, 2627–2647, https://doi.org/10.5194/acp-23-2627-2023, https://doi.org/10.5194/acp-23-2627-2023, 2023
Short summary
Short summary
During the EMeRGe campaign in Asia, atmospheric pollutants were measured on board the HALO aircraft. The WRF-Chem model was employed to evaluate the biomass burning (BB) plume transported from Indochina and its impact on the downstream areas. The combination of BB aerosol enhancement with cloud water resulted in a reduction in incoming shortwave radiation at the surface in southern China and the East China Sea, which potentially has significant regional climate implications.
Shujun Zhong, Shuang Chen, Junjun Deng, Yanbing Fan, Qiang Zhang, Qiaorong Xie, Yulin Qi, Wei Hu, Libin Wu, Xiaodong Li, Chandra Mouli Pavuluri, Jialei Zhu, Xin Wang, Di Liu, Xiaole Pan, Yele Sun, Zifa Wang, Yisheng Xu, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 23, 2061–2077, https://doi.org/10.5194/acp-23-2061-2023, https://doi.org/10.5194/acp-23-2061-2023, 2023
Short summary
Short summary
This study investigated the role of the secondary organic aerosol (SOA) loading on the molecular composition of wintertime urban aerosols by ultrahigh-resolution mass spectrometry. Results demonstrate that the SOA loading is an important factor associated with the oxidation degree, nitrate group content, and chemodiversity of nitrooxy–organosulfates. Our study also found that the hydrolysis of nitrooxy–organosulfates is a possible pathway for the formation of organosulfates.
Haley M. Royer, Mira L. Pöhlker, Ovid Krüger, Edmund Blades, Peter Sealy, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Andrew P. Ault, Patricia K. Quinn, Paquita Zuidema, Christopher Pöhlker, Ulrich Pöschl, Meinrat Andreae, and Cassandra J. Gaston
Atmos. Chem. Phys., 23, 981–998, https://doi.org/10.5194/acp-23-981-2023, https://doi.org/10.5194/acp-23-981-2023, 2023
Short summary
Short summary
This paper presents atmospheric particle chemical composition and measurements of aerosol water uptake properties collected at Ragged Point, Barbados, during the winter of 2020. The result of this study indicates the importance of small African smoke particles for cloud droplet formation in the tropical North Atlantic and highlights the large spatial and temporal pervasiveness of smoke over the Atlantic Ocean.
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, https://doi.org/10.5194/acp-23-251-2023, 2023
Short summary
Short summary
The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Baseerat Romshoo, Mira Pöhlker, Alfred Wiedensohler, Sascha Pfeifer, Jorge Saturno, Andreas Nowak, Krzysztof Ciupek, Paul Quincey, Konstantina Vasilatou, Michaela N. Ess, Maria Gini, Konstantinos Eleftheriadis, Chris Robins, François Gaie-Levrel, and Thomas Müller
Atmos. Meas. Tech., 15, 6965–6989, https://doi.org/10.5194/amt-15-6965-2022, https://doi.org/10.5194/amt-15-6965-2022, 2022
Short summary
Short summary
Black carbon (BC) is often assumed to be spherically shaped, causing uncertainties in its optical properties when modelled. This study investigates different modelling techniques for the optical properties of BC by comparing them to laboratory measurements. We provide experimental support for emphasizing the use of appropriate size representation (polydisperse size method) and morphological representation (aggregate morphology) for optical modelling and parameterization scheme development of BC.
Weilun Zhao, Gang Zhao, Ying Li, Song Guo, Nan Ma, Lizi Tang, Zirui Zhang, and Chunsheng Zhao
Atmos. Meas. Tech., 15, 6807–6817, https://doi.org/10.5194/amt-15-6807-2022, https://doi.org/10.5194/amt-15-6807-2022, 2022
Short summary
Short summary
A new method to determine black carbon mass size distribution (BCMSD) was proposed using the size-resolved absorption coefficient measured by an aerodynamic aerosol classifier in tandem with an aethalometer. This new method fills the gap in the high-time-resolution measurement of BCMSD ranging from upper submicron particle sizes to larger than 1 µm. This method can be applied to field measurement of BCMSD extensively for better understanding BC aging and better estimating the BC climate effect.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Guo Li, Hang Su, Meng Li, Uwe Kuhn, Guangjie Zheng, Lei Han, Fengxia Bao, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 15, 6433–6446, https://doi.org/10.5194/amt-15-6433-2022, https://doi.org/10.5194/amt-15-6433-2022, 2022
Short summary
Short summary
A large fraction of previous work using dynamic flow chambers was to quantify gas exchange in terms of flux or deposition/emission rate. Here, we extended the usage of this technique to examine uptake kinetics on sample surfaces. The good performance of the chamber system was validated. This technique can be further used for liquid samples and real atmospheric aerosol samples without complicated coating procedures, which complements the existing techniques in atmospheric kinetic studies.
Aristeidis Voliotis, Mao Du, Yu Wang, Yunqi Shao, M. Rami Alfarra, Thomas J. Bannan, Dawei Hu, Kelly L. Pereira, Jaqueline F. Hamilton, Mattias Hallquist, Thomas F. Mentel, and Gordon McFiggans
Atmos. Chem. Phys., 22, 14147–14175, https://doi.org/10.5194/acp-22-14147-2022, https://doi.org/10.5194/acp-22-14147-2022, 2022
Short summary
Short summary
Mixing experiments are crucial and highly beneficial for our understanding of atmospheric chemical interactions. However, interpretation quickly becomes complex, and both the experimental design and evaluation need to be scrutinised carefully. Advanced online and offline compositional measurements can reveal substantial additional information to aid in the interpretation of yield data, including components uniquely found in mixtures and property changes in SOA formed from mixtures of VOCs.
Min Zhou, Guangjie Zheng, Hongli Wang, Liping Qiao, Shuhui Zhu, DanDan Huang, Jingyu An, Shengrong Lou, Shikang Tao, Qian Wang, Rusha Yan, Yingge Ma, Changhong Chen, Yafang Cheng, Hang Su, and Cheng Huang
Atmos. Chem. Phys., 22, 13833–13844, https://doi.org/10.5194/acp-22-13833-2022, https://doi.org/10.5194/acp-22-13833-2022, 2022
Short summary
Short summary
The trend of aerosol pH and its drivers is crucial in understanding the multiphase formation pathways of aerosols. We reported the first trend analysis of aerosol pH from 2011 to 2019 in eastern China. Although significant variations of aerosol compositions were observed from 2011 to 2019, the aerosol pH estimated by model only slightly declined by 0.24. Our work shows that the opposite effects of SO42− and non-volatile cation changes play key roles in determining the moderate pH trend.
Yindong Guo, Hongru Shen, Iida Pullinen, Hao Luo, Sungah Kang, Luc Vereecken, Hendrik Fuchs, Mattias Hallquist, Ismail-Hakki Acir, Ralf Tillmann, Franz Rohrer, Jürgen Wildt, Astrid Kiendler-Scharr, Andreas Wahner, Defeng Zhao, and Thomas F. Mentel
Atmos. Chem. Phys., 22, 11323–11346, https://doi.org/10.5194/acp-22-11323-2022, https://doi.org/10.5194/acp-22-11323-2022, 2022
Short summary
Short summary
The oxidation of limonene, a common volatile emitted by trees and chemical products, by NO3, a nighttime oxidant, forms many highly oxygenated organic molecules (HOM), including C10-30 compounds. Most of the HOM are second-generation organic nitrates, in which carbonyl-substituted C10 nitrates accounted for a major fraction. Their formation can be explained by chemistry of peroxy radicals. HOM, especially low-volatile ones, play an important role in nighttime new particle formation and growth.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Alexander D. Harrison, Daniel O'Sullivan, Michael P. Adams, Grace C. E. Porter, Edmund Blades, Cherise Brathwaite, Rebecca Chewitt-Lucas, Cassandra Gaston, Rachel Hawker, Ovid O. Krüger, Leslie Neve, Mira L. Pöhlker, Christopher Pöhlker, Ulrich Pöschl, Alberto Sanchez-Marroquin, Andrea Sealy, Peter Sealy, Mark D. Tarn, Shanice Whitehall, James B. McQuaid, Kenneth S. Carslaw, Joseph M. Prospero, and Benjamin J. Murray
Atmos. Chem. Phys., 22, 9663–9680, https://doi.org/10.5194/acp-22-9663-2022, https://doi.org/10.5194/acp-22-9663-2022, 2022
Short summary
Short summary
The formation of ice in clouds fundamentally alters cloud properties; hence it is important we understand the special aerosol particles that can nucleate ice when immersed in supercooled cloud droplets. In this paper we show that African desert dust that has travelled across the Atlantic to the Caribbean nucleates ice much less well than we might have expected.
Wenjie Wang, David D. Parrish, Siwen Wang, Fengxia Bao, Ruijing Ni, Xin Li, Suding Yang, Hongli Wang, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 8935–8949, https://doi.org/10.5194/acp-22-8935-2022, https://doi.org/10.5194/acp-22-8935-2022, 2022
Short summary
Short summary
Tropospheric ozone is an air pollutant that is detrimental to human health, vegetation and ecosystem productivity. A comprehensive characterisation of the spatial and temporal distribution of tropospheric ozone is critical to our understanding of these issues. Here we summarise this distribution over China from the available observational records to the extent possible. This study provides insights into efficient future ozone control strategies in China.
Marco Wietzoreck, Marios Kyprianou, Benjamin A. Musa Bandowe, Siddika Celik, John N. Crowley, Frank Drewnick, Philipp Eger, Nils Friedrich, Minas Iakovides, Petr Kukučka, Jan Kuta, Barbora Nežiková, Petra Pokorná, Petra Přibylová, Roman Prokeš, Roland Rohloff, Ivan Tadic, Sebastian Tauer, Jake Wilson, Hartwig Harder, Jos Lelieveld, Ulrich Pöschl, Euripides G. Stephanou, and Gerhard Lammel
Atmos. Chem. Phys., 22, 8739–8766, https://doi.org/10.5194/acp-22-8739-2022, https://doi.org/10.5194/acp-22-8739-2022, 2022
Short summary
Short summary
A unique dataset of concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) and their alkylated, oxygenated and nitrated derivatives, in total 74 individual species, in the marine atmosphere is presented. Exposure to these substances poses a major health risk. We found very low concentrations over the Arabian Sea, while both local and long-range-transported pollution caused elevated levels over the Mediterranean Sea and the Arabian Gulf.
Ovid O. Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John P. Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 22, 8683–8699, https://doi.org/10.5194/acp-22-8683-2022, https://doi.org/10.5194/acp-22-8683-2022, 2022
Short summary
Short summary
The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC on board a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 41 %.
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022, https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
Short summary
In this study we show that the vertical velocity dominantly impacts the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic in the winter and summer season, while the cloud condensation nuclei concentration, aerosol size distribution and chemical composition impact NC within a season. The observational data presented in this study can evaluate and improve the representation of aerosol–cloud interactions for a wide range of conditions.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Andreas Hünig, Oliver Appel, Antonis Dragoneas, Sergej Molleker, Hans-Christian Clemen, Frank Helleis, Thomas Klimach, Franziska Köllner, Thomas Böttger, Frank Drewnick, Johannes Schneider, and Stephan Borrmann
Atmos. Meas. Tech., 15, 2889–2921, https://doi.org/10.5194/amt-15-2889-2022, https://doi.org/10.5194/amt-15-2889-2022, 2022
Short summary
Short summary
We have serially combined the two well-established methods for in situ real-time measurement of fine particle chemical composition, the single-particle laser ablation method and the flash evaporation with electron impact ionization method, into a novel instrument. Here we present the design; instrument characteristics, as derived from laboratory and field measurements; and results from the first field deployment during the 2017 StratoClim aircraft campaign.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Jingnan Shi, Juan Hong, Nan Ma, Qingwei Luo, Yao He, Hanbing Xu, Haobo Tan, Qiaoqiao Wang, Jiangchuan Tao, Yaqing Zhou, Shuang Han, Long Peng, Linhong Xie, Guangsheng Zhou, Wanyun Xu, Yele Sun, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 4599–4613, https://doi.org/10.5194/acp-22-4599-2022, https://doi.org/10.5194/acp-22-4599-2022, 2022
Short summary
Short summary
In this study, we investigated the hygroscopicity of submicron aerosols at a rural site in the North China Plain during the winter of 2018, using a HTDMA and a CV-ToF-ACSM. We observed differences in aerosol hygroscopicity during two distinct episodes with different primary emissions and secondary aerosol formation processes. These results provide an improved understanding of the complex influence of sources and aerosol evolution processes on their hygroscopicity.
Wenjie Wang, Bin Yuan, Yuwen Peng, Hang Su, Yafang Cheng, Suxia Yang, Caihong Wu, Jipeng Qi, Fengxia Bao, Yibo Huangfu, Chaomin Wang, Chenshuo Ye, Zelong Wang, Baolin Wang, Xinming Wang, Wei Song, Weiwei Hu, Peng Cheng, Manni Zhu, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022, https://doi.org/10.5194/acp-22-4117-2022, 2022
Short summary
Short summary
From thorough measurements of numerous oxygenated volatile organic compounds, we show that their photodissociation can be important for radical production and ozone formation in the atmosphere. This effect was underestimated in previous studies, as measurements of them were lacking.
Shuang Han, Juan Hong, Qingwei Luo, Hanbing Xu, Haobo Tan, Qiaoqiao Wang, Jiangchuan Tao, Yaqing Zhou, Long Peng, Yao He, Jingnan Shi, Nan Ma, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3985–4004, https://doi.org/10.5194/acp-22-3985-2022, https://doi.org/10.5194/acp-22-3985-2022, 2022
Short summary
Short summary
We present the hygroscopicity of 23 organic species with different physicochemical properties using a hygroscopicity tandem differential mobility analyzer (HTDMA) and compare the results with previous studies. Based on the hygroscopicity parameter κ, the influence of different physicochemical properties that potentially drive hygroscopicity, such as the functionality, water solubility, molar volume, and O : C ratio of organics, are examined separately.
Xiajie Yang, Qiaoqiao Wang, Nan Ma, Weiwei Hu, Yang Gao, Zhijiong Huang, Junyu Zheng, Bin Yuan, Ning Yang, Jiangchuan Tao, Juan Hong, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3743–3762, https://doi.org/10.5194/acp-22-3743-2022, https://doi.org/10.5194/acp-22-3743-2022, 2022
Short summary
Short summary
We use the GEOS-Chem model with additional anthropogenic and biomass burning chlorine emissions combined with updated parameterizations for N2O5 + Cl chemistry to investigate the impacts of chlorine chemistry on air quality in China. Our study not only significantly improves the model's performance but also demonstrates the importance of non-sea-salt chlorine sources as well as an appropriate parameterization for N2O5 + Cl chemistry to the impact of chlorine chemistry in China.
Marco A. Franco, Florian Ditas, Leslie A. Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 3469–3492, https://doi.org/10.5194/acp-22-3469-2022, https://doi.org/10.5194/acp-22-3469-2022, 2022
Short summary
Short summary
In Central Amazonia, new particle formation in the planetary boundary layer is rare. Instead, there is the appearance of sub-50 nm aerosols with diameters larger than about 20 nm that eventually grow to cloud condensation nuclei size range. Here, 254 growth events were characterized which have higher predominance in the wet season. About 70 % of them showed direct relation to convective downdrafts, while 30 % occurred partly under clear-sky conditions, evidencing still unknown particle sources.
Yaqing Zhou, Nan Ma, Qiaoqiao Wang, Zhibin Wang, Chunrong Chen, Jiangchuan Tao, Juan Hong, Long Peng, Yao He, Linhong Xie, Shaowen Zhu, Yuxuan Zhang, Guo Li, Wanyun Xu, Peng Cheng, Uwe Kuhn, Guangsheng Zhou, Pingqing Fu, Qiang Zhang, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 22, 2029–2047, https://doi.org/10.5194/acp-22-2029-2022, https://doi.org/10.5194/acp-22-2029-2022, 2022
Short summary
Short summary
This study characterizes size-resolved particle effective densities and their evolution associated with emissions and aging processes in a rural area of the North China Plain. Particle effective density exhibits a high-frequency bimodal distribution, and two density modes exhibit opposite trends with increasing particle size. SIA and BC mass fractions are key factors of particle effective density, and a value of 0.6 g cm−3 is appropriate to represent BC effective density in bulk particles.
Kai Tang, Beatriz Sánchez-Parra, Petya Yordanova, Jörn Wehking, Anna T. Backes, Daniel A. Pickersgill, Stefanie Maier, Jean Sciare, Ulrich Pöschl, Bettina Weber, and Janine Fröhlich-Nowoisky
Biogeosciences, 19, 71–91, https://doi.org/10.5194/bg-19-71-2022, https://doi.org/10.5194/bg-19-71-2022, 2022
Short summary
Short summary
Metagenomic sequencing and freezing experiments of aerosol samples collected on Cyprus revealed rain-related short-term changes of bioaerosol and ice nuclei composition. Filtration experiments showed a rain-related enhancement of biological ice nuclei > 5 µm and < 0.1 µm. The observed effects of rainfall on the composition of atmospheric bioaerosols and ice nuclei may influence the hydrological cycle as well as the health effects of air particulate matter (pathogens, allergens).
Guangjie Zheng, Hang Su, Siwen Wang, Andrea Pozzer, and Yafang Cheng
Atmos. Chem. Phys., 22, 47–63, https://doi.org/10.5194/acp-22-47-2022, https://doi.org/10.5194/acp-22-47-2022, 2022
Short summary
Short summary
The recently proposed multiphase buffer theory provides a framework to reconstruct long-term trends and spatial variations in aerosol pH, while non-ideality is a major limitation for its broad applications. Here we proposed a parameterization method to estimate the impact of non-ideality and validated it against long-term observations and global simulations. With this method, the multiphase buffer theory can reproduce well aerosol pH variations estimated by comprehensive thermodynamic models.
Luiz A. T. Machado, Marco A. Franco, Leslie A. Kremper, Florian Ditas, Meinrat O. Andreae, Paulo Artaxo, Micael A. Cecchini, Bruna A. Holanda, Mira L. Pöhlker, Ivan Saraiva, Stefan Wolff, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 21, 18065–18086, https://doi.org/10.5194/acp-21-18065-2021, https://doi.org/10.5194/acp-21-18065-2021, 2021
Short summary
Short summary
Several studies evaluate aerosol–cloud interactions, but only a few attempted to describe how clouds modify aerosol properties. This study evaluates the effect of weather events on the particle size distribution at the ATTO, combining remote sensing and in situ data. Ultrafine, Aitken and accumulation particles modes have different behaviors for the diurnal cycle and for rainfall events. This study opens up new scientific questions that need to be pursued in detail in new field campaigns.
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021, https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary
Short summary
Interactions of aerosol particles with clouds represent a large uncertainty in estimates of climate change. Properties of aerosol particles control their ability to act as cloud condensation nuclei. Using aerosol measurements in the Amazon, we performed model studies to compare predicted and measured cloud droplet number concentrations at cloud bases. Our results confirm previous estimates of particle hygroscopicity in this region.
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021, https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
Short summary
Quantifying the precipitation within clouds is crucial for our understanding of the Earth's hydrological cycle. Using in situ measurements of cloud and rain properties over the Amazon Basin and Atlantic Ocean, we show here a linear relationship between the effective radius (re) and precipitation water content near the tops of convective clouds for different pollution states and temperature levels. Our results emphasize the role of re to determine both initiation and amount of precipitation.
Maria Prass, Meinrat O. Andreae, Alessandro C. de Araùjo, Paulo Artaxo, Florian Ditas, Wolfgang Elbert, Jan-David Förster, Marco Aurélio Franco, Isabella Hrabe de Angelis, Jürgen Kesselmeier, Thomas Klimach, Leslie Ann Kremper, Eckhard Thines, David Walter, Jens Weber, Bettina Weber, Bernhard M. Fuchs, Ulrich Pöschl, and Christopher Pöhlker
Biogeosciences, 18, 4873–4887, https://doi.org/10.5194/bg-18-4873-2021, https://doi.org/10.5194/bg-18-4873-2021, 2021
Short summary
Short summary
Bioaerosols in the atmosphere over the Amazon rain forest were analyzed by molecular biological staining and microscopy. Eukaryotic, bacterial, and archaeal aerosols were quantified in time series and altitude profiles which exhibited clear differences in number concentrations and vertical distributions. Our results provide insights into the sources and dispersion of different Amazonian bioaerosol types as a basis for a better understanding of biosphere–atmosphere interactions.
Helmi Uusitalo, Jenni Kontkanen, Ilona Ylivinkka, Ekaterina Ezhova, Anastasiia Demakova, Mikhail Arshinov, Boris Denisovich Belan, Denis Davydov, Nan Ma, Tuukka Petäjä, Alfred Wiedensohler, Markku Kulmala, and Tuomo Nieminen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-530, https://doi.org/10.5194/acp-2021-530, 2021
Publication in ACP not foreseen
Short summary
Short summary
Characteristics of formation of atmospheric aerosol at four boreal forest sites in Finland and Russian Siberia was analyzed. Our results provide information on the governing processes of atmospheric aerosol formation in the boreal forest area, which a substantial part of the continental biosphere. Aerosol formation was occurring less frequently at Siberian than in Finnish sites, which was affected by the lower particle growth rates and higher loss rates in Siberia.
Janne Lampilahti, Hanna E. Manninen, Tuomo Nieminen, Sander Mirme, Mikael Ehn, Iida Pullinen, Katri Leino, Siegfried Schobesberger, Juha Kangasluoma, Jenni Kontkanen, Emma Järvinen, Riikka Väänänen, Taina Yli-Juuti, Radovan Krejci, Katrianne Lehtipalo, Janne Levula, Aadu Mirme, Stefano Decesari, Ralf Tillmann, Douglas R. Worsnop, Franz Rohrer, Astrid Kiendler-Scharr, Tuukka Petäjä, Veli-Matti Kerminen, Thomas F. Mentel, and Markku Kulmala
Atmos. Chem. Phys., 21, 12649–12663, https://doi.org/10.5194/acp-21-12649-2021, https://doi.org/10.5194/acp-21-12649-2021, 2021
Short summary
Short summary
We studied aerosol particle formation and growth in different parts of the planetary boundary layer at two different locations (Po Valley, Italy, and Hyytiälä, Finland). The observations consist of airborne measurements on board an instrumented Zeppelin and a small airplane combined with comprehensive ground-based measurements.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Mira L. Pöhlker, Minghui Zhang, Ramon Campos Braga, Ovid O. Krüger, Ulrich Pöschl, and Barbara Ervens
Atmos. Chem. Phys., 21, 11723–11740, https://doi.org/10.5194/acp-21-11723-2021, https://doi.org/10.5194/acp-21-11723-2021, 2021
Short summary
Short summary
Clouds cool our atmosphere. The role of small aerosol particles in affecting them represents one of the largest uncertainties in current estimates of climate change. Traditionally it is assumed that cloud droplets only form particles of diameters ~ 100 nm (
accumulation mode). Previous studies suggest that this can also occur in smaller particles (
Aitken mode). Our study provides a general framework to estimate under which aerosol and cloud conditions Aitken mode particles affect clouds.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Rongrong Wu, Luc Vereecken, Epameinondas Tsiligiannis, Sungah Kang, Sascha R. Albrecht, Luisa Hantschke, Defeng Zhao, Anna Novelli, Hendrik Fuchs, Ralf Tillmann, Thorsten Hohaus, Philip T. M. Carlsson, Justin Shenolikar, François Bernard, John N. Crowley, Juliane L. Fry, Bellamy Brownwood, Joel A. Thornton, Steven S. Brown, Astrid Kiendler-Scharr, Andreas Wahner, Mattias Hallquist, and Thomas F. Mentel
Atmos. Chem. Phys., 21, 10799–10824, https://doi.org/10.5194/acp-21-10799-2021, https://doi.org/10.5194/acp-21-10799-2021, 2021
Short summary
Short summary
Isoprene is the biogenic volatile organic compound with the largest emissions rates. The nighttime reaction of isoprene with the NO3 radical has a large potential to contribute to SOA. We classified isoprene nitrates into generations and proposed formation pathways. Considering the potential functionalization of the isoprene nitrates we propose that mainly isoprene dimers contribute to SOA formation from the isoprene NO3 reactions with at least a 5 % mass yield.
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 10439–10455, https://doi.org/10.5194/acp-21-10439-2021, https://doi.org/10.5194/acp-21-10439-2021, 2021
Short summary
Short summary
We measured radical yields of aqueous PM2.5 extracts and found lower yields at higher concentrations of PM2.5. Abundances of water-soluble transition metals and aromatics in PM2.5 were positively correlated with the relative fraction of •OH but negatively correlated with the relative fraction of C-centered radicals among detected radicals. Composition-dependent reactive species yields may explain differences in the reactivity and health effects of PM2.5 in clean versus polluted air.
Defeng Zhao, Iida Pullinen, Hendrik Fuchs, Stephanie Schrade, Rongrong Wu, Ismail-Hakki Acir, Ralf Tillmann, Franz Rohrer, Jürgen Wildt, Yindong Guo, Astrid Kiendler-Scharr, Andreas Wahner, Sungah Kang, Luc Vereecken, and Thomas F. Mentel
Atmos. Chem. Phys., 21, 9681–9704, https://doi.org/10.5194/acp-21-9681-2021, https://doi.org/10.5194/acp-21-9681-2021, 2021
Short summary
Short summary
The reaction of isoprene, a biogenic volatile organic compound with the globally largest emission rates, with NO3, an nighttime oxidant influenced heavily by anthropogenic emissions, forms a large number of highly oxygenated organic molecules (HOM). These HOM are formed via one or multiple oxidation steps, followed by autoxidation. Their total yield is much higher than that in the daytime oxidation of isoprene. They may play an important role in nighttime organic aerosol formation and growth.
Weiqi Xu, Masayuki Takeuchi, Chun Chen, Yanmei Qiu, Conghui Xie, Wanyun Xu, Nan Ma, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Meas. Tech., 14, 3693–3705, https://doi.org/10.5194/amt-14-3693-2021, https://doi.org/10.5194/amt-14-3693-2021, 2021
Short summary
Short summary
Here we developed a method for estimation of particulate organic nitrates (pON) from the measurements of a high-resolution aerosol mass spectrometer coupled with a thermodenuder based on the volatility differences between inorganic nitrate and pON. The results generally had improvements in reducing negative values due to the influences of a high concentration of inorganic nitrate and a constant ratio of NO+ to NO2+ of organic nitrates (RON).
Nils Friedrich, Philipp Eger, Justin Shenolikar, Nicolas Sobanski, Jan Schuladen, Dirk Dienhart, Bettina Hottmann, Ivan Tadic, Horst Fischer, Monica Martinez, Roland Rohloff, Sebastian Tauer, Hartwig Harder, Eva Y. Pfannerstill, Nijing Wang, Jonathan Williams, James Brooks, Frank Drewnick, Hang Su, Guo Li, Yafang Cheng, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 21, 7473–7498, https://doi.org/10.5194/acp-21-7473-2021, https://doi.org/10.5194/acp-21-7473-2021, 2021
Short summary
Short summary
This paper uses NOx and NOz measurements from the 2017 AQABA ship campaign in the Mediterranean Sea and around the Arabian Peninsula to examine the influence e.g. of emissions from shipping and oil and gas production. Night-time losses of NOx dominated in the Arabian Gulf and in the Red Sea, whereas daytime losses were more important in the Mediterranean Sea. Nitric acid and organic nitrates were the most prevalent components of NOz.
Jiangchuan Tao, Ye Kuang, Nan Ma, Juan Hong, Yele Sun, Wanyun Xu, Yanyan Zhang, Yao He, Qingwei Luo, Linhong Xie, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 21, 7409–7427, https://doi.org/10.5194/acp-21-7409-2021, https://doi.org/10.5194/acp-21-7409-2021, 2021
Short summary
Short summary
The mechanism of secondary aerosol (SA) formation can be affected by relative humidity (RH) and has different influences on the particle CCN activity under different RH conditions. In the North China Plain, we find different responses of CCN activity and enhancements of CCN number concentration to SA formation under different RH conditions. In addition, variations of aerosol mixing state due to SA formation contribute some of the largest uncertainties in predicting CCN number concentration.
Eugene F. Mikhailov, Mira L. Pöhlker, Kathrin Reinmuth-Selzle, Sergey S. Vlasenko, Ovid O. Krüger, Janine Fröhlich-Nowoisky, Christopher Pöhlker, Olga A. Ivanova, Alexey A. Kiselev, Leslie A. Kremper, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 6999–7022, https://doi.org/10.5194/acp-21-6999-2021, https://doi.org/10.5194/acp-21-6999-2021, 2021
Short summary
Short summary
Subpollen particles are a relatively new subset of atmospheric aerosol particles. When pollen grains rupture, they release cytoplasmic fragments known as subpollen particles (SPPs). We found that SPPs, containing a broad spectrum of biopolymers and hydrocarbons, exhibit abnormally high water uptake. This effect may influence the life cycle of SPPs and the related direct and indirect impacts on radiation budget as well as reinforce their allergic potential.
Yan Xiang, Tianshu Zhang, Chaoqun Ma, Lihui Lv, Jianguo Liu, Wenqing Liu, and Yafang Cheng
Atmos. Chem. Phys., 21, 7023–7037, https://doi.org/10.5194/acp-21-7023-2021, https://doi.org/10.5194/acp-21-7023-2021, 2021
Short summary
Short summary
For the first time, a vertical observation network consisting of 13 aerosol lidars and more than 1000 ground observation stations were combined with a data assimilation technique to reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations during extreme heavy aerosol pollution on the North China Plain.
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539, https://doi.org/10.5194/acp-21-6509-2021, https://doi.org/10.5194/acp-21-6509-2021, 2021
Short summary
Short summary
We present in situ observations of vertically resolved particle chemical composition in the summertime Arctic lower troposphere. Our analysis demonstrates the strong vertical contrast between particle properties within the boundary layer and aloft. Emissions from vegetation fires and anthropogenic sources in northern Canada, Europe, and East Asia influenced particle composition in the free troposphere. Organics detected in Arctic aerosol particles can partly be identified as dicarboxylic acids.
Patricia K. Quinn, Elizabeth J. Thompson, Derek J. Coffman, Sunil Baidar, Ludovic Bariteau, Timothy S. Bates, Sebastien Bigorre, Alan Brewer, Gijs de Boer, Simon P. de Szoeke, Kyla Drushka, Gregory R. Foltz, Janet Intrieri, Suneil Iyer, Chris W. Fairall, Cassandra J. Gaston, Friedhelm Jansen, James E. Johnson, Ovid O. Krüger, Richard D. Marchbanks, Kenneth P. Moran, David Noone, Sergio Pezoa, Robert Pincus, Albert J. Plueddemann, Mira L. Pöhlker, Ulrich Pöschl, Estefania Quinones Melendez, Haley M. Royer, Malgorzata Szczodrak, Jim Thomson, Lucia M. Upchurch, Chidong Zhang, Dongxiao Zhang, and Paquita Zuidema
Earth Syst. Sci. Data, 13, 1759–1790, https://doi.org/10.5194/essd-13-1759-2021, https://doi.org/10.5194/essd-13-1759-2021, 2021
Short summary
Short summary
ATOMIC took place in the northwestern tropical Atlantic during January and February of 2020 to gather information on shallow atmospheric convection, the effects of aerosols and clouds on the ocean surface energy budget, and mesoscale oceanic processes. Measurements made from the NOAA RV Ronald H. Brown and assets it deployed (instrumented mooring and uncrewed seagoing vehicles) are described herein to advance widespread use of the data by the ATOMIC and broader research communities.
Jake Wilson, Ulrich Pöschl, Manabu Shiraiwa, and Thomas Berkemeier
Atmos. Chem. Phys., 21, 6175–6198, https://doi.org/10.5194/acp-21-6175-2021, https://doi.org/10.5194/acp-21-6175-2021, 2021
Short summary
Short summary
This work explores the gas–particle partitioning of PAHs on soot with a kinetic model. We show that the equilibration timescale depends on PAH molecular structure, temperature, and particle number concentration. We explore scenarios in which the particulate fraction is perturbed from equilibrium by chemical loss and discuss implications for chemical transport models that assume instantaneous equilibration at each model time step.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Michael Priestley, Thomas J. Bannan, Michael Le Breton, Stephen D. Worrall, Sungah Kang, Iida Pullinen, Sebastian Schmitt, Ralf Tillmann, Einhard Kleist, Defeng Zhao, Jürgen Wildt, Olga Garmash, Archit Mehra, Asan Bacak, Dudley E. Shallcross, Astrid Kiendler-Scharr, Åsa M. Hallquist, Mikael Ehn, Hugh Coe, Carl J. Percival, Mattias Hallquist, Thomas F. Mentel, and Gordon McFiggans
Atmos. Chem. Phys., 21, 3473–3490, https://doi.org/10.5194/acp-21-3473-2021, https://doi.org/10.5194/acp-21-3473-2021, 2021
Short summary
Short summary
A significant fraction of emissions from human activity consists of aromatic hydrocarbons, e.g. benzene, which oxidise to form new compounds important for particle growth. Characterisation of benzene oxidation products highlights the range of species produced as well as their chemical properties and contextualises them within relevant frameworks, e.g. MCM. Cluster analysis of the oxidation product time series distinguishes behaviours of CHON compounds that could aid in identifying functionality.
Weigang Wang, Ting Lei, Andreas Zuend, Hang Su, Yafang Cheng, Yajun Shi, Maofa Ge, and Mingyuan Liu
Atmos. Chem. Phys., 21, 2179–2190, https://doi.org/10.5194/acp-21-2179-2021, https://doi.org/10.5194/acp-21-2179-2021, 2021
Short summary
Short summary
Aerosol mixing state regulates the interactions between water molecules and particles and thus controls aerosol activation and hygroscopic growth, which thereby influences visibility degradation, cloud formation, and its radiative forcing. However, there are few studies attempting to investigate their interactions with water molecules. Here, we investigated the effect of organic coatings on the hygroscopic behavior of the inorganic core.
Manabu Shiraiwa and Ulrich Pöschl
Atmos. Chem. Phys., 21, 1565–1580, https://doi.org/10.5194/acp-21-1565-2021, https://doi.org/10.5194/acp-21-1565-2021, 2021
Short summary
Short summary
Mass accommodation is a crucial process in secondary organic aerosol partitioning that depends on volatility, diffusivity, reactivity, and particle penetration depth of the chemical species involved. For efficient kinetic modeling, we introduce an effective mass accommodation coefficient that accounts for the above influencing factors, can be applied in the common Fuchs–Sutugin approximation, and helps to resolve inconsistencies and shortcomings of earlier experimental and model investigations.
Chuchu Chen, Xiaoxiang Wang, Kurt Binder, Mohammad Mehdi Ghahremanpour, David van der Spoel, Ulrich Pöschl, Hang Su, and Yafang Cheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1329, https://doi.org/10.5194/acp-2020-1329, 2021
Publication in ACP not foreseen
Short summary
Short summary
Size dependence of succinic acid solvation in the nanoparticles is investigated based on the molecular dynamics (MD) simulation and energetic analysis. The results show a stronger surface preference and a weaker internal bulk volume solvation of succinic acid in the smaller droplets, which may explain the previously observed size-dependent phase-state of aerosol nanoparticles containing organic molecules, fundamentally promoting a better understanding of atmospheric aerosols.
Johannes Schneider, Ralf Weigel, Thomas Klimach, Antonis Dragoneas, Oliver Appel, Andreas Hünig, Sergej Molleker, Franziska Köllner, Hans-Christian Clemen, Oliver Eppers, Peter Hoppe, Peter Hoor, Christoph Mahnke, Martina Krämer, Christian Rolf, Jens-Uwe Grooß, Andreas Zahn, Florian Obersteiner, Fabrizio Ravegnani, Alexey Ulanovsky, Hans Schlager, Monika Scheibe, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Martin Zöger, and Stephan Borrmann
Atmos. Chem. Phys., 21, 989–1013, https://doi.org/10.5194/acp-21-989-2021, https://doi.org/10.5194/acp-21-989-2021, 2021
Short summary
Short summary
During five aircraft missions, we detected aerosol particles containing meteoric material in the lower stratosphere. The stratospheric measurements span a latitude range from 15 to 68° N, and we find that at potential temperature levels of more than 40 K above the tropopause; particles containing meteoric material occur at similar abundance fractions across latitudes and seasons. We conclude that meteoric material is efficiently distributed between high and low latitudes by isentropic mixing.
Chaomin Wang, Bin Yuan, Caihong Wu, Sihang Wang, Jipeng Qi, Baolin Wang, Zelong Wang, Weiwei Hu, Wei Chen, Chenshuo Ye, Wenjie Wang, Yele Sun, Chen Wang, Shan Huang, Wei Song, Xinming Wang, Suxia Yang, Shenyang Zhang, Wanyun Xu, Nan Ma, Zhanyi Zhang, Bin Jiang, Hang Su, Yafang Cheng, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 20, 14123–14138, https://doi.org/10.5194/acp-20-14123-2020, https://doi.org/10.5194/acp-20-14123-2020, 2020
Short summary
Short summary
We utilized a novel online mass spectrometry method to measure the total concentration of higher alkanes at each carbon number at two different sites in China, allowing us to take into account SOA contributions from all isomers for higher alkanes. We found that higher alkanes account for significant fractions of SOA formation at the two sites. The contributions are comparable to or even higher than single-ring aromatics, the most-recognized SOA precursors in urban air.
Guo Li, Hang Su, Nan Ma, Guangjie Zheng, Uwe Kuhn, Meng Li, Thomas Klimach, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 13, 6053–6065, https://doi.org/10.5194/amt-13-6053-2020, https://doi.org/10.5194/amt-13-6053-2020, 2020
Short summary
Short summary
Aerosol acidity plays an important role in regulating the chemistry, health, and ecological effect of aerosol particles. However, a direct measurement of aerosol pH is very challenging because of its fast transition and equilibrium with adjacent environments. Therefore, most early studies have to use modeled pH, resulting in intensive debates about model uncertainties. Here we developed an optimized approach to measure aerosol pH by using pH-indicator papers combined with RGB-based colorimetry.
Lixia Liu, Yafang Cheng, Siwen Wang, Chao Wei, Mira L. Pöhlker, Christopher Pöhlker, Paulo Artaxo, Manish Shrivastava, Meinrat O. Andreae, Ulrich Pöschl, and Hang Su
Atmos. Chem. Phys., 20, 13283–13301, https://doi.org/10.5194/acp-20-13283-2020, https://doi.org/10.5194/acp-20-13283-2020, 2020
Short summary
Short summary
This modeling paper reveals how aerosol–cloud interactions (ACIs) and aerosol–radiation interactions (ARIs) induced by biomass burning (BB) aerosols act oppositely on radiation, cloud, and precipitation in the Amazon during the dry season. The varying relative significance of ACIs and ARIs with BB aerosol concentration leads to a nonlinear dependence of the total climate response on BB aerosol loading and features the growing importance of ARIs at high aerosol loading.
Hans-Christian Clemen, Johannes Schneider, Thomas Klimach, Frank Helleis, Franziska Köllner, Andreas Hünig, Florian Rubach, Stephan Mertes, Heike Wex, Frank Stratmann, André Welti, Rebecca Kohl, Fabian Frank, and Stephan Borrmann
Atmos. Meas. Tech., 13, 5923–5953, https://doi.org/10.5194/amt-13-5923-2020, https://doi.org/10.5194/amt-13-5923-2020, 2020
Short summary
Short summary
We improved the efficiency of a single-particle mass spectrometer with a newly developed aerodynamic lens system, delayed ion extraction, and better electric shielding. The new components result in significantly improved particle analysis and sample statistics. This is particularly important for measurements of low-number-density particles, such as ice-nucleating particles, and for aircraft-based measurements at high altitudes or where high temporal and spatial resolution is required.
Ting Lei, Nan Ma, Juan Hong, Thomas Tuch, Xin Wang, Zhibin Wang, Mira Pöhlker, Maofa Ge, Weigang Wang, Eugene Mikhailov, Thorsten Hoffmann, Ulrich Pöschl, Hang Su, Alfred Wiedensohler, and Yafang Cheng
Atmos. Meas. Tech., 13, 5551–5567, https://doi.org/10.5194/amt-13-5551-2020, https://doi.org/10.5194/amt-13-5551-2020, 2020
Short summary
Short summary
We present the design of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. We further introduce comprehensive methods for system calibration and validation of the performance of the system. We then study the size dependence of the deliquescence and the efflorescence of aerosol nanoparticles for sizes down to 6 nm.
Wei Tao, Hang Su, Guangjie Zheng, Jiandong Wang, Chao Wei, Lixia Liu, Nan Ma, Meng Li, Qiang Zhang, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 20, 11729–11746, https://doi.org/10.5194/acp-20-11729-2020, https://doi.org/10.5194/acp-20-11729-2020, 2020
Short summary
Short summary
We simulated the thermodynamic and multiphase reactions in aerosol water during a wintertime haze event over the North China Plain. It was found that aerosol pH exhibited a strong spatiotemporal variability, and multiple oxidation pathways were predominant for particulate sulfate formation in different locations. Sensitivity tests further showed that ammonia, crustal particles, and dissolved transition metal ions were important factors for multiphase chemistry during haze episodes.
Yohei Shinozuka, Pablo E. Saide, Gonzalo A. Ferrada, Sharon P. Burton, Richard Ferrare, Sarah J. Doherty, Hamish Gordon, Karla Longo, Marc Mallet, Yan Feng, Qiaoqiao Wang, Yafang Cheng, Amie Dobracki, Steffen Freitag, Steven G. Howell, Samuel LeBlanc, Connor Flynn, Michal Segal-Rosenhaimer, Kristina Pistone, James R. Podolske, Eric J. Stith, Joseph Ryan Bennett, Gregory R. Carmichael, Arlindo da Silva, Ravi Govindaraju, Ruby Leung, Yang Zhang, Leonhard Pfister, Ju-Mee Ryoo, Jens Redemann, Robert Wood, and Paquita Zuidema
Atmos. Chem. Phys., 20, 11491–11526, https://doi.org/10.5194/acp-20-11491-2020, https://doi.org/10.5194/acp-20-11491-2020, 2020
Short summary
Short summary
In the southeast Atlantic, well-defined smoke plumes from Africa advect over marine boundary layer cloud decks; both are most extensive around September, when most of the smoke resides in the free troposphere. A framework is put forth for evaluating the performance of a range of global and regional atmospheric composition models against observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) airborne mission in September 2016.
Najin Kim, Seong Soo Yum, Minsu Park, Jong Sung Park, Hye Jung Shin, and Joon Young Ahn
Atmos. Chem. Phys., 20, 11245–11262, https://doi.org/10.5194/acp-20-11245-2020, https://doi.org/10.5194/acp-20-11245-2020, 2020
Short summary
Short summary
Chemical effects on the size-resolved hygroscopicity of urban aerosols were examined based on the KORUS-AQ field campaign data (HTDMA and HR-ToF-AMS). The size-resolved chemical composition data were found to be critical in explaining the size-dependent hygroscopicity, as well as the diurnal variation of κ for small particles. Aerosol mixing state information was associated with the size-resolved chemical composition data to reveal chemical information of different hygroscopicity modes.
Iida Pullinen, Sebastian Schmitt, Sungah Kang, Mehrnaz Sarrafzadeh, Patrick Schlag, Stefanie Andres, Einhard Kleist, Thomas F. Mentel, Franz Rohrer, Monika Springer, Ralf Tillmann, Jürgen Wildt, Cheng Wu, Defeng Zhao, Andreas Wahner, and Astrid Kiendler-Scharr
Atmos. Chem. Phys., 20, 10125–10147, https://doi.org/10.5194/acp-20-10125-2020, https://doi.org/10.5194/acp-20-10125-2020, 2020
Short summary
Short summary
Biogenic and anthropogenic air masses mix in the atmosphere, bringing plant-emitted monoterpenes and traffic-related nitrogen oxides together. There is debate whether the presence of nitrogen oxides reduces or increases secondary aerosol formation. This is important as secondary aerosols have cooling effects in the climate system but also constitute a health risk in populated areas. We show that the presence of NOx alone should not much affect the mass yields of secondary organic aerosols.
Jan-David Förster, Christian Gurk, Mark Lamneck, Haijie Tong, Florian Ditas, Sarah S. Steimer, Peter A. Alpert, Markus Ammann, Jörg Raabe, Markus Weigand, Benjamin Watts, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Meas. Tech., 13, 3717–3729, https://doi.org/10.5194/amt-13-3717-2020, https://doi.org/10.5194/amt-13-3717-2020, 2020
Short summary
Short summary
A gas flow system coupled with a microreactor for X-ray microspectroscopy is presented. Its core objective is to mimic the atmospheric processing of aerosol particles under laboratory conditions in a controlled gas-phase environment and allow in situ observations with high spatial and chemical resolution. We here emphasize its analytical capabilities and show initial results from hydration–dehydration experiments and the observation of water ice at low temperature and high relative humidity.
Sergej Molleker, Frank Helleis, Thomas Klimach, Oliver Appel, Hans-Christian Clemen, Antonis Dragoneas, Christian Gurk, Andreas Hünig, Franziska Köllner, Florian Rubach, Christiane Schulz, Johannes Schneider, and Stephan Borrmann
Atmos. Meas. Tech., 13, 3651–3660, https://doi.org/10.5194/amt-13-3651-2020, https://doi.org/10.5194/amt-13-3651-2020, 2020
Short summary
Short summary
A novel constant-pressure-inlet design for use in airborne aerosol particle mass spectrometry – an aerodynamic lens focuses aerosol particles into a vacuum chamber – is presented. The pressure of a few hectopascals at the lens is precisely controlled over a large flight altitude range up to 21 km. The constant pressure is achieved by changing the inner diameter of a properly scaled flexible O-ring acting as a critical orifice. Particle transmission at various inlet pressures is characterized.
Jia Sun, Wolfram Birmili, Markus Hermann, Thomas Tuch, Kay Weinhold, Maik Merkel, Fabian Rasch, Thomas Müller, Alexander Schladitz, Susanne Bastian, Gunter Löschau, Josef Cyrys, Jianwei Gu, Harald Flentje, Björn Briel, Christoph Asbach, Heinz Kaminski, Ludwig Ries, Ralf Sohmer, Holger Gerwig, Klaus Wirtz, Frank Meinhardt, Andreas Schwerin, Olaf Bath, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 7049–7068, https://doi.org/10.5194/acp-20-7049-2020, https://doi.org/10.5194/acp-20-7049-2020, 2020
Short summary
Short summary
To evaluate the effectiveness of emission mitigation policies, we evaluated the trends of the size-resolved particle number concentrations and equivalent black carbon mass concentration at 16 observational sites for various environments in Germany (2009–2018). Overall, significant decrease trends are found for most of the parameters and sites. This study suggests that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales such as in Germany.
Qiaorong Xie, Sihui Su, Shuang Chen, Yisheng Xu, Dong Cao, Jing Chen, Lujie Ren, Siyao Yue, Wanyu Zhao, Yele Sun, Zifa Wang, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, Guibin Jiang, Cong-Qiang Liu, and Pingqing Fu
Atmos. Chem. Phys., 20, 6803–6820, https://doi.org/10.5194/acp-20-6803-2020, https://doi.org/10.5194/acp-20-6803-2020, 2020
Short summary
Short summary
Current knowledge on firework-related organic aerosols is very limited. Here the detailed molecular composition of organics in urban aerosols was characterized using ultrahigh-resolution FT-ICR mass spectrometry. Our findings highlight that firework emission leads to a sharp increase in CHO, CHNO, and CHOS containing high-molecular-weight species, particularly aromatic-like substances, which affect the physicochemical properties such as the light absorption and health effects of urban aerosols.
Shengzhen Zhou, Luolin Wu, Junchen Guo, Weihua Chen, Xuemei Wang, Jun Zhao, Yafang Cheng, Zuzhao Huang, Jinpu Zhang, Yele Sun, Pingqing Fu, Shiguo Jia, Jun Tao, Yanning Chen, and Junxia Kuang
Atmos. Chem. Phys., 20, 6435–6453, https://doi.org/10.5194/acp-20-6435-2020, https://doi.org/10.5194/acp-20-6435-2020, 2020
Short summary
Short summary
In this work, measurements of size-segregated aerosols were conducted at three altitudes (ground level, 118 m, and 488 m) on the 610 m high Canton Tower in southern China. Vertical variations of PM and size-segregated chemical compositions were investigated. The results indicated that meteorological parameters and atmospheric aqueous and heterogeneous reactions together led to aerosol formation and haze episodes in the Pearl River Delta region during the measurement periods.
Daniel Marno, Cheryl Ernest, Korbinian Hens, Umar Javed, Thomas Klimach, Monica Martinez, Markus Rudolf, Jos Lelieveld, and Hartwig Harder
Atmos. Meas. Tech., 13, 2711–2731, https://doi.org/10.5194/amt-13-2711-2020, https://doi.org/10.5194/amt-13-2711-2020, 2020
Short summary
Short summary
In this study, a calibration device for OH and HO2 instruments is characterized at pressures of 275 to 1000 mbar, allowing instrument pressure sensitivity to be quantified to an accuracy of 22 % (1σ). Computational fluid dynamic simulations supporting the understanding of interactions between generated HOx and the instrument inlet led to enhanced determination of factors affecting instrument sensitivity.
Bruna A. Holanda, Mira L. Pöhlker, David Walter, Jorge Saturno, Matthias Sörgel, Jeannine Ditas, Florian Ditas, Christiane Schulz, Marco Aurélio Franco, Qiaoqiao Wang, Tobias Donth, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Joel Brito, Yafang Cheng, Maximilian Dollner, Johannes W. Kaiser, Thomas Klimach, Christoph Knote, Ovid O. Krüger, Daniel Fütterer, Jošt V. Lavrič, Nan Ma, Luiz A. T. Machado, Jing Ming, Fernando G. Morais, Hauke Paulsen, Daniel Sauer, Hans Schlager, Johannes Schneider, Hang Su, Bernadett Weinzierl, Adrian Walser, Manfred Wendisch, Helmut Ziereis, Martin Zöger, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 20, 4757–4785, https://doi.org/10.5194/acp-20-4757-2020, https://doi.org/10.5194/acp-20-4757-2020, 2020
Short summary
Short summary
Biomass burning smoke from African savanna and grassland is transported across the South Atlantic Ocean in defined layers within the free troposphere. The combination of in situ aircraft and ground-based measurements aided by satellite observations showed that these layers are transported into the Amazon Basin during the early dry season. The influx of aged smoke, enriched in black carbon and cloud condensation nuclei, has important implications for the Amazonian aerosol and cloud cycling.
Shaofeng Xu, Lujie Ren, Yunchao Lang, Shengjie Hou, Hong Ren, Lianfang Wei, Libin Wu, Junjun Deng, Wei Hu, Xiaole Pan, Yele Sun, Zifa Wang, Hang Su, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 20, 3623–3644, https://doi.org/10.5194/acp-20-3623-2020, https://doi.org/10.5194/acp-20-3623-2020, 2020
Short summary
Short summary
Current knowledge on the size distribution of biogenic primary organic aerosols in urban regions with heavy haze pollution is very limited. Here we performed a year-round study focusing on the organic molecular composition of size-segregated aerosol samples collected in urban Beijing during haze and non-haze days to elucidate the seasonal contributions of biomass burning, fungal spores, and plant debris to organic carbon as well as the influences from local emissions and long-range transport.
Fan Mei, Jian Wang, Jennifer M. Comstock, Ralf Weigel, Martina Krämer, Christoph Mahnke, John E. Shilling, Johannes Schneider, Christiane Schulz, Charles N. Long, Manfred Wendisch, Luiz A. T. Machado, Beat Schmid, Trismono Krisna, Mikhail Pekour, John Hubbe, Andreas Giez, Bernadett Weinzierl, Martin Zoeger, Mira L. Pöhlker, Hans Schlager, Micael A. Cecchini, Meinrat O. Andreae, Scot T. Martin, Suzane S. de Sá, Jiwen Fan, Jason Tomlinson, Stephen Springston, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker, Thomas Klimach, Andreas Minikin, Armin Afchine, and Stephan Borrmann
Atmos. Meas. Tech., 13, 661–684, https://doi.org/10.5194/amt-13-661-2020, https://doi.org/10.5194/amt-13-661-2020, 2020
Short summary
Short summary
In 2014, the US DOE G1 aircraft and the German HALO aircraft overflew the Amazon basin to study how aerosols influence cloud cycles under a clean condition and around a tropical megacity. This paper describes how to meaningfully compare similar measurements from two research aircraft and identify the potential measurement issue. We also discuss the uncertainty range for each measurement for further usage in model evaluation and satellite data validation.
Pascal Polonik, Christoph Knote, Tobias Zinner, Florian Ewald, Tobias Kölling, Bernhard Mayer, Meinrat O. Andreae, Tina Jurkat-Witschas, Thomas Klimach, Christoph Mahnke, Sergej Molleker, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Ralf Weigel, and Manfred Wendisch
Atmos. Chem. Phys., 20, 1591–1605, https://doi.org/10.5194/acp-20-1591-2020, https://doi.org/10.5194/acp-20-1591-2020, 2020
Short summary
Short summary
A realistic representation of cloud–aerosol interactions is central to accurate climate projections. Here we combine observations collected during the ACRIDICON-CHUVA campaign with chemistry-transport simulations to evaluate the model’s ability to represent the indirect effects of biomass burning aerosol on cloud microphysics. We find an upper limit for the model sensitivity on cloud condensation nuclei concentrations well below the levels reached during the burning season in the Amazon Basin.
Meng Gao, Zhiwei Han, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Meng Li, Jung-Hun Woo, Qiang Zhang, Yafang Cheng, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 1147–1161, https://doi.org/10.5194/acp-20-1147-2020, https://doi.org/10.5194/acp-20-1147-2020, 2020
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative feedbacks. This paper discusses the estimates of aerosol radiative forcing, aerosol feedbacks, and possible causes for the differences among the models.
Ye Kuang, Yao He, Wanyun Xu, Pusheng Zhao, Yafang Cheng, Gang Zhao, Jiangchuan Tao, Nan Ma, Hang Su, Yanyan Zhang, Jiayin Sun, Peng Cheng, Wenda Yang, Shaobin Zhang, Cheng Wu, Yele Sun, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 865–880, https://doi.org/10.5194/acp-20-865-2020, https://doi.org/10.5194/acp-20-865-2020, 2020
Short summary
Short summary
A new method was developed to calculate hygroscopicity parameter κ of organic aerosols (κOA) based on aerosol light-scattering measurements and bulk aerosol chemical-composition measurements. Derived high-time-resolution κOA varied in a wide range (near 0 to 0.25), and the organic aerosol oxidation degree significantly impacts variations in κOA. Distinct diurnal variation in κOA is found, and its relationship with oxygenated organic aerosol is discussed.
Ying Chen, Yafang Cheng, Nan Ma, Chao Wei, Liang Ran, Ralf Wolke, Johannes Größ, Qiaoqiao Wang, Andrea Pozzer, Hugo A. C. Denier van der Gon, Gerald Spindler, Jos Lelieveld, Ina Tegen, Hang Su, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 771–786, https://doi.org/10.5194/acp-20-771-2020, https://doi.org/10.5194/acp-20-771-2020, 2020
Short summary
Short summary
Particulate nitrate is one of the most important climate cooling agents. Our results show that interaction with sea-salt aerosol can shift nitrate to larger sized particles (redistribution effect), weakening its direct cooling effect. The modelling results indicate strong redistribution over coastal and offshore regions worldwide as well as continental Europe. Improving the consideration of the redistribution effect in global models fosters a better understanding of climate change.
Nina Löbs, Cybelli G. G. Barbosa, Sebastian Brill, David Walter, Florian Ditas, Marta de Oliveira Sá, Alessandro C. de Araújo, Leonardo R. de Oliveira, Ricardo H. M. Godoi, Stefan Wolff, Meike Piepenbring, Jürgen Kesselmeier, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, Christopher Pöhlker, and Bettina Weber
Atmos. Meas. Tech., 13, 153–164, https://doi.org/10.5194/amt-13-153-2020, https://doi.org/10.5194/amt-13-153-2020, 2020
Short summary
Short summary
Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties, and spatiotemporal distribution in the atmosphere are not yet well characterized. Measurement data on the release of fungal spores under natural conditions are also sparse. Here, we present an experimental approach to analyze and quantify the spore release from fungi and other spore-producing organisms under natural and laboratory conditions.
Olga Garmash, Matti P. Rissanen, Iida Pullinen, Sebastian Schmitt, Oskari Kausiala, Ralf Tillmann, Defeng Zhao, Carl Percival, Thomas J. Bannan, Michael Priestley, Åsa M. Hallquist, Einhard Kleist, Astrid Kiendler-Scharr, Mattias Hallquist, Torsten Berndt, Gordon McFiggans, Jürgen Wildt, Thomas F. Mentel, and Mikael Ehn
Atmos. Chem. Phys., 20, 515–537, https://doi.org/10.5194/acp-20-515-2020, https://doi.org/10.5194/acp-20-515-2020, 2020
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) facilitate aerosol formation in the atmosphere. Using NO3− chemical ionization mass spectrometry we investigated HOM composition and yield in oxidation of aromatic compounds at different reactant concentrations, in the presence of NOx and seed aerosol. Higher OH concentrations increased HOM yield, suggesting multiple oxidation steps, and affected HOM composition, potentially explaining in part discrepancies in published secondary organic aerosol yields.
Epameinondas Tsiligiannis, Julia Hammes, Christian Mark Salvador, Thomas F. Mentel, and Mattias Hallquist
Atmos. Chem. Phys., 19, 15073–15086, https://doi.org/10.5194/acp-19-15073-2019, https://doi.org/10.5194/acp-19-15073-2019, 2019
Short summary
Short summary
The role of anthropogenic VOCs (AVOCs) for SOA formation needs to be scrutinised. The aromatic 1,3,5-trimethylbenzene (TMB) was shown to form highly oxygenated organic molecules (HOMs) in NOx-free environments, possibly contributing to new particle formation (NPF). However, formation of HOMs and particles was suppressed in the presence of NOx, while the formation of organonitrates (ONs) was increased. Thus, aromatic AVOCs may not enhance NPF in urban air masses.
Anna T. Kunert, Mira L. Pöhlker, Kai Tang, Carola S. Krevert, Carsten Wieder, Kai R. Speth, Linda E. Hanson, Cindy E. Morris, David G. Schmale III, Ulrich Pöschl, and Janine Fröhlich-Nowoisky
Biogeosciences, 16, 4647–4659, https://doi.org/10.5194/bg-16-4647-2019, https://doi.org/10.5194/bg-16-4647-2019, 2019
Short summary
Short summary
A screening of more than 100 strains from 65 different species revealed that the ice nucleation activity within the fungal genus Fusarium is more widespread than previously assumed. Filtration experiments suggest that the single cell-free Fusarium IN is smaller than 100 kDa (~ 6 nm) and that aggregates can be formed in solution. Exposure experiments, freeze–thaw cycles, and long-term storage tests demonstrate a high stability of Fusarium IN under atmospherically relevant conditions.
Julia Hammes, Anna Lutz, Thomas Mentel, Cameron Faxon, and Mattias Hallquist
Atmos. Chem. Phys., 19, 13037–13052, https://doi.org/10.5194/acp-19-13037-2019, https://doi.org/10.5194/acp-19-13037-2019, 2019
Short summary
Short summary
Identifying the chemical pathways of condensable products such as carboxylic acids is essential for predicting SOA formation. This identification is inherently difficult, as such products reside in both the gas and particulate phases. We measured acids, produced from atmospheric oxidation of limonene, in both phases and scrutinised the mechanistic understanding of their formation. The mechanisms explain nearly 75 % of the gas-phase signal at the lowest concentration (8.4 ppb, 23 % acid yield).
Mingjin Tang, Chak K. Chan, Yong Jie Li, Hang Su, Qingxin Ma, Zhijun Wu, Guohua Zhang, Zhe Wang, Maofa Ge, Min Hu, Hong He, and Xinming Wang
Atmos. Chem. Phys., 19, 12631–12686, https://doi.org/10.5194/acp-19-12631-2019, https://doi.org/10.5194/acp-19-12631-2019, 2019
Short summary
Short summary
Hygroscopicity is one of the most important properties of aerosol particles, and a number of experimental techniques, which differ largely in principles, configurations and cost, have been developed to investigate hygroscopic properties of atmospherically relevant particles. Our paper provides a comprehensive and critical review of available techniques for aerosol hygroscopicity studies.
Mingchen Ma, Yang Gao, Yuhang Wang, Shaoqing Zhang, L. Ruby Leung, Cheng Liu, Shuxiao Wang, Bin Zhao, Xing Chang, Hang Su, Tianqi Zhang, Lifang Sheng, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 12195–12207, https://doi.org/10.5194/acp-19-12195-2019, https://doi.org/10.5194/acp-19-12195-2019, 2019
Short summary
Short summary
Ozone pollution has become severe in China, and extremely high ozone episodes occurred in summer 2017 over the North China Plain. While meteorology impacts are clear, we find that enhanced biogenic emissions, previously ignored by the community, driven by high vapor pressure deficit, land cover change and urban landscape contribute substantially to ozone formation. This study has significant implications for ozone pollution control with more frequent heat waves and urbanization growth in future.
Meng Li, Hang Su, Guo Li, Nan Ma, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 19, 10981–11011, https://doi.org/10.5194/acp-19-10981-2019, https://doi.org/10.5194/acp-19-10981-2019, 2019
Short summary
Short summary
Aerosols and the ground provide two kinds of surfaces for multiphase reactions in the planetary boundary layer. However, the relative importance of these two surfaces for gas uptake has not been quantified. We compare the uptake fluxes of aerosols and the ground surface for reactive trace gases under various conditions. More studies regarding O3 uptake on liquid organic aerosols and H2O2 uptakes on various aerosols are needed considering their potential important roles in atmospheric chemistry.
Yuxuan Zhang, Meng Li, Yafang Cheng, Guannan Geng, Chaopeng Hong, Haiyan Li, Xin Li, Dan Tong, Nana Wu, Xin Zhang, Bo Zheng, Yixuan Zheng, Yu Bo, Hang Su, and Qiang Zhang
Atmos. Chem. Phys., 19, 9663–9680, https://doi.org/10.5194/acp-19-9663-2019, https://doi.org/10.5194/acp-19-9663-2019, 2019
Short summary
Short summary
In this work, we developed a new approach to simulate BC mixing state based on an emissions inventory and back-trajectory analysis. The model tracks the evolution of BC aging degree during atmospheric transport. Our simulations identified the important roles of extensive emission regions in the BC aging process during atmospheric transport, which provided more clues for improving air pollution and climate change.
Meng Li, Qiang Zhang, Bo Zheng, Dan Tong, Yu Lei, Fei Liu, Chaopeng Hong, Sicong Kang, Liu Yan, Yuxuan Zhang, Yu Bo, Hang Su, Yafang Cheng, and Kebin He
Atmos. Chem. Phys., 19, 8897–8913, https://doi.org/10.5194/acp-19-8897-2019, https://doi.org/10.5194/acp-19-8897-2019, 2019
Short summary
Short summary
A long-term non-methane volatile organic compound (NMVOC) emission inventory is crucial for air quality management but still absent in China. We estimated China’s NMVOCs during 1990–2017 with speciation based on updated databases and investigated the trend of ozone formation potential (OFP) for the same period. Persistent growth of emissions and OFP highlights the need of control measures for solvent use and industrial sources and the importance of designing multi-pollutant control strategies.
Christopher Pöhlker, David Walter, Hauke Paulsen, Tobias Könemann, Emilio Rodríguez-Caballero, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Céline Degrendele, Viviane R. Després, Florian Ditas, Bruna A. Holanda, Johannes W. Kaiser, Gerhard Lammel, Jošt V. Lavrič, Jing Ming, Daniel Pickersgill, Mira L. Pöhlker, Maria Praß, Nina Löbs, Jorge Saturno, Matthias Sörgel, Qiaoqiao Wang, Bettina Weber, Stefan Wolff, Paulo Artaxo, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 19, 8425–8470, https://doi.org/10.5194/acp-19-8425-2019, https://doi.org/10.5194/acp-19-8425-2019, 2019
Short summary
Short summary
The Amazon Tall Tower Observatory (ATTO) has been established to monitor the rain forest's biosphere–atmosphere exchange, which experiences the combined pressures from human-made deforestation and progressing climate change. This work is meant to be a reference study, which characterizes various geospatial properties of the ATTO footprint region and shows how the human-made transformation of Amazonia may impact future atmospheric observations at ATTO.
Philipp Porada, Alexandra Tamm, Jose Raggio, Yafang Cheng, Axel Kleidon, Ulrich Pöschl, and Bettina Weber
Biogeosciences, 16, 2003–2031, https://doi.org/10.5194/bg-16-2003-2019, https://doi.org/10.5194/bg-16-2003-2019, 2019
Short summary
Short summary
The trace gases NO and HONO are crucial for atmospheric chemistry. It has been suggested that biological soil crusts in drylands contribute substantially to global NO and HONO emissions, based on empirical upscaling of laboratory and field observations. Here we apply an alternative, process-based modeling approach to predict these emissions. We find that biological soil crusts emit globally significant amounts of NO and HONO, which also vary depending on the type of biological soil crust.
Tobias Könemann, Nicole Savage, Thomas Klimach, David Walter, Janine Fröhlich-Nowoisky, Hang Su, Ulrich Pöschl, J. Alex Huffman, and Christopher Pöhlker
Atmos. Meas. Tech., 12, 1337–1363, https://doi.org/10.5194/amt-12-1337-2019, https://doi.org/10.5194/amt-12-1337-2019, 2019
Short summary
Short summary
This study presents a comprehensive assessment of the SIBS, an instrument for spectrally resolved fluorescence detection of single particles. Exemplary ambient data and fluorescence spectra obtained for 16 reference compounds (biofluorophores and PSLs) show that the SIBS has the ability to expand the scope of fluorescent bioaerosol quantification and classification. Detailed technical insights will be broadly beneficial for users of various WIBS generations and other LIF instruments.
Guo Li, Yafang Cheng, Uwe Kuhn, Rongjuan Xu, Yudong Yang, Hannah Meusel, Zhibin Wang, Nan Ma, Yusheng Wu, Meng Li, Jonathan Williams, Thorsten Hoffmann, Markus Ammann, Ulrich Pöschl, Min Shao, and Hang Su
Atmos. Chem. Phys., 19, 2209–2232, https://doi.org/10.5194/acp-19-2209-2019, https://doi.org/10.5194/acp-19-2209-2019, 2019
Short summary
Short summary
VOCs play a key role in atmospheric chemistry. Emission and deposition on soil have been suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube system to investigate the long-term variability of bidirectional air–soil exchange of 13 VOCs at ambient air conditions of an urban background site in Beijing.
Sascha R. Albrecht, Anna Novelli, Andreas Hofzumahaus, Sungah Kang, Yare Baker, Thomas Mentel, Andreas Wahner, and Hendrik Fuchs
Atmos. Meas. Tech., 12, 891–902, https://doi.org/10.5194/amt-12-891-2019, https://doi.org/10.5194/amt-12-891-2019, 2019
Short summary
Short summary
Within this study we demonstrate reliable measurement of hydroperoxy (HO2) radicals via chemical ionisation mass spectrometry. HO2 is detected as an ion cluster with bromide ions, which allows a selective detection. This direct and sensitive measurement provides reliable data of HO2 radical concentrations in the atmosphere as demonstrated in the first application in simulation chamber experiments.
Xiaoxiang Wang, Chuchu Chen, Kurt Binder, Uwe Kuhn, Ulrich Pöschl, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 18, 17077–17086, https://doi.org/10.5194/acp-18-17077-2018, https://doi.org/10.5194/acp-18-17077-2018, 2018
Short summary
Short summary
The surface tension of aqueous NaCl (σ) is investigated by molecular dynamics simulations from dilute to highly supersaturated solutions. The linear approximation of concentration dependence of σ at molality scale can be extended to the supersaturated NaCl solution until the solute mass fraction (xNaCl) of ~0.39. After that, the σ remains almost unchanged until an xNaCl of ~0.47. Then the σ gradually regains the growing momentum with a tendency to approach the surface tension of molten NaCl.
Anna T. Kunert, Mark Lamneck, Frank Helleis, Ulrich Pöschl, Mira L. Pöhlker, and Janine Fröhlich-Nowoisky
Atmos. Meas. Tech., 11, 6327–6337, https://doi.org/10.5194/amt-11-6327-2018, https://doi.org/10.5194/amt-11-6327-2018, 2018
Short summary
Short summary
The new Twin-plate Ice Nucleation Assay with infrared detection for high-throughput droplet freezing experiments in microliter-sized droplets is introduced, which was tested and characterized with bacterial and fungal ice nuclei. It was applied to investigate the influence of chemical processing on the activity of biological ice nuclei, and aqueous extracts of atmospheric aerosols were studied for ice nuclei activity.
Christiane Schulz, Johannes Schneider, Bruna Amorim Holanda, Oliver Appel, Anja Costa, Suzane S. de Sá, Volker Dreiling, Daniel Fütterer, Tina Jurkat-Witschas, Thomas Klimach, Christoph Knote, Martina Krämer, Scot T. Martin, Stephan Mertes, Mira L. Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Bernadett Weinzierl, Helmut Ziereis, Martin Zöger, Meinrat O. Andreae, Paulo Artaxo, Luiz A. T. Machado, Ulrich Pöschl, Manfred Wendisch, and Stephan Borrmann
Atmos. Chem. Phys., 18, 14979–15001, https://doi.org/10.5194/acp-18-14979-2018, https://doi.org/10.5194/acp-18-14979-2018, 2018
Short summary
Short summary
Aerosol chemical composition measurements in the tropical upper troposphere over the Amazon region show that 78 % of the aerosol in the upper troposphere consists of organic matter. Up to 20 % of the organic aerosol can be attributed to isoprene epoxydiol secondary organic aerosol (IEPOX-SOA). Furthermore, organic nitrates were identified, suggesting a connection to the IEPOX-SOA formation.
Juan Hong, Hanbing Xu, Haobo Tan, Changqing Yin, Liqing Hao, Fei Li, Mingfu Cai, Xuejiao Deng, Nan Wang, Hang Su, Yafang Cheng, Lin Wang, Tuukka Petäjä, and Veli-Matti Kerminen
Atmos. Chem. Phys., 18, 14079–14094, https://doi.org/10.5194/acp-18-14079-2018, https://doi.org/10.5194/acp-18-14079-2018, 2018
Short summary
Short summary
In this manuscript, we provide the results of the hygroscopicity of a more anthropogenically influenced aerosol in a suburban site in China. Organic material in the current type of aerosols showed moderate hygroscopicity, and it appeared to be less sensitive towards the variation of its oxidation level, which suggests different characteristics of the oxidation products in secondary organic aerosols (SOA) under the suburban/urban atmosphere in China when compared to other background environments.
Jorge Saturno, Bruna A. Holanda, Christopher Pöhlker, Florian Ditas, Qiaoqiao Wang, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Jeannine Ditas, Thorsten Hoffmann, Isabella Hrabe de Angelis, Tobias Könemann, Jošt V. Lavrič, Nan Ma, Jing Ming, Hauke Paulsen, Mira L. Pöhlker, Luciana V. Rizzo, Patrick Schlag, Hang Su, David Walter, Stefan Wolff, Yuxuan Zhang, Paulo Artaxo, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 12817–12843, https://doi.org/10.5194/acp-18-12817-2018, https://doi.org/10.5194/acp-18-12817-2018, 2018
Short summary
Short summary
Biomass burning emits light-absorbing aerosol particles that warm the atmosphere. One of them is the primarily emitted black carbon, which strongly absorbs radiation in the visible and UV spectral regions. Another one is the so-called brown carbon, a fraction of organic aerosol particles that are able to absorb radiation, especially in the UV spectral region. The contribution of both kinds of aerosol particles to light absorption over the Amazon rainforest is studied in this paper.
Chinmay Mallik, Laura Tomsche, Efstratios Bourtsoukidis, John N. Crowley, Bettina Derstroff, Horst Fischer, Sascha Hafermann, Imke Hüser, Umar Javed, Stephan Keßel, Jos Lelieveld, Monica Martinez, Hannah Meusel, Anna Novelli, Gavin J. Phillips, Andrea Pozzer, Andreas Reiffs, Rolf Sander, Domenico Taraborrelli, Carina Sauvage, Jan Schuladen, Hang Su, Jonathan Williams, and Hartwig Harder
Atmos. Chem. Phys., 18, 10825–10847, https://doi.org/10.5194/acp-18-10825-2018, https://doi.org/10.5194/acp-18-10825-2018, 2018
Short summary
Short summary
OH and HO2 control the transformation of air pollutants and O3 formation. Their implication for air quality over the climatically sensitive Mediterranean region was studied during a field campaign in Cyprus. Production of OH, HO2, and recycled OH was lower in aged marine air masses. Box model simulations of OH and HO2 agreed with measurements except at high terpene concentrations when model RO2 due to terpenes caused large HO2 loss. Autoxidation schemes for RO2 improved the agreement.
Eleni Karnezi, Benjamin N. Murphy, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Florian Rubach, Astrid Kiendler-Scharr, Thomas F. Mentel, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 10759–10772, https://doi.org/10.5194/acp-18-10759-2018, https://doi.org/10.5194/acp-18-10759-2018, 2018
Short summary
Short summary
Different parameterizations of the organic aerosol (OA) formation and evolution are evaluated using ground and airborne measurements collected in the 2012 PEGASOS field campaign in the Po Valley (Italy). Total OA concentration and O : C ratios were reproduced within experimental error by a number of schemes. Anthropogenic secondary OA (SOA) contributed 15–25 % of the total OA, 20–35 % of SOA from intermediate volatility compounds oxidation, and 15–45 % of biogenic SOA depending on the scheme.
Jorge Saturno, Florian Ditas, Marloes Penning de Vries, Bruna A. Holanda, Mira L. Pöhlker, Samara Carbone, David Walter, Nicole Bobrowski, Joel Brito, Xuguang Chi, Alexandra Gutmann, Isabella Hrabe de Angelis, Luiz A. T. Machado, Daniel Moran-Zuloaga, Julian Rüdiger, Johannes Schneider, Christiane Schulz, Qiaoqiao Wang, Manfred Wendisch, Paulo Artaxo, Thomas Wagner, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10391–10405, https://doi.org/10.5194/acp-18-10391-2018, https://doi.org/10.5194/acp-18-10391-2018, 2018
Short summary
Short summary
This study uses satellite observations to track volcanic emissions in eastern Congo and their subsequent transport across the Atlantic Ocean into the Amazon Basin. Aircraft and ground-based observations are used to characterize the influence of volcanogenic aerosol on the chemical and microphysical properties of Amazonian aerosols. Further, this work is an illustrative example of the conditions and dynamics driving the transatlantic transport of African emissions to South America.
Mira L. Pöhlker, Florian Ditas, Jorge Saturno, Thomas Klimach, Isabella Hrabě de Angelis, Alessandro C. Araùjo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Bruna A. Holanda, Konrad Kandler, Jürgen Kesselmeier, Tobias Könemann, Ovid O. Krüger, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Luciana V. Rizzo, Diana Rose, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10289–10331, https://doi.org/10.5194/acp-18-10289-2018, https://doi.org/10.5194/acp-18-10289-2018, 2018
Short summary
Short summary
This paper presents the aerosol and cloud condensation nuclei (CCN) variability for characteristic atmospheric states – such as biomass burning, long-range transport, and pristine rain forest conditions – in the vulnerable and climate-relevant Amazon Basin. It summarizes the key properties of aerosol and CCN and, thus, provides a basis for an in-depth analysis of aerosol–cloud interactions in the Amazon region.
Yuxuan Zhang, Xin Li, Meng Li, Yixuan Zheng, Guannan Geng, Chaopeng Hong, Haiyan Li, Dan Tong, Xin Zhang, Yafang Cheng, Hang Su, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 18, 10275–10287, https://doi.org/10.5194/acp-18-10275-2018, https://doi.org/10.5194/acp-18-10275-2018, 2018
Short summary
Short summary
When emission controls were implemented during APEC, we found that the reduction in BC light absorption was driven by simultaneously reducing the mass concentration and light-absorption capability of BC. The weakening of BC light-absorption capability could be attributed to less coating material on BC surfaces due to the decreased chemical production of secondary aerosols. Our results imply that a synergetic reduction in multiple-pollutant emissions could benefit both air quality and climate.
Daniel Moran-Zuloaga, Florian Ditas, David Walter, Jorge Saturno, Joel Brito, Samara Carbone, Xuguang Chi, Isabella Hrabě de Angelis, Holger Baars, Ricardo H. M. Godoi, Birgit Heese, Bruna A. Holanda, Jošt V. Lavrič, Scot T. Martin, Jing Ming, Mira L. Pöhlker, Nina Ruckteschler, Hang Su, Yaqiang Wang, Qiaoqiao Wang, Zhibin Wang, Bettina Weber, Stefan Wolff, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10055–10088, https://doi.org/10.5194/acp-18-10055-2018, https://doi.org/10.5194/acp-18-10055-2018, 2018
Short summary
Short summary
This study presents multiple years of aerosol coarse mode observations at the remote ATTO site in the Amazon Basin. The results are discussed in light of the frequent and episodic long-range transport of Saharan dust plumes in the early wet season as well as the persistent background bioaerosol cycling in the rain forest ecosystem. This work provides a solid basis for future studies on the dynamic coarse mode aerosol cycling and its biogeochemical relevance in the Amazon.
Yuxuan Zhang, Qiang Zhang, Yafang Cheng, Hang Su, Haiyan Li, Meng Li, Xin Zhang, Aijun Ding, and Kebin He
Atmos. Chem. Phys., 18, 9879–9896, https://doi.org/10.5194/acp-18-9879-2018, https://doi.org/10.5194/acp-18-9879-2018, 2018
Short summary
Short summary
The light absorption of BC-containing particles strongly depends on their aging process in the atmosphere. Whether and how the aging degree and light absorption capability of BC-containing particles will change with air pollution development is still unclear. Our results reveal that under a more polluted environment, the BC-containing particles are characterized not only by higher BC mass concentrations but also by more coating materials on BC surfaces and thus higher light absorption capacity.
Xiangyu Pei, Mattias Hallquist, Axel C. Eriksson, Joakim Pagels, Neil M. Donahue, Thomas Mentel, Birgitta Svenningsson, William Brune, and Ravi Kant Pathak
Atmos. Chem. Phys., 18, 9845–9860, https://doi.org/10.5194/acp-18-9845-2018, https://doi.org/10.5194/acp-18-9845-2018, 2018
Short summary
Short summary
The findings in this study show that morphological transformation of soot occurs via two key complementary and sequential processes, i.e., void filling in the particle and its diameter growth. To quantify the state of morphological transformation, i.e., the utilization of material for filling and growth during the condensation processes, a framework was developed which can further be utilized to quantify the effect of condensed material on the optical and hygroscopic properties of soot.
Jörn Wehking, Daniel A. Pickersgill, Robert M. Bowers, David Teschner, Ulrich Pöschl, Janine Fröhlich-Nowoisky, and Viviane R. Després
Biogeosciences, 15, 4205–4214, https://doi.org/10.5194/bg-15-4205-2018, https://doi.org/10.5194/bg-15-4205-2018, 2018
Short summary
Short summary
Archaea as a third domain of life play an important role in soils and marine environments. Although archaea have been found in air as a part of the atmospheric bioaerosol, little is known about their atmospheric dynamics due to their low number and challenging analysis.
Here we present a DNA-based study of airborne archaea, show seasonal dynamics, and discuss anthropogenic influences on the diversity, composition, and abundances of airborne archaea.
Jiaping Wang, Wei Nie, Yafang Cheng, Yicheng Shen, Xuguang Chi, Jiandong Wang, Xin Huang, Yuning Xie, Peng Sun, Zheng Xu, Ximeng Qi, Hang Su, and Aijun Ding
Atmos. Chem. Phys., 18, 9061–9074, https://doi.org/10.5194/acp-18-9061-2018, https://doi.org/10.5194/acp-18-9061-2018, 2018
Short summary
Short summary
An optimized segregation method is applied to estimate light absorption of brown carbon (BrC) in Nanjing. This study highlights the considerable contribution of BrC to light absorption in the Yangtze River Delta region, China, and depicts its long-term profile in this region for the first time. Lagrangian modeling and the chemical signature observed at the site suggested that open biomass burning and residential emissions are the dominant sources influencing BrC in the two highest BrC seasons.
Mingjin Wang, Tong Zhu, Defeng Zhao, Florian Rubach, Andreas Wahner, Astrid Kiendler-Scharr, and Thomas F. Mentel
Atmos. Chem. Phys., 18, 7345–7359, https://doi.org/10.5194/acp-18-7345-2018, https://doi.org/10.5194/acp-18-7345-2018, 2018
Short summary
Short summary
Organic coatings modify hygroscopicity and CCN activation of mineral dust perticles. Small amounts of oleic acid coating (volume fraction (vf) ≤ 4.1 %) decreased the CCN activity of CaCO3 particles, while more oleic acid coating (vf ≥ 14.8 %) increased the CCN activity of CaCO3 particles, while malonic acid coating (vf = 0.4−42 %) even in smallest amounts increased the CCN activity of CaCO3 particles. Our laboratory results should also hold under conditions of the atmosphere.
Ye Kuang, Chun Sheng Zhao, Gang Zhao, Jiang Chuan Tao, Wanyun Xu, Nan Ma, and Yu Xuan Bian
Atmos. Meas. Tech., 11, 2967–2982, https://doi.org/10.5194/amt-11-2967-2018, https://doi.org/10.5194/amt-11-2967-2018, 2018
Short summary
Short summary
Aerosol water has become an important topic recently because of its implications for multiphase secondary aerosol formation during severe haze events in Asia. This is a timely paper on this topic; a novel method is proposed to calculate ambient aerosol liquid water contents based only on measurements of a three-wavelength humidified nephelometer system. The advantage of this method is that this technique can provide continuous measurements of the changing ambient conditions.
Luiz A. T. Machado, Alan J. P. Calheiros, Thiago Biscaro, Scott Giangrande, Maria A. F. Silva Dias, Micael A. Cecchini, Rachel Albrecht, Meinrat O. Andreae, Wagner F. Araujo, Paulo Artaxo, Stephan Borrmann, Ramon Braga, Casey Burleyson, Cristiano W. Eichholz, Jiwen Fan, Zhe Feng, Gilberto F. Fisch, Michael P. Jensen, Scot T. Martin, Ulrich Pöschl, Christopher Pöhlker, Mira L. Pöhlker, Jean-François Ribaud, Daniel Rosenfeld, Jaci M. B. Saraiva, Courtney Schumacher, Ryan Thalman, David Walter, and Manfred Wendisch
Atmos. Chem. Phys., 18, 6461–6482, https://doi.org/10.5194/acp-18-6461-2018, https://doi.org/10.5194/acp-18-6461-2018, 2018
Short summary
Short summary
This overview discuss the main precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin. It presents a review of the knowledge acquired about cloud processes and rainfall formation in Amazonas. In addition, this study provides a characterization of the seasonal variation and rainfall sensitivities to topography, surface cover, and aerosol concentration. Airplane measurements were evaluated to characterize and contrast cloud microphysical properties.
Pengzhen He, Becky Alexander, Lei Geng, Xiyuan Chi, Shidong Fan, Haicong Zhan, Hui Kang, Guangjie Zheng, Yafang Cheng, Hang Su, Cheng Liu, and Zhouqing Xie
Atmos. Chem. Phys., 18, 5515–5528, https://doi.org/10.5194/acp-18-5515-2018, https://doi.org/10.5194/acp-18-5515-2018, 2018
Short summary
Short summary
We use observations of the oxygen isotopic composition of sulfate aerosol as a fingerprint to quantify various sulfate formation mechanisms during pollution events in Beijing, China. We found that heterogeneous reactions on aerosols dominated sulfate production in general; however, in-cloud reactions would dominate haze sulfate production when cloud liquid water content was high. The findings also suggest the heterogeneity of aerosol acidity should be parameterized in models.
Meng Gao, Zhiwei Han, Zirui Liu, Meng Li, Jinyuan Xin, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Yafang Cheng, Yuesi Wang, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Jung-Hun Woo, Qiang Zhang, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 18, 4859–4884, https://doi.org/10.5194/acp-18-4859-2018, https://doi.org/10.5194/acp-18-4859-2018, 2018
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. A comprehensive overview of the MICS-ASIA III Topic 3 study design is presented.
Trismono C. Krisna, Manfred Wendisch, André Ehrlich, Evelyn Jäkel, Frank Werner, Ralf Weigel, Stephan Borrmann, Christoph Mahnke, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 4439–4462, https://doi.org/10.5194/acp-18-4439-2018, https://doi.org/10.5194/acp-18-4439-2018, 2018
Short summary
Short summary
The optical thickness and particle effective radius of a cirrus above liquid water clouds and a DCC topped by an anvil cirrus are retrieved based on SMART and MODIS radiance measurements. For the cirrus, retrieved particle effective radius are validated with corresponding in situ data using a vertical weighting method. This approach allows to assess the measurements, retrieval algorithms, and derived cloud products.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Guo Li, Hang Su, Uwe Kuhn, Hannah Meusel, Markus Ammann, Min Shao, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 18, 2669–2686, https://doi.org/10.5194/acp-18-2669-2018, https://doi.org/10.5194/acp-18-2669-2018, 2018
Short summary
Short summary
Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. In previous applications, the effects of coating surface roughness on flow conditions were not well quantified. In this study, a criterion is proposed to eliminate/minimize the potential effects of coating surface roughness on laminar flow in coated-wall flow tube experiments and validate the applications of diffusion correction methods.
Defeng Zhao, Sebastian H. Schmitt, Mingjin Wang, Ismail-Hakki Acir, Ralf Tillmann, Zhaofeng Tan, Anna Novelli, Hendrik Fuchs, Iida Pullinen, Robert Wegener, Franz Rohrer, Jürgen Wildt, Astrid Kiendler-Scharr, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 18, 1611–1628, https://doi.org/10.5194/acp-18-1611-2018, https://doi.org/10.5194/acp-18-1611-2018, 2018
Short summary
Short summary
Air pollutants emitted by human activities such as NOx and SO2 can influence the abundance of secondary organic aerosol (SOA) from biogenic volatile organic compounds (VOCs). We found that NOx suppressed new particle formation and SOA mass formation. When both SO2 and NOx are present, the suppressing effect of NOx on SOA mass formation was counteracted by SO2. High NOx changed SOA chemical composition, forming more organic nitrate, because NOx changed radical chemistry during VOC oxidation.
Ting Lei, Andreas Zuend, Yafang Cheng, Hang Su, Weigang Wang, and Maofa Ge
Atmos. Chem. Phys., 18, 1045–1064, https://doi.org/10.5194/acp-18-1045-2018, https://doi.org/10.5194/acp-18-1045-2018, 2018
Short summary
Short summary
Measurements and thermodynamic equilibrium predictions for organic–inorganic aerosols related to components from biomass burning emissions demonstrate a diversity of hygroscopic growth and shrinking behavior, which we observed using a hygroscopicity tandem differential mobility analyzer (HTDMA). Controlled laboratory experiments with single solutes and/or with mixed organic–inorganic systems of known phase state will be useful to constrain model parameters of thermodynamic equilibrium models.
Meinrat O. Andreae, Armin Afchine, Rachel Albrecht, Bruna Amorim Holanda, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Micael A. Cecchini, Anja Costa, Maximilian Dollner, Daniel Fütterer, Emma Järvinen, Tina Jurkat, Thomas Klimach, Tobias Konemann, Christoph Knote, Martina Krämer, Trismono Krisna, Luiz A. T. Machado, Stephan Mertes, Andreas Minikin, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Daniel Sauer, Hans Schlager, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Antonio Spanu, Vinicius B. Sperling, Christiane Voigt, Adrian Walser, Jian Wang, Bernadett Weinzierl, Manfred Wendisch, and Helmut Ziereis
Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, https://doi.org/10.5194/acp-18-921-2018, 2018
Short summary
Short summary
We made airborne measurements of aerosol particle concentrations and properties over the Amazon Basin. We found extremely high concentrations of very small particles in the region between 8 and 14 km altitude all across the basin, which had been recently formed by gas-to-particle conversion at these altitudes. This makes the upper troposphere a very important source region of atmospheric particles with significant implications for the Earth's climate system.
Hannah Meusel, Alexandra Tamm, Uwe Kuhn, Dianming Wu, Anna Lena Leifke, Sabine Fiedler, Nina Ruckteschler, Petya Yordanova, Naama Lang-Yona, Mira Pöhlker, Jos Lelieveld, Thorsten Hoffmann, Ulrich Pöschl, Hang Su, Bettina Weber, and Yafang Cheng
Atmos. Chem. Phys., 18, 799–813, https://doi.org/10.5194/acp-18-799-2018, https://doi.org/10.5194/acp-18-799-2018, 2018
Short summary
Short summary
The photolysis of nitrous acid (HONO) forms the OH radical. However, not all sources are known. Recent studies showed that HONO can be emitted from soil but they did not evaluate the importance to the HONO budget. In this work HONO emissions from 43 soil and biological soil crust samples from Cyprus were measured in a dynamic chamber and extrapolated to the real atmosphere. A large fraction of the local missing source (published earlier; Meusel et al., 2016) could be assigned to soil emissions.
Ying Chen, Ralf Wolke, Liang Ran, Wolfram Birmili, Gerald Spindler, Wolfram Schröder, Hang Su, Yafang Cheng, Ina Tegen, and Alfred Wiedensohler
Atmos. Chem. Phys., 18, 673–689, https://doi.org/10.5194/acp-18-673-2018, https://doi.org/10.5194/acp-18-673-2018, 2018
Short summary
Short summary
The heterogeneous hydrolysis of N2O5 on particle surfaces is crucial for the nitrogen cycle in the atmosphere. The reaction rate is determined by meteorological and particle properties, but its parameterization in previous 3-D modelling studies did not comprehensively consider these parameters. We propose a parameterization to take these into account and improve nitrate prediction; we report that the organic coating suppression on the N2O5 reaction is not as important as expected in the EU.
Micael A. Cecchini, Luiz A. T. Machado, Manfred Wendisch, Anja Costa, Martina Krämer, Meinrat O. Andreae, Armin Afchine, Rachel I. Albrecht, Paulo Artaxo, Stephan Borrmann, Daniel Fütterer, Thomas Klimach, Christoph Mahnke, Scot T. Martin, Andreas Minikin, Sergej Molleker, Lianet H. Pardo, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, and Bernadett Weinzierl
Atmos. Chem. Phys., 17, 14727–14746, https://doi.org/10.5194/acp-17-14727-2017, https://doi.org/10.5194/acp-17-14727-2017, 2017
Short summary
Short summary
This study introduces and explores the concept of gamma phase space. This space is able to represent all possible variations in the cloud droplet size distributions (DSDs). The methodology was applied to recent in situ aircraft measurements over the Amazon. It is shown that the phase space is able to represent several processes occurring in the clouds in a simple manner. The consequences for cloud studies, modeling, and the representation of the transition from warm to mixed phase are discussed.
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Ulrich Pöschl, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Lucas Grulich
Atmos. Chem. Phys., 17, 14433–14456, https://doi.org/10.5194/acp-17-14433-2017, https://doi.org/10.5194/acp-17-14433-2017, 2017
Eugene F. Mikhailov, Svetlana Mironova, Gregory Mironov, Sergey Vlasenko, Alexey Panov, Xuguang Chi, David Walter, Samara Carbone, Paulo Artaxo, Martin Heimann, Jost Lavric, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 17, 14365–14392, https://doi.org/10.5194/acp-17-14365-2017, https://doi.org/10.5194/acp-17-14365-2017, 2017
Franziska Köllner, Johannes Schneider, Megan D. Willis, Thomas Klimach, Frank Helleis, Heiko Bozem, Daniel Kunkel, Peter Hoor, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 17, 13747–13766, https://doi.org/10.5194/acp-17-13747-2017, https://doi.org/10.5194/acp-17-13747-2017, 2017
Short summary
Short summary
We conducted aircraft-based single particle chemical composition measurements in the Canadian high Arctic during summer. Our results provide evidence for a marine-biogenic influence on secondary formation of particulate trimethylamine in the Arctic boundary layer. Understanding emission sources and further processes controlling aerosol number concentration and chemical composition in the pristine Arctic summer is crucial for modeling future climate in the area.
Daniel A. Pickersgill, Jörn Wehking, Hauke Paulsen, Eckhard Thines, Ulrich Pöschl, Janine Fröhlich-Nowoisky, and Viviane R. Després
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-452, https://doi.org/10.5194/bg-2017-452, 2017
Manuscript not accepted for further review
Short summary
Short summary
To investigate lifestyle dependent sporulation strategies of wind-dispersed fungi, species and genera identified in environmental air samples were grouped according to their lifestyles or ecological niches. Findings revealed unrecognized characteristic patterns in the seasonal occurrence and size distribution of fungal spores for different types of pathogenic and saprophytic fungi growing on herbaceous and woody plants.
Qing Mu, Gerhard Lammel, Christian N. Gencarelli, Ian M. Hedgecock, Ying Chen, Petra Přibylová, Monique Teich, Yuxuan Zhang, Guangjie Zheng, Dominik van Pinxteren, Qiang Zhang, Hartmut Herrmann, Manabu Shiraiwa, Peter Spichtinger, Hang Su, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 17, 12253–12267, https://doi.org/10.5194/acp-17-12253-2017, https://doi.org/10.5194/acp-17-12253-2017, 2017
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants with the largest emissions in East Asia. The regional WRF-Chem-PAH model has been developed to reflect the state-of-the-art understanding of current PAHs studies with several new or updated features. It is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions.
Hannah Meusel, Yasin Elshorbany, Uwe Kuhn, Thorsten Bartels-Rausch, Kathrin Reinmuth-Selzle, Christopher J. Kampf, Guo Li, Xiaoxiang Wang, Jos Lelieveld, Ulrich Pöschl, Thorsten Hoffmann, Hang Su, Markus Ammann, and Yafang Cheng
Atmos. Chem. Phys., 17, 11819–11833, https://doi.org/10.5194/acp-17-11819-2017, https://doi.org/10.5194/acp-17-11819-2017, 2017
Short summary
Short summary
In this study we investigated protein nitration and decomposition by light in the presence of NO2 via flow tube measurements. Nitrated proteins have an enhanced allergenic potential but so far nitration was only studied in dark conditions. Under irradiated conditions we found that proteins predominantly decompose while forming nitrous acid (HONO) an important precursor of the OH radical. Unlike other studies on heterogeneous NO2 conversion we found a stable HONO formation over a long period.
Ryan Thalman, Suzane S. de Sá, Brett B. Palm, Henrique M. J. Barbosa, Mira L. Pöhlker, M. Lizabeth Alexander, Joel Brito, Samara Carbone, Paulo Castillo, Douglas A. Day, Chongai Kuang, Antonio Manzi, Nga Lee Ng, Arthur J. Sedlacek III, Rodrigo Souza, Stephen Springston, Thomas Watson, Christopher Pöhlker, Ulrich Pöschl, Meinrat O. Andreae, Paulo Artaxo, Jose L. Jimenez, Scot T. Martin, and Jian Wang
Atmos. Chem. Phys., 17, 11779–11801, https://doi.org/10.5194/acp-17-11779-2017, https://doi.org/10.5194/acp-17-11779-2017, 2017
Short summary
Short summary
Particle hygroscopicity, mixing state, and the hygroscopicity of organic components were characterized in central Amazonia for 1 year; their seasonal and diel variations were driven by a combination of primary emissions, photochemical oxidation, and boundary layer development. The relationship between the hygroscopicity of organic components and their oxidation level was examined, and the results help to reconcile the differences among the relationships observed in previous studies.
Paul J. DeMott, Thomas C. J. Hill, Markus D. Petters, Allan K. Bertram, Yutaka Tobo, Ryan H. Mason, Kaitlyn J. Suski, Christina S. McCluskey, Ezra J. T. Levin, Gregory P. Schill, Yvonne Boose, Anne Marie Rauker, Anna J. Miller, Jake Zaragoza, Katherine Rocci, Nicholas E. Rothfuss, Hans P. Taylor, John D. Hader, Cedric Chou, J. Alex Huffman, Ulrich Pöschl, Anthony J. Prenni, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 17, 11227–11245, https://doi.org/10.5194/acp-17-11227-2017, https://doi.org/10.5194/acp-17-11227-2017, 2017
Short summary
Short summary
The consistency and complementarity of different methods for measuring the numbers of particles capable of forming ice in clouds are examined in the atmosphere. Four methods for collecting particles for later (offline) freezing studies are compared to a common instantaneous method. Results support very good agreement in many cases but also biases that require further research. Present capabilities and uncertainties for obtaining global data on these climate-relevant aerosols are thus defined.
Micael A. Cecchini, Luiz A. T. Machado, Meinrat O. Andreae, Scot T. Martin, Rachel I. Albrecht, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Daniel Fütterer, Tina Jurkat, Christoph Mahnke, Andreas Minikin, Sergej Molleker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Bernadett Weinzierl, and Manfred Wendisch
Atmos. Chem. Phys., 17, 10037–10050, https://doi.org/10.5194/acp-17-10037-2017, https://doi.org/10.5194/acp-17-10037-2017, 2017
Short summary
Short summary
We study the effects of aerosol particles and updraft speed on the warm phase of Amazonian clouds. We expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution and the effects on droplet size distribution (DSD) shape. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds.
Jorge Saturno, Christopher Pöhlker, Dario Massabò, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Florian Ditas, Isabella Hrabě de Angelis, Daniel Morán-Zuloaga, Mira L. Pöhlker, Luciana V. Rizzo, David Walter, Qiaoqiao Wang, Paulo Artaxo, Paolo Prati, and Meinrat O. Andreae
Atmos. Meas. Tech., 10, 2837–2850, https://doi.org/10.5194/amt-10-2837-2017, https://doi.org/10.5194/amt-10-2837-2017, 2017
Short summary
Short summary
Different Aethalometer correction schemes were compared to a multi-wavelength absorption reference measurement. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for aerosol scattering properties in the correction is crucial to retrieve the proper absorption Ångström exponent (AAE). We found that the raw AAE of uncompensated Aethalometer attenuation significantly correlates with a measured reference AAE.
Evelyn Jäkel, Manfred Wendisch, Trismono C. Krisna, Florian Ewald, Tobias Kölling, Tina Jurkat, Christiane Voigt, Micael A. Cecchini, Luiz A. T. Machado, Armin Afchine, Anja Costa, Martina Krämer, Meinrat O. Andreae, Ulrich Pöschl, Daniel Rosenfeld, and Tianle Yuan
Atmos. Chem. Phys., 17, 9049–9066, https://doi.org/10.5194/acp-17-9049-2017, https://doi.org/10.5194/acp-17-9049-2017, 2017
Short summary
Short summary
Vertical profiles of the cloud particle phase state in tropical deep convective clouds (DCCs) were investigated using airborne imaging spectrometer measurements during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian rainforest in September 2014. A phase discrimination retrieval was applied to observations of clouds formed in different aerosol conditions. The profiles were compared to in situ and satellite measurements.
Cheng Wu, Iida Pullinen, Stefanie Andres, Astrid Kiendler-Scharr, Einhard Kleist, Andreas Wahner, Jürgen Wildt, and Thomas F. Mentel
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-260, https://doi.org/10.5194/bg-2017-260, 2017
Manuscript not accepted for further review
Short summary
Short summary
Biogenic volatile organic compounds are important for atmospheric chemistry. We showed by 13CO2 labelling experiments that biosynthesis is not restricted to the presence of light. In particular sesquiterpenes exhibit substantial de novo emissions in darkness with the carbon being delivered from alternative carbon sources. Our findings are of importance for future emissions under conditions of climate change as the response of de novo emissions to stresses differs from that of pool emissions.
Thomas Berkemeier, Markus Ammann, Ulrich K. Krieger, Thomas Peter, Peter Spichtinger, Ulrich Pöschl, Manabu Shiraiwa, and Andrew J. Huisman
Atmos. Chem. Phys., 17, 8021–8029, https://doi.org/10.5194/acp-17-8021-2017, https://doi.org/10.5194/acp-17-8021-2017, 2017
Short summary
Short summary
Kinetic process models are efficient tools used to unravel the mechanisms governing chemical and physical transformation in multiphase atmospheric chemistry. However, determination of kinetic parameters such as reaction rate or diffusion coefficients from multiple data sets is often difficult or ambiguous. This study presents a novel optimization algorithm and framework to determine these parameters in an automated fashion and to gain information about parameter uncertainty and uniqueness.
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Mira L. Pöhlker, Thomas Klimach, Ulrich Pöschl, Christopher Pöhlker, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Paulo Artaxo
Atmos. Chem. Phys., 17, 7365–7386, https://doi.org/10.5194/acp-17-7365-2017, https://doi.org/10.5194/acp-17-7365-2017, 2017
Yuxuan Zhang, Hang Su, Simonas Kecorius, Zhibin Wang, Min Hu, Tong Zhu, Kebin He, Alfred Wiedensohler, Qiang Zhang, and Yafang Cheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-222, https://doi.org/10.5194/acp-2017-222, 2017
Revised manuscript not accepted
Short summary
Short summary
The light absorption of black carbon (BC) strongly depends on their mixing state. By now, the BC mixing state in the atmosphere is still unclear. In this work, we have investigated the comprehensive characterization of BC mixing state at a polluted regional background site of the North China Plain (NCP) based on in site measurements. we found that BC aerosols of the NCP were fully aged, suggesting a strong optical and climate effect of BC on the regional scale in northern China.
Sergey S. Vlasenko, Hang Su, Ulrich Pöschl, Meinrat O. Andreae, and Eugene F. Mikhailov
Atmos. Meas. Tech., 10, 1269–1280, https://doi.org/10.5194/amt-10-1269-2017, https://doi.org/10.5194/amt-10-1269-2017, 2017
Short summary
Short summary
The paper describes a new technique for measuring the hygroscopic properties of laboratory and ambient aerosols. The direct measurements of humidified particle mass allow avoiding complications that occur in the commonly used technique due to poorly defined particle morphology and density. Both test results and field measurements have shown that the system can be applied for aerosol size-resolved mass growth factor measurements in hydration and dehydration modes up to 95 % RH.
Philipp Porada, Ulrich Pöschl, Axel Kleidon, Christian Beer, and Bettina Weber
Biogeosciences, 14, 1593–1602, https://doi.org/10.5194/bg-14-1593-2017, https://doi.org/10.5194/bg-14-1593-2017, 2017
Short summary
Short summary
Lichens and bryophytes have been shown to release nitrous oxide, which is a strong greenhouse gas and atmospheric ozone-depleting agent. Here we apply a process-based computer model of lichens and bryophytes at the global scale, to estimate growth and respiration of the organisms. By relating respiration to nitrous oxide release, we simulate global nitrous oxide emissions of 0.27 (0.19–0.35) Tg yr−1. Moreover, we quantify different sources of uncertainty in nitrous oxide emission rates.
Zhibin Wang, Yafang Cheng, Nan Ma, Eugene Mikhailov, Ulrich Pöschl, and Hang Su
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-253, https://doi.org/10.5194/acp-2017-253, 2017
Revised manuscript has not been submitted
Meng Li, Qiang Zhang, Jun-ichi Kurokawa, Jung-Hun Woo, Kebin He, Zifeng Lu, Toshimasa Ohara, Yu Song, David G. Streets, Gregory R. Carmichael, Yafang Cheng, Chaopeng Hong, Hong Huo, Xujia Jiang, Sicong Kang, Fei Liu, Hang Su, and Bo Zheng
Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, https://doi.org/10.5194/acp-17-935-2017, 2017
Short summary
Short summary
An anthropogenic emission inventory for Asia is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) projects by a mosaic of up-to-date regional emission inventories. The total Asian emissions in 2010 are estimated as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.5 Tg CO, 67.0 Tg NMVOC, 28.7 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2.
Susan Schmidt, Johannes Schneider, Thomas Klimach, Stephan Mertes, Ludwig Paul Schenk, Piotr Kupiszewski, Joachim Curtius, and Stephan Borrmann
Atmos. Chem. Phys., 17, 575–594, https://doi.org/10.5194/acp-17-575-2017, https://doi.org/10.5194/acp-17-575-2017, 2017
Short summary
Short summary
Ice formation in clouds is an important process in the formation of precipitation, especially at midlatitudes, but the exact properties of the aerosol particles that initiate freezing is not fully understood. We analysed residual particles from ice crystals sampled from mixed phase clouds. The results show that the residues contain a larger relative amount of soil dust and minerals, but also particles from industrial emissions and lead-containing particles, than the out-of-cloud aerosol.
Mira L. Pöhlker, Christopher Pöhlker, Florian Ditas, Thomas Klimach, Isabella Hrabe de Angelis, Alessandro Araújo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Jürgen Kesselmeier, Tobias Könemann, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Diana Rose, Jorge Saturno, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, and Ulrich Pöschl
Atmos. Chem. Phys., 16, 15709–15740, https://doi.org/10.5194/acp-16-15709-2016, https://doi.org/10.5194/acp-16-15709-2016, 2016
Short summary
Short summary
The paper presents a systematic characterization of cloud condensation nuclei (CCN) concentration in the central Amazonian atmosphere. Our results show that the CCN population in this globally important ecosystem follows a pollution-related seasonal cycle, in which it mainly depends on changes in total aerosol size distribution and to a minor extent in the aerosol chemical composition. Our results allow an efficient modeling and prediction of the CCN population based on a novel approach.
Marie Ila Gosselin, Chathurika M. Rathnayake, Ian Crawford, Christopher Pöhlker, Janine Fröhlich-Nowoisky, Beatrice Schmer, Viviane R. Després, Guenter Engling, Martin Gallagher, Elizabeth Stone, Ulrich Pöschl, and J. Alex Huffman
Atmos. Chem. Phys., 16, 15165–15184, https://doi.org/10.5194/acp-16-15165-2016, https://doi.org/10.5194/acp-16-15165-2016, 2016
Short summary
Short summary
We present an analysis of bioaerosol measurements using two real-time fluorescence instruments in combination with molecular tracer techniques for quantifying airborne fungal spores in a semi-arid forest. Both techniques provide fungal spore concentrations of the order of 104 m−3 and up to 30 % of particle mass. Rainy periods exhibited higher concentrations and stronger correlations between fluorescent bioparticle and molecular tracer measurements. Fungal culture results are also presented.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Hannah Meusel, Uwe Kuhn, Andreas Reiffs, Chinmay Mallik, Hartwig Harder, Monica Martinez, Jan Schuladen, Birger Bohn, Uwe Parchatka, John N. Crowley, Horst Fischer, Laura Tomsche, Anna Novelli, Thorsten Hoffmann, Ruud H. H. Janssen, Oscar Hartogensis, Michael Pikridas, Mihalis Vrekoussis, Efstratios Bourtsoukidis, Bettina Weber, Jos Lelieveld, Jonathan Williams, Ulrich Pöschl, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 16, 14475–14493, https://doi.org/10.5194/acp-16-14475-2016, https://doi.org/10.5194/acp-16-14475-2016, 2016
Short summary
Short summary
There are many studies which show discrepancies between modeled and measured nitrous acid (HONO, precursor of OH radical) in the troposphere but with no satisfactory explanation. Ideal conditions to study the unknown sources of HONO were found on Cyprus, a remote Mediterranean island. Budget analysis of trace gas measurements indicates a common source of NO and HONO, which is not related to anthropogenic activity and is most likely derived from biologic activity in soils and subsequent emission.
Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos A. Kourtidis, Jos Lelieveld, Prodromos Zanis, Ulrich Pöschl, Robert Levy, Vassilis Amiridis, Eleni Marinou, and Athanasios Tsikerdekis
Atmos. Chem. Phys., 16, 13853–13884, https://doi.org/10.5194/acp-16-13853-2016, https://doi.org/10.5194/acp-16-13853-2016, 2016
Short summary
Short summary
In this work, single pixel observations from MODIS Terra and Aqua are analyzed together with data from other satellite sensors, reanalysis projects and a chemistry–aerosol-transport model to study the spatiotemporal variability of different aerosol types. The results are in accordance with previous works and are a good reference for future studies in the area focusing on aerosols, clouds, radiation and the effects of particle pollution on human health.
Andrea M. Arangio, Haijie Tong, Joanna Socorro, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 16, 13105–13119, https://doi.org/10.5194/acp-16-13105-2016, https://doi.org/10.5194/acp-16-13105-2016, 2016
Short summary
Short summary
We have quantified environmentally persistent free radicals and reactive oxygen species (ROS) in size-segregated atmospheric aerosol particles. We suggest that ROS were formed by decomposition of secondary organic aerosols interacting with transition metal ions and quinones contained in humic-like substances. The results have significant implications for aqueous-phase and cloud processing of organic aerosols as well as adverse health effects upon respiratory deposition of aerosol particles.
Hang Su, Yafang Cheng, Nan Ma, Zhibin Wang, Xiaoxiang Wang, Mira L. Pöhlker, Björn Nillius, Alfred Wiedensohler, and Ulrich Pöschl
Atmos. Meas. Tech., 9, 5183–5192, https://doi.org/10.5194/amt-9-5183-2016, https://doi.org/10.5194/amt-9-5183-2016, 2016
Short summary
Short summary
In cloud condensation nuclei (CCN) measurements, the supersaturation scan is often time-consuming and limits the temporal resolution of CCN measurements. Here we present a new concept, termed the broad supersaturation scanning (BS2) method, in which a range of supersaturation is simultaneously scanned, resulting in fast measurements of CCN activity.
Pascale S. J. Lakey, Thomas Berkemeier, Manuel Krapf, Josef Dommen, Sarah S. Steimer, Lisa K. Whalley, Trevor Ingham, Maria T. Baeza-Romero, Ulrich Pöschl, Manabu Shiraiwa, Markus Ammann, and Dwayne E. Heard
Atmos. Chem. Phys., 16, 13035–13047, https://doi.org/10.5194/acp-16-13035-2016, https://doi.org/10.5194/acp-16-13035-2016, 2016
Short summary
Short summary
Chemical oxidation in the atmosphere removes pollutants and greenhouse gases but generates undesirable products such as secondary organic aerosol. Radicals are key intermediates in oxidation, but how they interact with aerosols is still not well understood. Here we use a laser to measure the loss of radicals onto oxidised aerosols generated in a smog chamber. The loss of radicals was controlled by the thickness or viscosity of the aerosols, confirmed by using sugar aerosols of known thickness.
Ying Chen, Yafang Cheng, Nan Ma, Ralf Wolke, Stephan Nordmann, Stephanie Schüttauf, Liang Ran, Birgit Wehner, Wolfram Birmili, Hugo A. C. Denier van der Gon, Qing Mu, Stefan Barthel, Gerald Spindler, Bastian Stieger, Konrad Müller, Guang-Jie Zheng, Ulrich Pöschl, Hang Su, and Alfred Wiedensohler
Atmos. Chem. Phys., 16, 12081–12097, https://doi.org/10.5194/acp-16-12081-2016, https://doi.org/10.5194/acp-16-12081-2016, 2016
Short summary
Short summary
Sea salt aerosol (SSA) is important for primary and secondary aerosols on a global scale. During 10–20 September 2013, the SSA mass concentration was overestimated by a factor of 8–20 over central Europe by WRF-Chem model, stem from the uncertainty of its emission scheme. This could facilitate the coarse-mode nitrate formation (~ 140 % but inhibit the fine-mode nitrate formation (~−20 %). A special long-range transport mechanism could broaden this influence of SSA to a larger downwind region.
Xiawei Yu, Zhibin Wang, Minghui Zhang, Uwe Kuhn, Zhouqing Xie, Yafang Cheng, Ulrich Pöschl, and Hang Su
Atmos. Chem. Phys., 16, 11337–11348, https://doi.org/10.5194/acp-16-11337-2016, https://doi.org/10.5194/acp-16-11337-2016, 2016
Mehrnaz Sarrafzadeh, Jürgen Wildt, Iida Pullinen, Monika Springer, Einhard Kleist, Ralf Tillmann, Sebastian H. Schmitt, Cheng Wu, Thomas F. Mentel, Defeng Zhao, Donald R. Hastie, and Astrid Kiendler-Scharr
Atmos. Chem. Phys., 16, 11237–11248, https://doi.org/10.5194/acp-16-11237-2016, https://doi.org/10.5194/acp-16-11237-2016, 2016
Short summary
Short summary
We investigated NOx impacts on the formation of secondary organic aerosol (SOA) mass from b-pinene and we could reveal two different mechanisms of impacts. One of them was the impact of NOx on OH that could explain increasing SOA yield with increasing NOx at low NOx conditions. The other was the suppression of new particle formation limiting the condensational sink for the SOA precursors. This effect could explain a substantial fraction of the decrease of SOA yield observed at high NOx.
Guo Li, Hang Su, Xin Li, Uwe Kuhn, Hannah Meusel, Thorsten Hoffmann, Markus Ammann, Ulrich Pöschl, Min Shao, and Yafang Cheng
Atmos. Chem. Phys., 16, 10299–10311, https://doi.org/10.5194/acp-16-10299-2016, https://doi.org/10.5194/acp-16-10299-2016, 2016
Short summary
Short summary
Indoor and outdoor formaldehyde (HCHO) are both of considerable concern because of its health effects and its role in atmospheric chemistry. The heterogeneous reactions between gaseous HCHO with soils can pose important impact on both HCHO budget and soil ecosystem. Our results confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions. Soil and soil-derived airborne particles can either act as a source or a sink for HCHO.
A. E. Valsan, R. Ravikrishna, C. V. Biju, C. Pöhlker, V. R. Després, J. A. Huffman, U. Pöschl, and S. S. Gunthe
Atmos. Chem. Phys., 16, 9805–9830, https://doi.org/10.5194/acp-16-9805-2016, https://doi.org/10.5194/acp-16-9805-2016, 2016
Nan Ma, Chunsheng Zhao, Jiangchuan Tao, Zhijun Wu, Simonas Kecorius, Zhibin Wang, Johannes Größ, Hongjian Liu, Yuxuan Bian, Ye Kuang, Monique Teich, Gerald Spindler, Konrad Müller, Dominik van Pinxteren, Hartmut Herrmann, Min Hu, and Alfred Wiedensohler
Atmos. Chem. Phys., 16, 8593–8607, https://doi.org/10.5194/acp-16-8593-2016, https://doi.org/10.5194/acp-16-8593-2016, 2016
Short summary
Short summary
New particle formation (NPF) is one of main sources of cloud condensation nuclei (CCN) in the atmosphere. Based on in situ measurements, we found that CCN activity of newly formed particles largely differs in different NPF events. It is therefore difficult to find a simple parameterization of CCN activity for NPF events. Using a fixed size-resolved activation ratio curve or critical diameter is very likely to result in large biases up to 50 % in the calculated NCCN during NPF events.
Bernadette Rosati, Martin Gysel, Florian Rubach, Thomas F. Mentel, Brigitta Goger, Laurent Poulain, Patrick Schlag, Pasi Miettinen, Aki Pajunoja, Annele Virtanen, Henk Klein Baltink, J. S. Bas Henzing, Johannes Größ, Gian Paolo Gobbi, Alfred Wiedensohler, Astrid Kiendler-Scharr, Stefano Decesari, Maria Cristina Facchini, Ernest Weingartner, and Urs Baltensperger
Atmos. Chem. Phys., 16, 7295–7315, https://doi.org/10.5194/acp-16-7295-2016, https://doi.org/10.5194/acp-16-7295-2016, 2016
Short summary
Short summary
This study presents PEGASOS project data from field campaigns in the Po Valley, Italy and the Netherlands. Vertical profiles of aerosol hygroscopicity and chemical composition were investigated with airborne measurements on board a Zeppelin NT airship. A special focus was on the evolution of different mixing layers within the PBL as a function of daytime. A closure study showed that variations in aerosol hygroscopicity can well be explained by the variations in chemical composition.
Simon Schallhart, Pekka Rantala, Eiko Nemitz, Ditte Taipale, Ralf Tillmann, Thomas F. Mentel, Benjamin Loubet, Giacomo Gerosa, Angelo Finco, Janne Rinne, and Taina M. Ruuskanen
Atmos. Chem. Phys., 16, 7171–7194, https://doi.org/10.5194/acp-16-7171-2016, https://doi.org/10.5194/acp-16-7171-2016, 2016
Short summary
Short summary
We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. Detectable fluxes were observed for 29 compounds, dominated by isoprene, which comprised over 60 % of the upward flux. Methanol seemed to be deposited to dew, as the deposition happened in the early morning. We estimated that up to 30 % of the upward flux of methyl vinyl ketone and methacrolein originated from atmospheric oxidation of isoprene.
Yuxuan Zhang, Qiang Zhang, Yafang Cheng, Hang Su, Simonas Kecorius, Zhibin Wang, Zhijun Wu, Min Hu, Tong Zhu, Alfred Wiedensohler, and Kebin He
Atmos. Meas. Tech., 9, 1833–1843, https://doi.org/10.5194/amt-9-1833-2016, https://doi.org/10.5194/amt-9-1833-2016, 2016
Short summary
Short summary
We develop a novel method in this work for in situ measurements of the morphology and effective density of ambient In-BC cores using a volatility tandem differential mobility analyzer and a single-particle soot photometer. We find that In-BC cores hardly transform the morphology of BC into a void-free sphere. Taking the morphology and density of ambient In-BC cores into account, our work provides a new insight into the enhancement of light absorption for In-BC particles in the atmosphere.
S. T. Martin, P. Artaxo, L. A. T. Machado, A. O. Manzi, R. A. F. Souza, C. Schumacher, J. Wang, M. O. Andreae, H. M. J. Barbosa, J. Fan, G. Fisch, A. H. Goldstein, A. Guenther, J. L. Jimenez, U. Pöschl, M. A. Silva Dias, J. N. Smith, and M. Wendisch
Atmos. Chem. Phys., 16, 4785–4797, https://doi.org/10.5194/acp-16-4785-2016, https://doi.org/10.5194/acp-16-4785-2016, 2016
Short summary
Short summary
The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment took place in central Amazonia throughout 2014 and 2015. The experiment focused on the complex links among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other, especially when altered by urban pollution. This article serves as an introduction to the special issue of publications presenting findings of this experiment.
Bernadette Rosati, Erik Herrmann, Silvia Bucci, Federico Fierli, Francesco Cairo, Martin Gysel, Ralf Tillmann, Johannes Größ, Gian Paolo Gobbi, Luca Di Liberto, Guido Di Donfrancesco, Alfred Wiedensohler, Ernest Weingartner, Annele Virtanen, Thomas F. Mentel, and Urs Baltensperger
Atmos. Chem. Phys., 16, 4539–4554, https://doi.org/10.5194/acp-16-4539-2016, https://doi.org/10.5194/acp-16-4539-2016, 2016
Short summary
Short summary
We present vertical profiles of aerosol optical properties, which were explored within the planetary boundary layer in a case study in 2012 in the Po Valley region. A comparison of in situ measurements recorded aboard a Zeppelin NT and ground-based remote-sensing data was performed yielding good agreement. Additionally, the role of ambient relative humidity for the aerosol particles' optical properties was investigated.
Ying Li, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 16, 3327–3344, https://doi.org/10.5194/acp-16-3327-2016, https://doi.org/10.5194/acp-16-3327-2016, 2016
Andrea Ghirardo, Junfei Xie, Xunhua Zheng, Yuesi Wang, Rüdiger Grote, Katja Block, Jürgen Wildt, Thomas Mentel, Astrid Kiendler-Scharr, Mattias Hallquist, Klaus Butterbach-Bahl, and Jörg-Peter Schnitzler
Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, https://doi.org/10.5194/acp-16-2901-2016, 2016
Short summary
Short summary
Trees can impact urban air quality. Large emissions of plant volatiles are emitted in Beijing as a stress response to the urban polluted environment, but their impacts on secondary particulate matter remain relatively low compared to those originated from anthropogenic activities. The present study highlights the importance of including stress-induced compounds when studying plant volatile emissions.
M. Dal Maso, L. Liao, J. Wildt, A. Kiendler-Scharr, E. Kleist, R. Tillmann, M. Sipilä, J. Hakala, K. Lehtipalo, M. Ehn, V.-M. Kerminen, M. Kulmala, D. Worsnop, and T. Mentel
Atmos. Chem. Phys., 16, 1955–1970, https://doi.org/10.5194/acp-16-1955-2016, https://doi.org/10.5194/acp-16-1955-2016, 2016
Short summary
Short summary
In this paper, we present the first direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We found that the formation rate was proportional to the product of sulphuric acid and biogenic VOC emission strength, and that the formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid.
Ying Chen, Ya-Fang Cheng, Stephan Nordmann, Wolfram Birmili, Hugo A. C. Denier van der Gon, Nan Ma, Ralf Wolke, Birgit Wehner, Jia Sun, Gerald Spindler, Qing Mu, Ulrich Pöschl, Hang Su, and Alfred Wiedensohler
Atmos. Chem. Phys., 16, 1823–1835, https://doi.org/10.5194/acp-16-1823-2016, https://doi.org/10.5194/acp-16-1823-2016, 2016
Short summary
Short summary
We evaluated the EC point sources in Germany with high-resolution simulation by WRF-Chem, and find out that point sources contribute too much EC in the coarse mode aerosol mass. The area emissions in Eastern Europe and Russia also allocate too much EC emission in coarse mode in the EUCAARI EC emission inventory. Because of the shorter life time of coarse mode EC, about 20–40 % less EC can be transported to Melpitz from Eastern Europe. Size segregation information is important for EC inventories.
Haijie Tong, Andrea M. Arangio, Pascale S. J. Lakey, Thomas Berkemeier, Fobang Liu, Christopher J. Kampf, William H. Brune, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 16, 1761–1771, https://doi.org/10.5194/acp-16-1761-2016, https://doi.org/10.5194/acp-16-1761-2016, 2016
Short summary
Short summary
We provide experimental evidence that terpene and isoprene SOA form substantial amounts of OH radicals upon interaction with liquid water and iron. Our measurements and model results imply that the chemical reactivity of SOA in the atmosphere, particularly in clouds, can be faster than previously thought. Inhalation and deposition of SOA particles in the human respiratory tract may lead to a substantial release of OH radicals in vivo, causing oxidative stress and adverse aerosol health effects.
D. F. Zhao, A. Buchholz, B. Kortner, P. Schlag, F. Rubach, H. Fuchs, A. Kiendler-Scharr, R. Tillmann, A. Wahner, Å. K. Watne, M. Hallquist, J. M. Flores, Y. Rudich, K. Kristensen, A. M. K. Hansen, M. Glasius, I. Kourtchev, M. Kalberer, and Th. F. Mentel
Atmos. Chem. Phys., 16, 1105–1121, https://doi.org/10.5194/acp-16-1105-2016, https://doi.org/10.5194/acp-16-1105-2016, 2016
Short summary
Short summary
This study investigated the cloud droplet activation behavior and hygroscopic growth of mixed anthropogenic and biogenic SOA (ABSOA) compared to pure biogenic SOA (BSOA) and pure anthropogenic SOA (ASOA). Cloud droplet activation behaviors of different types of SOA were similar. In contrast, the hygroscopicity of ASOA was higher than BSOA and ABSOA. ASOA components enhanced the hygroscopicity of the ABSOA. Yet this enhancement cannot be described by a linear mixing of pure SOA systems.
M. Paramonov, V.-M. Kerminen, M. Gysel, P. P. Aalto, M. O. Andreae, E. Asmi, U. Baltensperger, A. Bougiatioti, D. Brus, G. P. Frank, N. Good, S. S. Gunthe, L. Hao, M. Irwin, A. Jaatinen, Z. Jurányi, S. M. King, A. Kortelainen, A. Kristensson, H. Lihavainen, M. Kulmala, U. Lohmann, S. T. Martin, G. McFiggans, N. Mihalopoulos, A. Nenes, C. D. O'Dowd, J. Ovadnevaite, T. Petäjä, U. Pöschl, G. C. Roberts, D. Rose, B. Svenningsson, E. Swietlicki, E. Weingartner, J. Whitehead, A. Wiedensohler, C. Wittbom, and B. Sierau
Atmos. Chem. Phys., 15, 12211–12229, https://doi.org/10.5194/acp-15-12211-2015, https://doi.org/10.5194/acp-15-12211-2015, 2015
Short summary
Short summary
The research paper presents the first comprehensive overview of field measurements with the CCN Counter performed at a large number of locations around the world within the EUCAARI framework. The paper sheds light on the CCN number concentrations and activated fractions around the world and their dependence on the water vapour supersaturation ratio, the dependence of aerosol hygroscopicity on particle size, and seasonal and diurnal variation of CCN activation and hygroscopic properties.
P. Roldin, L. Liao, D. Mogensen, M. Dal Maso, A. Rusanen, V.-M. Kerminen, T. F. Mentel, J. Wildt, E. Kleist, A. Kiendler-Scharr, R. Tillmann, M. Ehn, M. Kulmala, and M. Boy
Atmos. Chem. Phys., 15, 10777–10798, https://doi.org/10.5194/acp-15-10777-2015, https://doi.org/10.5194/acp-15-10777-2015, 2015
Short summary
Short summary
We used the ADCHAM model to study new particle formation events in the JPAC chamber. The model results show that the new particles may be formed by a kinetic type of nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of volatile organic compounds (VOCs). The observed particle growth may either be controlled by the condensation of semi- and low-volatililty organic compounds or by the formation of low-volatility compounds (oligomers) at the particle surface.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
D. Chang, Y. Cheng, P. Reutter, J. Trentmann, S. M. Burrows, P. Spichtinger, S. Nordmann, M. O. Andreae, U. Pöschl, and H. Su
Atmos. Chem. Phys., 15, 10325–10348, https://doi.org/10.5194/acp-15-10325-2015, https://doi.org/10.5194/acp-15-10325-2015, 2015
E. F. Mikhailov, G. N. Mironov, C. Pöhlker, X. Chi, M. L. Krüger, M. Shiraiwa, J.-D. Förster, U. Pöschl, S. S. Vlasenko, T. I. Ryshkevich, M. Weigand, A. L. D. Kilcoyne, and M. O. Andreae
Atmos. Chem. Phys., 15, 8847–8869, https://doi.org/10.5194/acp-15-8847-2015, https://doi.org/10.5194/acp-15-8847-2015, 2015
Short summary
Short summary
Our manuscript describes the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the ZOTTO in central Siberia (61º N, 89º E). The hygroscopic growth measurements were supplemented with chemical analyses of the samples. In addition, the microstructure and chemical composition of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM).
F. D. Lopez-Hilfiker, C. Mohr, M. Ehn, F. Rubach, E. Kleist, J. Wildt, Th. F. Mentel, A. J. Carrasquillo, K. E. Daumit, J. F. Hunter, J. H. Kroll, D. R. Worsnop, and J. A. Thornton
Atmos. Chem. Phys., 15, 7765–7776, https://doi.org/10.5194/acp-15-7765-2015, https://doi.org/10.5194/acp-15-7765-2015, 2015
Short summary
Short summary
We measured a large suite organic compounds using a recently developed Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a (HR-ToF-CIMS). The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We find that approximately 50% of the detected particle phase mass is associated with compounds having effective vapor pressures 4, or more, orders of magnitude lower than commonly measured products.
T. F. Mentel, M. Springer, M. Ehn, E. Kleist, I. Pullinen, T. Kurtén, M. Rissanen, A. Wahner, and J. Wildt
Atmos. Chem. Phys., 15, 6745–6765, https://doi.org/10.5194/acp-15-6745-2015, https://doi.org/10.5194/acp-15-6745-2015, 2015
Short summary
Short summary
We studied a series of cycloalkenes and methyl-substituted alkenes in order to elucidate the structural pre-requisites and chemical pathways to the recently discovered class of highly oxidized molecules ELVOC (Ehn et al., Nature, 2014). ELVOC may totally change the view on (parts of) the mechanism of SOA formation. We present results which support recent observations of H shifts from C-H to peroxy radicals, highlighting the pivotal role of peroxyradicals in organic atmospheric chemistry.
M. Hummel, C. Hoose, M. Gallagher, D. A. Healy, J. A. Huffman, D. O'Connor, U. Pöschl, C. Pöhlker, N. H. Robinson, M. Schnaiter, J. R. Sodeau, M. Stengel, E. Toprak, and H. Vogel
Atmos. Chem. Phys., 15, 6127–6146, https://doi.org/10.5194/acp-15-6127-2015, https://doi.org/10.5194/acp-15-6127-2015, 2015
Z. Wang, H. Su, X. Wang, N. Ma, A. Wiedensohler, U. Pöschl, and Y. Cheng
Atmos. Meas. Tech., 8, 2161–2172, https://doi.org/10.5194/amt-8-2161-2015, https://doi.org/10.5194/amt-8-2161-2015, 2015
M. J. Tang, M. Shiraiwa, U. Pöschl, R. A. Cox, and M. Kalberer
Atmos. Chem. Phys., 15, 5585–5598, https://doi.org/10.5194/acp-15-5585-2015, https://doi.org/10.5194/acp-15-5585-2015, 2015
B. G. Pummer, C. Budke, S. Augustin-Bauditz, D. Niedermeier, L. Felgitsch, C. J. Kampf, R. G. Huber, K. R. Liedl, T. Loerting, T. Moschen, M. Schauperl, M. Tollinger, C. E. Morris, H. Wex, H. Grothe, U. Pöschl, T. Koop, and J. Fröhlich-Nowoisky
Atmos. Chem. Phys., 15, 4077–4091, https://doi.org/10.5194/acp-15-4077-2015, https://doi.org/10.5194/acp-15-4077-2015, 2015
G. J. Zheng, F. K. Duan, H. Su, Y. L. Ma, Y. Cheng, B. Zheng, Q. Zhang, T. Huang, T. Kimoto, D. Chang, U. Pöschl, Y. F. Cheng, and K. B. He
Atmos. Chem. Phys., 15, 2969–2983, https://doi.org/10.5194/acp-15-2969-2015, https://doi.org/10.5194/acp-15-2969-2015, 2015
J. Fröhlich-Nowoisky, T. C. J. Hill, B. G. Pummer, P. Yordanova, G. D. Franc, and U. Pöschl
Biogeosciences, 12, 1057–1071, https://doi.org/10.5194/bg-12-1057-2015, https://doi.org/10.5194/bg-12-1057-2015, 2015
S. Kulkarni, N. Sobhani, J. P. Miller-Schulze, M. M. Shafer, J. J. Schauer, P. A. Solomon, P. E. Saide, S. N. Spak, Y. F. Cheng, H. A. C. Denier van der Gon, Z. Lu, D. G. Streets, G. Janssens-Maenhout, C. Wiedinmyer, J. Lantz, M. Artamonova, B. Chen, S. Imashev, L. Sverdlik, J. T. Deminter, B. Adhikary, A. D'Allura, C. Wei, and G. R. Carmichael
Atmos. Chem. Phys., 15, 1683–1705, https://doi.org/10.5194/acp-15-1683-2015, https://doi.org/10.5194/acp-15-1683-2015, 2015
Short summary
Short summary
This study presents a regional-scale modeling analysis of aerosols in the Central Asia region including detailed characterization of seasonal source region and sector contributions along with the predicted changes in distribution of aerosols using 2030 future emission scenarios. The influence of long transport and impact of varied emission sources including dust, biomass burning, and anthropogenic sources on the regional aerosol distributions and the associated transport pathways are discussed.
J. Kaiser, G. M. Wolfe, B. Bohn, S. Broch, H. Fuchs, L. N. Ganzeveld, S. Gomm, R. Häseler, A. Hofzumahaus, F. Holland, J. Jäger, X. Li, I. Lohse, K. Lu, A. S. H. Prévôt, F. Rohrer, R. Wegener, R. Wolf, T. F. Mentel, A. Kiendler-Scharr, A. Wahner, and F. N. Keutsch
Atmos. Chem. Phys., 15, 1289–1298, https://doi.org/10.5194/acp-15-1289-2015, https://doi.org/10.5194/acp-15-1289-2015, 2015
Short summary
Short summary
Using measurements acquired from a Zeppelin airship during the PEGASOS 2012 campaign, we show that VOC oxidation alone cannot account for the formaldehyde concentrations observed in the morning over rural Italy. Vertical profiles suggest a ground-level source of HCHO. Incorporating this additional HCHO source into a photochemical model increases calculated O3 production by as much as 12%.
D. F. Zhao, M. Kaminski, P. Schlag, H. Fuchs, I.-H. Acir, B. Bohn, R. Häseler, A. Kiendler-Scharr, F. Rohrer, R. Tillmann, M. J. Wang, R. Wegener, J. Wildt, A. Wahner, and Th. F. Mentel
Atmos. Chem. Phys., 15, 991–1012, https://doi.org/10.5194/acp-15-991-2015, https://doi.org/10.5194/acp-15-991-2015, 2015
C. Wu, I. Pullinen, S. Andres, G. Carriero, S. Fares, H. Goldbach, L. Hacker, T. Kasal, A. Kiendler-Scharr, E. Kleist, E. Paoletti, A. Wahner, J. Wildt, and Th. F. Mentel
Biogeosciences, 12, 177–191, https://doi.org/10.5194/bg-12-177-2015, https://doi.org/10.5194/bg-12-177-2015, 2015
Short summary
Short summary
Impacts of soil moisture on de novo monoterpene emissions from several tree species were studied. Mild drought slightly increased MT emissions, but with further progressing drought the emissions decreased to almost zero. Increases of MT emissions were explainable by increases of leaf temperature due to lowered transpirational cooling. The decrease of emissions observed when soil moisture fell below certain thresholds was parameterized, allowing considering impacts of soil moisture in models.
R. Bergström, M. Hallquist, D. Simpson, J. Wildt, and T. F. Mentel
Atmos. Chem. Phys., 14, 13643–13660, https://doi.org/10.5194/acp-14-13643-2014, https://doi.org/10.5194/acp-14-13643-2014, 2014
S. Nordmann, Y. F. Cheng, G. R. Carmichael, M. Yu, H. A. C. Denier van der Gon, Q. Zhang, P. E. Saide, U. Pöschl, H. Su, W. Birmili, and A. Wiedensohler
Atmos. Chem. Phys., 14, 12683–12699, https://doi.org/10.5194/acp-14-12683-2014, https://doi.org/10.5194/acp-14-12683-2014, 2014
T. Berkemeier, M. Shiraiwa, U. Pöschl, and T. Koop
Atmos. Chem. Phys., 14, 12513–12531, https://doi.org/10.5194/acp-14-12513-2014, https://doi.org/10.5194/acp-14-12513-2014, 2014
Short summary
Short summary
Glassy organic particles can serve as ice nuclei at low temperatures. We provide a rationale for these findings using a numerical aerosol diffusion model that describes particle phase state and its kinetics during simulated atmospheric updrafts dependent upon composition, size, updraft velocity, temperature and humidity. Our simulations suggest that aerosols from anthropogenic aromatic organics can be particularly relevant for ice cloud formation.
J. Fröhlich-Nowoisky, C. Ruzene Nespoli, D. A. Pickersgill, P. E. Galand, I. Müller-Germann, T. Nunes, J. Gomes Cardoso, S. M. Almeida, C. Pio, M. O. Andreae, R. Conrad, U. Pöschl, and V. R. Després
Biogeosciences, 11, 6067–6079, https://doi.org/10.5194/bg-11-6067-2014, https://doi.org/10.5194/bg-11-6067-2014, 2014
Short summary
Short summary
We have investigated the presence of archaea as well as their amoA gene diversity in aerosol particles collected over 1 year in central Europe and found that, within the 16S and amoA gene, Thaumarchaeota prevail and experience a diversity peak in fall, while only few Euryarchaeota were detected primarily in spring. We also compared the results with airborne archaea from Cape Verde and observe that the proportions of Euryarchaeota seem to be enhanced in coastal air compared to continental air.
P. Marrapu, Y. Cheng, G. Beig, S. Sahu, R. Srinivas, and G. R. Carmichael
Atmos. Chem. Phys., 14, 10619–10630, https://doi.org/10.5194/acp-14-10619-2014, https://doi.org/10.5194/acp-14-10619-2014, 2014
D. I. Haga, S. M. Burrows, R. Iannone, M. J. Wheeler, R. H. Mason, J. Chen, E. A. Polishchuk, U. Pöschl, and A. K. Bertram
Atmos. Chem. Phys., 14, 8611–8630, https://doi.org/10.5194/acp-14-8611-2014, https://doi.org/10.5194/acp-14-8611-2014, 2014
M. Shiraiwa, T. Berkemeier, K. A. Schilling-Fahnestock, J. H. Seinfeld, and U. Pöschl
Atmos. Chem. Phys., 14, 8323–8341, https://doi.org/10.5194/acp-14-8323-2014, https://doi.org/10.5194/acp-14-8323-2014, 2014
M. L. Krüger, S. Mertes, T. Klimach, Y. F. Cheng, H. Su, J. Schneider, M. O. Andreae, U. Pöschl, and D. Rose
Atmos. Meas. Tech., 7, 2615–2629, https://doi.org/10.5194/amt-7-2615-2014, https://doi.org/10.5194/amt-7-2615-2014, 2014
J. Chen, C. S. Zhao, N. Ma, and P. Yan
Atmos. Chem. Phys., 14, 8105–8118, https://doi.org/10.5194/acp-14-8105-2014, https://doi.org/10.5194/acp-14-8105-2014, 2014
D. A. Healy, J. A. Huffman, D. J. O'Connor, C. Pöhlker, U. Pöschl, and J. R. Sodeau
Atmos. Chem. Phys., 14, 8055–8069, https://doi.org/10.5194/acp-14-8055-2014, https://doi.org/10.5194/acp-14-8055-2014, 2014
P. Reutter, J. Trentmann, A. Seifert, P. Neis, H. Su, D. Chang, M. Herzog, H. Wernli, M. O. Andreae, and U. Pöschl
Atmos. Chem. Phys., 14, 7573–7583, https://doi.org/10.5194/acp-14-7573-2014, https://doi.org/10.5194/acp-14-7573-2014, 2014
N. Ma, W. Birmili, T. Müller, T. Tuch, Y. F. Cheng, W. Y. Xu, C. S. Zhao, and A. Wiedensohler
Atmos. Chem. Phys., 14, 6241–6259, https://doi.org/10.5194/acp-14-6241-2014, https://doi.org/10.5194/acp-14-6241-2014, 2014
J. M. Flores, D. F. Zhao, L. Segev, P. Schlag, A. Kiendler-Scharr, H. Fuchs, Å. K. Watne, N. Bluvshtein, Th. F. Mentel, M. Hallquist, and Y. Rudich
Atmos. Chem. Phys., 14, 5793–5806, https://doi.org/10.5194/acp-14-5793-2014, https://doi.org/10.5194/acp-14-5793-2014, 2014
M. Li, Q. Zhang, D. G. Streets, K. B. He, Y. F. Cheng, L. K. Emmons, H. Huo, S. C. Kang, Z. Lu, M. Shao, H. Su, X. Yu, and Y. Zhang
Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, https://doi.org/10.5194/acp-14-5617-2014, 2014
P. Q. Fu, K. Kawamura, Y. F. Cheng, S. Hatakeyama, A. Takami, H. Li, and W. Wang
Atmos. Chem. Phys., 14, 4185–4199, https://doi.org/10.5194/acp-14-4185-2014, https://doi.org/10.5194/acp-14-4185-2014, 2014
F. D. Lopez-Hilfiker, C. Mohr, M. Ehn, F. Rubach, E. Kleist, J. Wildt, Th. F. Mentel, A. Lutz, M. Hallquist, D. Worsnop, and J. A. Thornton
Atmos. Meas. Tech., 7, 983–1001, https://doi.org/10.5194/amt-7-983-2014, https://doi.org/10.5194/amt-7-983-2014, 2014
J. Wildt, T. F. Mentel, A. Kiendler-Scharr, T. Hoffmann, S. Andres, M. Ehn, E. Kleist, P. Müsgen, F. Rohrer, Y. Rudich, M. Springer, R. Tillmann, and A. Wahner
Atmos. Chem. Phys., 14, 2789–2804, https://doi.org/10.5194/acp-14-2789-2014, https://doi.org/10.5194/acp-14-2789-2014, 2014
X. Chi, J. Winderlich, J.-C. Mayer, A. V. Panov, M. Heimann, W. Birmili, J. Heintzenberg, Y. Cheng, and M. O. Andreae
Atmos. Chem. Phys., 13, 12271–12298, https://doi.org/10.5194/acp-13-12271-2013, https://doi.org/10.5194/acp-13-12271-2013, 2013
C. J. Schumacher, C. Pöhlker, P. Aalto, V. Hiltunen, T. Petäjä, M. Kulmala, U. Pöschl, and J. A. Huffman
Atmos. Chem. Phys., 13, 11987–12001, https://doi.org/10.5194/acp-13-11987-2013, https://doi.org/10.5194/acp-13-11987-2013, 2013
D. Rose, S. S. Gunthe, Z. Jurányi, M. Gysel, G. P. Frank, J. Schneider, J. Curtius, and U. Pöschl
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-32575-2013, https://doi.org/10.5194/acpd-13-32575-2013, 2013
Revised manuscript has not been submitted
C. Pöhlker, J. A. Huffman, J.-D. Förster, and U. Pöschl
Atmos. Meas. Tech., 6, 3369–3392, https://doi.org/10.5194/amt-6-3369-2013, https://doi.org/10.5194/amt-6-3369-2013, 2013
P. Porada, B. Weber, W. Elbert, U. Pöschl, and A. Kleidon
Biogeosciences, 10, 6989–7033, https://doi.org/10.5194/bg-10-6989-2013, https://doi.org/10.5194/bg-10-6989-2013, 2013
Th. F. Mentel, E. Kleist, S. Andres, M. Dal Maso, T. Hohaus, A. Kiendler-Scharr, Y. Rudich, M. Springer, R. Tillmann, R. Uerlings, A. Wahner, and J. Wildt
Atmos. Chem. Phys., 13, 8755–8770, https://doi.org/10.5194/acp-13-8755-2013, https://doi.org/10.5194/acp-13-8755-2013, 2013
Y. P. Li, H. Elbern, K. D. Lu, E. Friese, A. Kiendler-Scharr, Th. F. Mentel, X. S. Wang, A. Wahner, and Y. H. Zhang
Atmos. Chem. Phys., 13, 6289–6304, https://doi.org/10.5194/acp-13-6289-2013, https://doi.org/10.5194/acp-13-6289-2013, 2013
J. A. Huffman, A. J. Prenni, P. J. DeMott, C. Pöhlker, R. H. Mason, N. H. Robinson, J. Fröhlich-Nowoisky, Y. Tobo, V. R. Després, E. Garcia, D. J. Gochis, E. Harris, I. Müller-Germann, C. Ruzene, B. Schmer, B. Sinha, D. A. Day, M. O. Andreae, J. L. Jimenez, M. Gallagher, S. M. Kreidenweis, A. K. Bertram, and U. Pöschl
Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, https://doi.org/10.5194/acp-13-6151-2013, 2013
H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, J. N. Crowley, W. P. Dubé, H. Fuchs, R. Häseler, U. Heitmann, R. L. Jones, A. Kiendler-Scharr, I. Labazan, J. M. Langridge, J. Meinen, T. F. Mentel, U. Platt, D. Pöhler, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. J. L. Shillings, W. R. Simpson, J. Thieser, R. Tillmann, R. Varma, D. S. Venables, and A. Wahner
Atmos. Meas. Tech., 6, 1111–1140, https://doi.org/10.5194/amt-6-1111-2013, https://doi.org/10.5194/amt-6-1111-2013, 2013
E. U. Emanuelsson, M. Hallquist, K. Kristensen, M. Glasius, B. Bohn, H. Fuchs, B. Kammer, A. Kiendler-Scharr, S. Nehr, F. Rubach, R. Tillmann, A. Wahner, H.-C. Wu, and Th. F. Mentel
Atmos. Chem. Phys., 13, 2837–2855, https://doi.org/10.5194/acp-13-2837-2013, https://doi.org/10.5194/acp-13-2837-2013, 2013
A.-P. Hyvärinen, V. Vakkari, L. Laakso, R. K. Hooda, V. P. Sharma, T. S. Panwar, J. P. Beukes, P. G. van Zyl, M. Josipovic, R. M. Garland, M. O. Andreae, U. Pöschl, and A. Petzold
Atmos. Meas. Tech., 6, 81–90, https://doi.org/10.5194/amt-6-81-2013, https://doi.org/10.5194/amt-6-81-2013, 2013
J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Pöschl
Atmos. Chem. Phys., 12, 11997–12019, https://doi.org/10.5194/acp-12-11997-2012, https://doi.org/10.5194/acp-12-11997-2012, 2012
E. Kleist, T. F. Mentel, S. Andres, A. Bohne, A. Folkers, A. Kiendler-Scharr, Y. Rudich, M. Springer, R. Tillmann, and J. Wildt
Biogeosciences, 9, 5111–5123, https://doi.org/10.5194/bg-9-5111-2012, https://doi.org/10.5194/bg-9-5111-2012, 2012
Related subject area
Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Rapid quantitative analysis of semi-volatile organic compounds in indoor surface film using direct analysis in real time mass spectrometry: a case study on phthalates
Exploring non-soluble particles in hailstones through innovative confocal laser and scanning electron microscopy techniques
A comprehensive evaluation of enhanced temperature influence on gas and aerosol chemistry in the lamp-enclosed oxidation flow reactor (OFR) system
Direct calibration using atmospheric particles and performance evaluation of PSM 2.0 for sub-10 nm particle measurements
A Novel Methodology for Assessing the Hygroscopicity of Aerosol Filter Samples
An oxidation flow reactor for simulating and accelerating secondary aerosol formation in aerosol liquid water and cloud droplets
Surface equilibrium vapor pressure of organic nanoparticles measured from the dynamic-aerosol-size electrical mobility spectrometer
Quality assurance and quality control of atmospheric organosulfates measured using hydrophilic interaction liquid chromatography (HILIC)
Micro-PINGUIN: microtiter-plate-based instrument for ice nucleation detection in gallium with an infrared camera
Characterization of the Vaporization Inlet for Aerosols (VIA) for online measurements of particulate highly oxygenated organic molecules (HOMs)
Development and characterization of a high-performance single-particle aerosol mass spectrometer (HP-SPAMS)
Merging holography, fluorescence, and machine learning for in situ, continuous characterization and classification of airborne microplastics
Characterization of the planar differential mobility analyzer (DMA P5): resolving power, transmission efficiency and its application to atmospheric relevant cluster measurements
Airborne bacteria viability and air quality: a protocol to quantitatively investigate the possible correlation by an atmospheric simulation chamber
The viscosity and surface tension of supercooled levitated droplets determined by excitation of shape oscillations
Acoustic levitation of pollen and visualisation of hygroscopic behaviour
Concept, absolute calibration, and validation of a new benchtop laser imaging polar nephelometer
A new smog chamber system for atmospheric multiphase chemistry study: design and characterization
Stability assessment of organic sulfur and organosulfate compounds in filter samples for quantification by Fourier- transform infrared spectroscopy
Design and evaluation of a thermal precipitation aerosol electrometer (TPAE)
An automated online field instrument to quantify the oxidative potential of aerosol particles via ascorbic acid oxidation
Online measurement of highly oxygenated compounds from organic aerosol
The AERosol and TRACe gas Collector (AERTRACC): an online-measurement-controlled sampler for source-resolved emission analysis
Quantitative chemical assay of nanogram-level particulate matter using aerosol mass spectrometry: characterization of particles collected from uncrewed atmospheric measurement platforms
An optimised organic carbon ∕ elemental carbon (OC ∕ EC) fraction separation method for radiocarbon source apportionment applied to low-loaded Arctic aerosol filters
Investigating the dependence of mineral dust depolarization on complex refractive index and size with a laboratory polarimeter at 180.0° lidar backscattering angle
Evaluation of a low-cost dryer for a low-cost optical particle counter
Effects of temperature and salinity on bubble-bursting aerosol formation simulated with a bubble-generating chamber
A new hot-stage microscopy technique for measuring temperature-dependent viscosities of aerosol particles and its application to farnesene secondary organic aerosol
Characterization of a modified printed optical particle spectrometer for high-frequency and high-precision laboratory and field measurements
Design and fabrication of an electrostatic precipitator for infrared spectroscopy
Combined application of online FIGAERO-CIMS and offline LC-Orbitrap mass spectrometry (MS) to characterize the chemical composition of secondary organic aerosol (SOA) in smog chamber studies
High-frequency gaseous and particulate chemical characterization using extractive electrospray ionization mass spectrometry (Dual-Phase-EESI-TOF)
An evaluation of the heat test for the ice-nucleating ability of minerals and biological material
Development, characterization, and application of an improved online reactive oxygen species analyzer based on the Monitor for AeRosols and Gases in ambient Air (MARGA)
Characterization of soot produced by the mini inverted soot generator with an atmospheric simulation chamber
LED-based solar simulator to study photochemistry over a wide temperature range in the large simulation chamber AIDA
Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollen towards pollen classification
Cloud condensation nuclei (CCN) activity analysis of low-hygroscopicity aerosols using the aerodynamic aerosol classifier (AAC)
Characterisation of the Manchester Aerosol Chamber facility
A study on the fragmentation of sulfuric acid and dimethylamine clusters inside an atmospheric pressure interface time-of-flight mass spectrometer
A semi-automated instrument for cellular oxidative potential evaluation (SCOPE) of water-soluble extracts of ambient particulate matter
Utilizing an electrical low-pressure impactor to indirectly probe water uptake via particle bounce measurements
Correcting bias in log-linear instrument calibrations in the context of chemical ionization mass spectrometry
Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles
A dual-droplet approach for measuring the hygroscopicity of aqueous aerosol
A method for liquid spectrophotometric measurement of total and water-soluble iron and copper in ambient aerosols
Efficacy of a portable, moderate-resolution, fast-scanning differential mobility analyzer for ambient aerosol size distribution measurements
Comparative characterization of the performance of bio-aerosol nebulizers in connection with atmospheric simulation chambers
Ying Zhou, Longkun He, Jiang Tan, Jiang Zhou, and Yingjun Liu
Atmos. Meas. Tech., 17, 6415–6423, https://doi.org/10.5194/amt-17-6415-2024, https://doi.org/10.5194/amt-17-6415-2024, 2024
Short summary
Short summary
We present a sensitive DART-MS/MS method for the fast and accurate quantification of semi-volatile organic compounds (SVOCs) in organic films without the need for pre-treatment. This method offers greatly improved repeatability in the absence of internal standards. By utilizing MS/MS analysis, the separation of isomeric components within films becomes possible. These developments increase the feasibility of the DART-MS approach for studying the dynamics of SVOCs in indoor surface films.
Anthony C. Bernal Ayala, Angela K. Rowe, Lucia E. Arena, William O. Nachlas, and Maria L. Asar
Atmos. Meas. Tech., 17, 5561–5579, https://doi.org/10.5194/amt-17-5561-2024, https://doi.org/10.5194/amt-17-5561-2024, 2024
Short summary
Short summary
Hail is a challenging weather phenomenon to forecast due to an incomplete understanding of hailstone formation. Microscopy temperature limitations required previous studies to melt hail for analysis. This paper introduces a unique technique using a plastic cover to preserve particles in their location within the hailstone without melting. Therefore, CLSM and SEM–EDS microscopes can be used to determine individual particle sizes and their chemical composition related to hail-formation processes.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Yiliang Liu, Arttu Yli-Kujala, Fabian Schmidt-Ott, Sebastian Holm, Lauri Ahonen, Tommy Chan, Joonas Enroth, Joonas Vanhanen, Runlong Cai, Tuukka Petäjä, Markku Kulmala, Yang Chen, and Juha Kangasluoma
EGUsphere, https://doi.org/10.5194/egusphere-2024-2603, https://doi.org/10.5194/egusphere-2024-2603, 2024
Short summary
Short summary
Accurate measurement of nanoparticles is crucial for understanding their impact on new particle formation and climate change. In our study, we calibrated the Particle Size Magnifier version 2.0, a novel instrument designed for nanoparticle analysis, using both lab-generated and atmospheric particles. Significant differences were observed in the calibration results, with direct calibration using atmospheric particles enhancing measurement accuracy.
Nagendra Raparthi, Anthony S. Wexler, and Ann M. Dillner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2482, https://doi.org/10.5194/egusphere-2024-2482, 2024
Short summary
Short summary
Quantifying the composition-dependent hygroscopicity of aerosol particles is essential for advancing our understanding of atmospheric processes. Existing methods do not integrate chemical composition with hygroscopicity. We developed a novel method to assess the water uptake of particles sampled on aerosol filters at relative humidity levels up to 97 % and link it with their composition. This approach allows for the separation of total water uptake into inorganic and organic components.
Ningjin Xu, Chen Le, David R. Cocker, Kunpeng Chen, Ying-Hsuan Lin, and Don R. Collins
Atmos. Meas. Tech., 17, 4227–4243, https://doi.org/10.5194/amt-17-4227-2024, https://doi.org/10.5194/amt-17-4227-2024, 2024
Short summary
Short summary
A flow-through reactor was developed that exposes known mixtures of gases or ambient air to very high concentrations of the oxidants that are responsible for much of the chemistry that takes place in the atmosphere. Like other reactors of its type, it is primarily used to study the formation of particulate matter from the oxidation of common gases. Unlike other reactors of its type, it can simulate the chemical reactions that occur in liquid water that is present in particles or cloud droplets.
Ella Häkkinen, Huan Yang, Runlong Cai, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 4211–4225, https://doi.org/10.5194/amt-17-4211-2024, https://doi.org/10.5194/amt-17-4211-2024, 2024
Short summary
Short summary
We report measurements of evaporation kinetics and surface equilibrium vapor pressures for various laboratory-generated organic nanoparticles using the dynamic-aerosol-size electrical mobility spectrometer (DEMS), a recent advancement in aerosol process characterization. Our findings align well with literature values, demonstrating DEMS's effectiveness. We suggest future improvements to DEMS and anticipate its potential for probing aerosol-related kinetic processes with unknown mechanisms.
Ping Liu, Xiang Ding, Bo-Xuan Li, Yu-Qing Zhang, Daniel J. Bryant, and Xin-Ming Wang
Atmos. Meas. Tech., 17, 3067–3079, https://doi.org/10.5194/amt-17-3067-2024, https://doi.org/10.5194/amt-17-3067-2024, 2024
Short summary
Short summary
In this paper, we further optimize the measurement of atmospheric organosulfates by hydrophilic interaction liquid chromatography (HILIC), offering an improved method for quantifying and speciating atmospheric organosulfates. These efforts will contribute to a deeper understanding of secondary organic aerosol precursors, formation mechanisms, and the contribution of organosulfate to atmospheric aerosols, ultimately guiding research in the field of air pollution prevention and control.
Corina Wieber, Mads Rosenhøj Jeppesen, Kai Finster, Claus Melvad, and Tina Šantl-Temkiv
Atmos. Meas. Tech., 17, 2707–2719, https://doi.org/10.5194/amt-17-2707-2024, https://doi.org/10.5194/amt-17-2707-2024, 2024
Short summary
Short summary
We developed a novel instrument to determine the quality and number of biological and non-biological particles, with respect to their ice-promoting capacity as a function of temperature. The measurement uncertainty was determined, and the instrument produced reliable results. Further, repeated measurements of the same suspension showed that the instrument had high reproducibility.
Jian Zhao, Valter Mickwitz, Yuanyuan Luo, Ella Häkkinen, Frans Graeffe, Jiangyi Zhang, Hilkka Timonen, Manjula Canagaratna, Jordan E. Krechmer, Qi Zhang, Markku Kulmala, Juha Kangasluoma, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 17, 1527–1543, https://doi.org/10.5194/amt-17-1527-2024, https://doi.org/10.5194/amt-17-1527-2024, 2024
Short summary
Short summary
Organic aerosol constitutes a significant portion of atmospheric fine particles but is less characterized due to its vast number of constituents. Recently, we developed a system for online measurements of particle-phase highly oxygenated organic molecules (HOMs). In this work, we systematically characterized the system, developed a new unit to enhance its performance, and demonstrated the essential role of thermograms in inferring volatility and quantifying HOMs in organic aerosols.
Xubing Du, Qinhui Xie, Qing Huang, Xuan Li, Junlin Yang, Zhihui Hou, Jingjing Wang, Xue Li, Zhen Zhou, Zhengxu Huang, Wei Gao, and Lei Li
Atmos. Meas. Tech., 17, 1037–1050, https://doi.org/10.5194/amt-17-1037-2024, https://doi.org/10.5194/amt-17-1037-2024, 2024
Short summary
Short summary
Currently, the limitations of single-particle mass spectrometry detection capabilities render it not yet well suited for analyzing complex aerosol components in low-concentration environments. In this study, a new high-performance single-particle aerosol mass spectrometer (HP-SPAMS) is developed to enhance instrument performance regarding the number of detected particles, transmission efficiency, resolution, and sensitivity, which will help in aerosol science.
Nicholas D. Beres, Julia Burkart, Elias Graf, Yanick Zeder, Lea Ann Dailey, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2023-2853, https://doi.org/10.5194/egusphere-2023-2853, 2023
Short summary
Short summary
We tested a new method to identify airborne microplastics (MPs), merging imaging, fluorescence, and machine learning of single particles. We examined whether combining imaging and fluorescence data enhances classification accuracy compared to using each method separately and tested these methods with other particle types. The tested MPs have distinct fluorescence and a combined imaging + fluorescence method improves their detection, making meaningful progress in monitoring MPs in the atmosphere.
Zhengning Xu, Jian Gao, Zhuanghao Xu, Michel Attoui, Xiangyu Pei, Mario Amo-González, Kewei Zhang, and Zhibin Wang
Atmos. Meas. Tech., 16, 5995–6006, https://doi.org/10.5194/amt-16-5995-2023, https://doi.org/10.5194/amt-16-5995-2023, 2023
Short summary
Short summary
Planar differential mobility analyzers (DMAs) have higher ion transmission efficiency and sizing resolution compared to cylindrical DMAs and are more suitable for use with mass spectrometers (MSs). Performance of the latest planar DMA (P5) was characterized. Sizing resolution and ion transmission efficiency were 5–16 times and ∼10 times higher than cylindrical DMAs. Sulfuric acid clusters were measured by DMA(P5)-MSs. This technique can be applied for natural products and biomolecule analysis.
Virginia Vernocchi, Elena Abd El, Marco Brunoldi, Silvia Giulia Danelli, Elena Gatta, Tommaso Isolabella, Federico Mazzei, Franco Parodi, Paolo Prati, and Dario Massabò
Atmos. Meas. Tech., 16, 5479–5493, https://doi.org/10.5194/amt-16-5479-2023, https://doi.org/10.5194/amt-16-5479-2023, 2023
Short summary
Short summary
Bioaerosol are airborne particles or droplets that contain living organisms or biological materials, such as bacteria, viruses, fungi, pollen, or other organic matter. The study of the relationship between bioaerosol viability and air quality or meteorological conditions is an open field, and running experiments of the bioareosol viability in an atmospheric simulation chamber gives the possibility to set up well-defined conditions to evaluate the interaction between bioaerosol and pollutants.
Mohit Singh, Stephanie Helen Jones, Alexei Kiselev, Denis Duft, and Thomas Leisner
Atmos. Meas. Tech., 16, 5205–5215, https://doi.org/10.5194/amt-16-5205-2023, https://doi.org/10.5194/amt-16-5205-2023, 2023
Short summary
Short summary
We introduce a novel method for simultaneous measurement of the viscosity and surface tension of metastable liquids. Our approach is based on the phase analysis of excited shape oscillations in levitated droplets. It is applicable to a wide range of atmospheric conditions and can monitor changes in real time. The technique holds great promise for investigating the effect of atmospheric processing on the viscosity and surface tension of solution droplets in equilibrium with water vapour.
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
Atmos. Meas. Tech., 16, 4885–4898, https://doi.org/10.5194/amt-16-4885-2023, https://doi.org/10.5194/amt-16-4885-2023, 2023
Short summary
Short summary
Pollen grains are important components of the atmosphere and have the potential to impact upon cloud processes via their ability to help in the formation of rain droplets. This study investigates the hygroscopicity of two different pollen species using an acoustic levitator. Pollen grains are levitated, and their response to changes in relative humidity is investigated. A key advantage of this method is that it is possible study pollen shape under varying environmental conditions.
Alireza Moallemi, Robin L. Modini, Benjamin T. Brem, Barbara Bertozzi, Philippe Giaccari, and Martin Gysel-Beer
Atmos. Meas. Tech., 16, 3653–3678, https://doi.org/10.5194/amt-16-3653-2023, https://doi.org/10.5194/amt-16-3653-2023, 2023
Short summary
Short summary
Polarimetric data, i.e., the angular and polarization dependence of light scattering by aerosols, contain ample information on optical and microphysical properties. Retrieval of these properties is a central approach in aerosol remote sensing. We present a description, calibration, validation, and a first application of a new benchtop polar nephelometer, which provides in situ polarimetric measurements of an aerosol. Such data facilitate agreement between retrieval results and independent data.
Taomou Zong, Zhijun Wu, Junrui Wang, Kai Bi, Wenxu Fang, Yanrong Yang, Xuena Yu, Zhier Bao, Xiangxinyue Meng, Yuheng Zhang, Song Guo, Yang Chen, Chunshan Liu, Yue Zhang, Shao-Meng Li, and Min Hu
Atmos. Meas. Tech., 16, 3679–3692, https://doi.org/10.5194/amt-16-3679-2023, https://doi.org/10.5194/amt-16-3679-2023, 2023
Short summary
Short summary
This study developed and characterized an indoor chamber system (AIR) to simulate atmospheric multiphase chemistry processes. The AIR chamber can accurately control temperature and relative humidity (RH) over a broad range and simulate diurnal variation of ambient atmospheric RH. The aerosol generation unit can generate organic-coating seed particles with different phase states. The AIR chamber demonstrates high-quality performance in simulating secondary aerosol formation.
Marife B. Anunciado, Miranda De Boskey, Laura Haines, Katarina Lindskog, Tracy Dombek, Satoshi Takahama, and Ann M. Dillner
Atmos. Meas. Tech., 16, 3515–3529, https://doi.org/10.5194/amt-16-3515-2023, https://doi.org/10.5194/amt-16-3515-2023, 2023
Short summary
Short summary
Organic sulfur compounds are used to identify sources and atmospheric processing of aerosol. Our paper evaluates the potential of using a non-destructive measurement technique to measure organic sulfur compounds in filter samples by assessing their chemical stability over time. Some were stable, but some evaporated or changed chemically. Future work includes evaluating the stability and potential interference of multiple organic sulfur compounds in laboratory mixtures and ambient aerosol.
Shipeng Kang, Tongzhu Yu, Yixin Yang, Jiguang Wang, Huaqiao Gui, Jianguo Liu, and Da-Ren Chen
Atmos. Meas. Tech., 16, 3245–3255, https://doi.org/10.5194/amt-16-3245-2023, https://doi.org/10.5194/amt-16-3245-2023, 2023
Short summary
Short summary
A new aerosol electrometer, the thermal precipitation aerosol electrometer (TPAE), was designed for particles in sizes less than 300 nm, and its prototype performance was experimentally evaluated. The TPAE combines the thermal precipitator in the disk-to-disk configuration with a microcurrent measurement circuit board (i.e., pre-amplifier) for measuring the current carried by collected particles. Our performance study shows that the TPAE performance is consistent with the reference.
Battist Utinger, Steven John Campbell, Nicolas Bukowiecki, Alexandre Barth, Benjamin Gfeller, Ray Freshwater, Hans-Rudolf Rüegg, and Markus Kalberer
Atmos. Meas. Tech., 16, 2641–2654, https://doi.org/10.5194/amt-16-2641-2023, https://doi.org/10.5194/amt-16-2641-2023, 2023
Short summary
Short summary
Exposure to atmospheric aerosols can lead to adverse health effect, but particle components responsible for this are unknown. Redox-active compounds, some with very short lifetimes, are considered to be a toxic class of compounds in particles. We developed the first online field instrument to quantify short-lived and stable redox-active compounds with a physiological assay based on ascorbic acid and a high time resolution and detection limits to allow measurements at unpolluted locations.
Ella Häkkinen, Jian Zhao, Frans Graeffe, Nicolas Fauré, Jordan E. Krechmer, Douglas Worsnop, Hilkka Timonen, Mikael Ehn, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 1705–1721, https://doi.org/10.5194/amt-16-1705-2023, https://doi.org/10.5194/amt-16-1705-2023, 2023
Short summary
Short summary
Highly oxygenated compounds contribute to the formation and growth of atmospheric organic aerosol and thus impact the global climate. Knowledge of their transformations and fate after condensing into the particle phase has been limited by the lack of suitable detection techniques. Here, we present an online method for measuring highly oxygenated compounds from organic aerosol. We evaluate the performance of the method and demonstrate that the method is applicable to different organic species.
Julia Pikmann, Lasse Moormann, Frank Drewnick, and Stephan Borrmann
Atmos. Meas. Tech., 16, 1323–1341, https://doi.org/10.5194/amt-16-1323-2023, https://doi.org/10.5194/amt-16-1323-2023, 2023
Short summary
Short summary
Aerosols measured in complex environments are usually a mixture of emissions from different sources. To characterize sources individually, we developed a sampling system for particles and organic trace gases which is coupled to real-time data of physical and chemical aerosol properties, gas concentrations, and meteorological variables. Using suitable sampling conditions for individual aerosols which are compared with the real-time data the desired aerosols are sampled separately from each other.
Christopher R. Niedek, Fan Mei, Maria A. Zawadowicz, Zihua Zhu, Beat Schmid, and Qi Zhang
Atmos. Meas. Tech., 16, 955–968, https://doi.org/10.5194/amt-16-955-2023, https://doi.org/10.5194/amt-16-955-2023, 2023
Short summary
Short summary
This novel micronebulization aerosol mass spectrometry (MS) technique requires a low sample volume (10 μL) and can quantify nanogram levels of organic and inorganic particulate matter (PM) components when used with 34SO4. This technique was successfully applied to PM samples collected from uncrewed atmospheric measurement platforms and provided chemical information that agrees well with real-time data from a co-located aerosol chemical speciation monitor and offline data from secondary ion MS.
Martin Rauber, Gary Salazar, Karl Espen Yttri, and Sönke Szidat
Atmos. Meas. Tech., 16, 825–844, https://doi.org/10.5194/amt-16-825-2023, https://doi.org/10.5194/amt-16-825-2023, 2023
Short summary
Short summary
Carbon-containing aerosols from ambient air are analysed for radioactive isotope radiocarbon to determine the contribution from fossil-fuel emissions. Light-absorbing soot-like aerosols are isolated by water extraction and thermal separation. This separation is affected by artefacts, for which we developed a new correction method. The investigation of aerosols from the Arctic shows that our approach works well for such samples, where many artefacts are expected.
Alain Miffre, Danaël Cholleton, Clément Noël, and Patrick Rairoux
Atmos. Meas. Tech., 16, 403–417, https://doi.org/10.5194/amt-16-403-2023, https://doi.org/10.5194/amt-16-403-2023, 2023
Short summary
Short summary
The depolarization ratio of hematite, silica, Arizona and Asian dust is evaluated in a lab with a π-polarimeter operating at lidar 180 ° and at (355, 532) nm wavelengths. The hematite depolarization equals (10±1) % at 355 nm for coarser particles, while that of silica is (33±1) %. This huge difference is explained by accounting for the high imaginary part of the hematite complex refractive index, thus revealing the key role played by light absorption in mineral dust lidar depolarization.
Miriam Chacón-Mateos, Bernd Laquai, Ulrich Vogt, and Cosima Stubenrauch
Atmos. Meas. Tech., 15, 7395–7410, https://doi.org/10.5194/amt-15-7395-2022, https://doi.org/10.5194/amt-15-7395-2022, 2022
Short summary
Short summary
The study evaluates a low-cost dryer to avoid the negative effect of hygroscopic growth and fog droplets in the particulate matter (PM) concentrations of sensors. The results show a reduction in the overestimation of the PM but also an underestimation compared to reference devices. Special care is needed when designing a dryer as high temperatures change the sampled air by evaporating the most volatile particulate species. Low-cost dryers are very promising for different sensor applications.
Svetlana Sofieva, Eija Asmi, Nina S. Atanasova, Aino E. Heikkinen, Emeline Vidal, Jonathan Duplissy, Martin Romantschuk, Rostislav Kouznetsov, Jaakko Kukkonen, Dennis H. Bamford, Antti-Pekka Hyvärinen, and Mikhail Sofiev
Atmos. Meas. Tech., 15, 6201–6219, https://doi.org/10.5194/amt-15-6201-2022, https://doi.org/10.5194/amt-15-6201-2022, 2022
Short summary
Short summary
A new bubble-generating glass chamber design with an extensive set of aerosol production experiments is presented to re-evaluate bubble-bursting-mediated aerosol production as a function of water parameters: bubbling air flow, water salinity, and temperature. Our main findings suggest modest dependence of aerosol production on the water salinity and a strong dependence on temperature below ~ 10 °C.
Kristian J. Kiland, Kevin L. Marroquin, Natalie R. Smith, Shaun Xu, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Meas. Tech., 15, 5545–5561, https://doi.org/10.5194/amt-15-5545-2022, https://doi.org/10.5194/amt-15-5545-2022, 2022
Short summary
Short summary
Information on the viscosity of secondary organic aerosols is needed when making air quality, climate, and atmospheric chemistry predictions. Viscosity depends on temperature, so we developed a new method for measuring the temperature-dependent viscosity of small samples. As an application of the method, we measured the viscosity of farnesene secondary organic aerosol at different temperatures.
Sabin Kasparoglu, Mohammad Maksimul Islam, Nicholas Meskhidze, and Markus D. Petters
Atmos. Meas. Tech., 15, 5007–5018, https://doi.org/10.5194/amt-15-5007-2022, https://doi.org/10.5194/amt-15-5007-2022, 2022
Short summary
Short summary
A modified version of a Handix Scientific printed optical particle spectrometer is introduced. The paper presents characterization experiments, including concentration, size, and time responses. Integration of an external multichannel analyzer card removes counting limitations of the original instrument. It is shown that the high-resolution light-scattering amplitude data can be used to sense particle-phase transitions.
Nikunj Dudani and Satoshi Takahama
Atmos. Meas. Tech., 15, 4693–4707, https://doi.org/10.5194/amt-15-4693-2022, https://doi.org/10.5194/amt-15-4693-2022, 2022
Short summary
Short summary
We designed and fabricated an aerosol collector with high collection efficiency that enables quantitative infrared spectroscopy analysis. By collecting particles on optical windows, typical substrate interferences are eliminated. New methods for fabricating aerosol devices using 3D printing with post-treatment to reduce the time and cost of prototyping are described.
Mao Du, Aristeidis Voliotis, Yunqi Shao, Yu Wang, Thomas J. Bannan, Kelly L. Pereira, Jacqueline F. Hamilton, Carl J. Percival, M. Rami Alfarra, and Gordon McFiggans
Atmos. Meas. Tech., 15, 4385–4406, https://doi.org/10.5194/amt-15-4385-2022, https://doi.org/10.5194/amt-15-4385-2022, 2022
Short summary
Short summary
Atmospheric chemistry plays a key role in the understanding of aerosol formation and air pollution. We designed chamber experiments for the characterization of secondary organic aerosol (SOA) from a biogenic precursor with inorganic seed. Our results highlight the advantages of a combination of online FIGAERO-CIMS and offline LC-Orbitrap MS analytical techniques to characterize the chemical composition of SOA in chamber studies.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Josef Dommen, Mao Xiao, Xueqin Zhou, Andrea Baccarini, Stamatios Giannoukos, Günther Wehrle, Pascal André Schneider, Andre S. H. Prevot, Jay G. Slowik, Houssni Lamkaddam, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 15, 3747–3760, https://doi.org/10.5194/amt-15-3747-2022, https://doi.org/10.5194/amt-15-3747-2022, 2022
Short summary
Short summary
Real-time detection of both the gas and particle phase is needed to elucidate the sources and chemical reaction pathways of organic vapors and particulate matter. The Dual-EESI was developed to measure gas- and particle-phase species to provide new insights into aerosol sources or formation mechanisms. After characterizing the relative gas and particle response factors of EESI via organic aerosol uptake experiments, the Dual-EESI is more sensitive toward gas-phase analyes.
Martin I. Daily, Mark D. Tarn, Thomas F. Whale, and Benjamin J. Murray
Atmos. Meas. Tech., 15, 2635–2665, https://doi.org/10.5194/amt-15-2635-2022, https://doi.org/10.5194/amt-15-2635-2022, 2022
Short summary
Short summary
Mineral dust and particles of biological origin are important types of ice-nucleating particles (INPs) that can trigger ice formation of supercooled cloud droplets. Heat treatments are used to detect the presence of biological INPs in samples collected from the environment as the activity of mineral INPs is assumed unchanged, although not fully assessed. We show that the ice-nucleating ability of some minerals can change after heating and discuss how INP heat tests should be interpreted.
Jiyan Wu, Chi Yang, Chunyan Zhang, Fang Cao, Aiping Wu, and Yanlin Zhang
Atmos. Meas. Tech., 15, 2623–2633, https://doi.org/10.5194/amt-15-2623-2022, https://doi.org/10.5194/amt-15-2623-2022, 2022
Short summary
Short summary
We introduced an online method to simultaneously determine the content of inorganic salt ions and reactive oxygen species (ROS) in PM2.5 hour by hour. We verified the accuracy and precision of the instrument. And we got the daily changes in ROS and the main sources that affect ROS. This breakthrough enables the quantitative assessment of atmospheric particulate matter ROS at the diurnal scale, providing an effective tool to study sources and environmental impacts of ROS.
Virginia Vernocchi, Marco Brunoldi, Silvia G. Danelli, Franco Parodi, Paolo Prati, and Dario Massabò
Atmos. Meas. Tech., 15, 2159–2175, https://doi.org/10.5194/amt-15-2159-2022, https://doi.org/10.5194/amt-15-2159-2022, 2022
Short summary
Short summary
The performance of a mini inverted soot generator was investigated at a simulation chamber facility by studying the soot generated by ethylene and propane combustion, together with the number, size, optical properties, and EC / OC concentrations. Mass absorption coefficients and Ångström absorption exponents are compatible with the literature, with some differences. The characterization of MISG soot particles is fundamental to design and perform experiments in atmospheric simulation chambers.
Magdalena Vallon, Linyu Gao, Feng Jiang, Bianca Krumm, Jens Nadolny, Junwei Song, Thomas Leisner, and Harald Saathoff
Atmos. Meas. Tech., 15, 1795–1810, https://doi.org/10.5194/amt-15-1795-2022, https://doi.org/10.5194/amt-15-1795-2022, 2022
Short summary
Short summary
A LED-based light source has been constructed for the AIDA simulation chamber at the Karlsruhe Institute of Technology. It allows aerosol formation and ageing studies under atmospherically relevant illumination intensities and spectral characteristics at temperatures from –90 °C to 30 °C with the possibility of changing the photon flux and irradiation spectrum at any point. The first results of photolysis experiments with 2,3-pentanedione, iron oxalate and a brown carbon component are shown.
Danaël Cholleton, Émilie Bialic, Antoine Dumas, Pascal Kaluzny, Patrick Rairoux, and Alain Miffre
Atmos. Meas. Tech., 15, 1021–1032, https://doi.org/10.5194/amt-15-1021-2022, https://doi.org/10.5194/amt-15-1021-2022, 2022
Short summary
Short summary
While pollen impacts public health and the Earth’s climate, the identification of each pollen taxon remains challenging. In this context, a laboratory evaluation of the polarimetric light-scattering characteristics of ragweed, ash, birch and pine pollen, when embedded in ambient air, is here performed at two wavelengths. Interestingly, the achieved precision of the retrieved scattering matrix elements allows unequivocal light scattering characteristics of each studied taxon to be identified.
Kanishk Gohil and Akua A. Asa-Awuku
Atmos. Meas. Tech., 15, 1007–1019, https://doi.org/10.5194/amt-15-1007-2022, https://doi.org/10.5194/amt-15-1007-2022, 2022
Short summary
Short summary
This work develops a methodology and software to study and analyze the cloud-droplet-forming ability of aerosols with an aerodynamic aerosol classifier (AAC). This work quantifies the uncertainties in size-resolved measurements and subsequent uncertainties propagated to cloud droplet parameterizations. Lastly, we present the best practices for AAC cloud droplet measurement.
Yunqi Shao, Yu Wang, Mao Du, Aristeidis Voliotis, M. Rami Alfarra, Simon P. O'Meara, S. Fiona Turner, and Gordon McFiggans
Atmos. Meas. Tech., 15, 539–559, https://doi.org/10.5194/amt-15-539-2022, https://doi.org/10.5194/amt-15-539-2022, 2022
Short summary
Short summary
A comprehensive description and characterisation of the Manchester Aerosol Chamber (MAC) was conducted. The MAC has good temperature and relative humidity homogeneity, fast mixing times, and comparable losses of gases and particles with other chambers. The MAC's bespoke control system allows improved duty cycles and repeatable experiments. Moreover, the effect of contamination on performance was also investigated. It is highly recommended to regularly track the chamber's performance.
Dina Alfaouri, Monica Passananti, Tommaso Zanca, Lauri Ahonen, Juha Kangasluoma, Jakub Kubečka, Nanna Myllys, and Hanna Vehkamäki
Atmos. Meas. Tech., 15, 11–19, https://doi.org/10.5194/amt-15-11-2022, https://doi.org/10.5194/amt-15-11-2022, 2022
Short summary
Short summary
To study what is happening in the atmosphere, it is important to be able to measure the molecules and clusters present in it. In our work, we studied an artifact that happens inside a mass spectrometer, in particular the fragmentation of clusters. We were able to quantify the fragmentation and retrieve the correct concentration and composition of the clusters using our dual (experimental and theoretical) approach.
Sudheer Salana, Yixiang Wang, Joseph V. Puthussery, and Vishal Verma
Atmos. Meas. Tech., 14, 7579–7593, https://doi.org/10.5194/amt-14-7579-2021, https://doi.org/10.5194/amt-14-7579-2021, 2021
Short summary
Short summary
Oxidative potential (OP) of particulate matter (PM) is an important indicator of PM toxicity. However, no automated instrument has ever been developed to provide a rapid high-throughput analysis of cell-based OP measurements. Here, we developed a semi-automated instrument, the first of its kind, for measuring oxidative potential using rat alveolar cells. We also developed a dataset on the intrinsic cellular OP of several compounds commonly known to be present in ambient PM.
Kevin B. Fischer and Giuseppe A. Petrucci
Atmos. Meas. Tech., 14, 7565–7577, https://doi.org/10.5194/amt-14-7565-2021, https://doi.org/10.5194/amt-14-7565-2021, 2021
Short summary
Short summary
The viscosity of organic particles in atmospheric aerosol is sometimes correlated to bounce factor. It is generally accepted that more viscous particles will be more likely to bounce following acceleration toward and impaction on a surface. We demonstrate that use of multi-stage low-pressure impactors for this purpose may result in measurement artifacts that depend on chemical composition, particle size, and changing relative humidity. A hypothesis for the observed effect is presented.
Chenyang Bi, Jordan E. Krechmer, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6551–6560, https://doi.org/10.5194/amt-14-6551-2021, https://doi.org/10.5194/amt-14-6551-2021, 2021
Short summary
Short summary
Calibration techniques have been recently developed to log-linearly correlate analyte sensitivity with CIMS operating conditions particularly for compounds without authentic standards. In this work, we examine the previously ignored bias in the log-linear-based calibration method and estimate an average bias of 30 %, with 1 order of magnitude for less sensitive compounds in some circumstances. A step-by-step guide was provided to reduce and even remove the bias.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Houssni Lamkaddam, Mingyi Wang, Farnoush Ataei, Victoria Hofbauer, Brandon Lopez, Neil M. Donahue, Josef Dommen, Andre S. H. Prevot, Jay G. Slowik, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 14, 5913–5923, https://doi.org/10.5194/amt-14-5913-2021, https://doi.org/10.5194/amt-14-5913-2021, 2021
Short summary
Short summary
Extractive electrospray ionization mass spectrometry (EESI-MS) has been deployed for high throughput online detection of particles with minimal fragmentation. Our study elucidates the extraction mechanism between the particles and electrospray (ES) droplets of different properties. The results show that the extraction rate is likely affected by the coagulation rate between the particles and ES droplets. Once coagulated, the particles undergo complete extraction within the ES droplet.
Weimeng Kong, Stavros Amanatidis, Huajun Mai, Changhyuk Kim, Benjamin C. Schulze, Yuanlong Huang, Gregory S. Lewis, Susanne V. Hering, John H. Seinfeld, and Richard C. Flagan
Atmos. Meas. Tech., 14, 5429–5445, https://doi.org/10.5194/amt-14-5429-2021, https://doi.org/10.5194/amt-14-5429-2021, 2021
Short summary
Short summary
We present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS has proven to be extremely powerful in examining atmospheric nucleation and the subsequent growth of nanoparticles in the CERN CLOUD experiment, which provides a valuable asset to study atmospheric nanoparticles and to evaluate their impact on climate.
Jack M. Choczynski, Ravleen Kaur Kohli, Craig S. Sheldon, Chelsea L. Price, and James F. Davies
Atmos. Meas. Tech., 14, 5001–5013, https://doi.org/10.5194/amt-14-5001-2021, https://doi.org/10.5194/amt-14-5001-2021, 2021
Short summary
Short summary
Relative humidity (RH) and hygroscopicity play an important role in regulating the physical, chemical, and optical properties of aerosol. In this work, we develop a new method to characterize hygroscopicity using particle levitation. We levitate two droplets with an electrodynamic balance and measure their size with light-scattering methods using one droplet as a probe of the RH. We demonstrate highly accurate and precise measurements of the RH and hygroscopic growth of a range of samples.
Yuhan Yang, Dong Gao, and Rodney J. Weber
Atmos. Meas. Tech., 14, 4707–4719, https://doi.org/10.5194/amt-14-4707-2021, https://doi.org/10.5194/amt-14-4707-2021, 2021
Short summary
Short summary
Iron and copper are commonly found in ambient aerosols and have been linked to adverse health effects. We describe a relatively simple benchtop instrument that can be used to quantify these metals in aqueous solutions and verify the method by comparison with inductively coupled plasma mass spectrometry. The approach is based on forming light-absorbing metal–ligand complexes that can be measured with high sensitivity utilizing a long-path liquid waveguide capillary cell.
Stavros Amanatidis, Yuanlong Huang, Buddhi Pushpawela, Benjamin C. Schulze, Christopher M. Kenseth, Ryan X. Ward, John H. Seinfeld, Susanne V. Hering, and Richard C. Flagan
Atmos. Meas. Tech., 14, 4507–4516, https://doi.org/10.5194/amt-14-4507-2021, https://doi.org/10.5194/amt-14-4507-2021, 2021
Short summary
Short summary
We assess the performance of a highly portable mobility analyzer, the Spider DMA, in measuring ambient aerosol particle size distributions, with specific attention to its moderate sizing resolution (R=3). Long-term field testing showed excellent correlation with a conventional mobility analyzer (R=10) over the 17–500 nm range, suggesting that moderate resolution may be sufficient to obtain key properties of ambient size distributions, enabling smaller instruments and better counting statistics.
Silvia G. Danelli, Marco Brunoldi, Dario Massabò, Franco Parodi, Virginia Vernocchi, and Paolo Prati
Atmos. Meas. Tech., 14, 4461–4470, https://doi.org/10.5194/amt-14-4461-2021, https://doi.org/10.5194/amt-14-4461-2021, 2021
Short summary
Short summary
Experiments conducted inside confined artificial environments, such as atmospheric simulation chambers (ASCs), where atmospheric conditions and composition are controlled, can provide valuable information on bio-aerosol viability, dispersion, and impact. We focus here on the reproducible aerosolization and injection of viable microorganisms into an ASC, the first and crucial step of any experimental protocol to expose bio-aerosols to different atmospheric conditions.
Cited articles
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, 2008.
Andreae, M. O., Jones, C. D., and Cox, P. M.: Strong present-day aerosol cooling implies a hot future, Nature, 435, 1187–1190, 2005.
Andreae M. O., Hegg, D., and Baltensperger U.: Sources and Nature of Atmospheric Aerosols, in: Aerosol Pollution Impact on Precipitation, edited by: Levin, Z. and Cotton W. R., Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-8690-8_3, 2009.
Cai, M., Tan, H., Chan, C. K., Qin, Y., Xu, H., Li, F., Schurman, M. I., Liu, L., and Zhao, J.: The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014, Atmos. Chem. Phys., 18, 16419–16437, https://doi.org/10.5194/acp-18-16419-2018, 2018.
Charlson, R. J., Seinfeld, J. H., Nenes, A., Kulmala, M., Laaksonen, A., and Facchini, M. C.: Reshaping the theory of cloud formation, Science, 292, 2025–2026, 2001.
Deng, Z. Z., Zhao, C. S., Ma, N., Liu, P. F., Ran, L., Xu, W. Y., Chen, J., Liang, Z., Liang, S., Huang, M. Y., Ma, X. C., Zhang, Q., Quan, J. N., Yan, P., Henning, S., Mildenberger, K., Sommerhage, E., Schäfer, M., Stratmann, F., and Wiedensohler, A.: Size-resolved and bulk activation properties of aerosols in the North China Plain, Atmos. Chem. Phys., 11, 3835–3846, https://doi.org/10.5194/acp-11-3835-2011, 2011.
Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles, Science, 312, 1375–1378, https://doi.org/10.1126/science.1125261, 2006.
Frank, G. P., Dusek, U., and Andreae, M. O.: Technical note: A method for measuring size-resolved CCN in the atmosphere, Atmos. Chem. Phys. Discuss., 6, 4879–4895, https://doi.org/10.5194/acpd-6-4879-2006, 2006.
Hiranuma, N., Brooks, S. D., Gramann, J., and Auvermann, B. W.: High concentrations of coarse particles emitted from a cattle feeding operation, Atmos. Chem. Phys., 11, 8809–8823, https://doi.org/10.5194/acp-11-8809-2011, 2011.
Hudson, J. G.: An Instantaneous CCN Spectrometer, J. Atmos. Ocean. Tech., 6, 1055–1065, 1989.
IPCC: Climate Change: the physical science basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, New York, NY, USA, 2013.
Kim, N.:
Data for BS2-CCN calibration experiment, available at: https://edmond.mpdl.mpg.de/imeji/collection/pohD2XdTlrMwzka7, last access: 22 September 2021.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets, T. Faraday Soc., 32, 1152–1161, 1936.
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, https://doi.org/10.5194/acp-6-2593-2006, 2006.
Moore, R. H. and Nenes, A.: Scanning Flow CCN Analysis – A Method for Fast Measurements of CCN Spectra, Aerosol Sci. Tech., 43, 1192–1207, https://doi.org/10.1080/02786820903289780, 2009.
Moore, R. H., Bahreini, R., Brock, C. A., Froyd, K. D., Cozic, J., Holloway, J. S., Middlebrook, A. M., Murphy, D. M., and Nenes, A.: Hygroscopicity and composition of Alaskan Arctic CCN during April 2008, Atmos. Chem. Phys., 11, 11807–11825, https://doi.org/10.5194/acp-11-11807-2011, 2011.
Paramonov, M., Aalto, P. P., Asmi, A., Prisle, N., Kerminen, V.-M., Kulmala, M., and Petäjä, T.: The analysis of size-segregated cloud condensation nuclei counter (CCNC) data and its implications for cloud droplet activation, Atmos. Chem. Phys., 13, 10285–10301, https://doi.org/10.5194/acp-13-10285-2013, 2013.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Petters, M. D., Prenni, A. J., Kreidenweis, S. M., and DeMott, P. J.: On measuring the critical diameter of cloud condensation nuclei using mobility selected aerosol, Aerosol Sci. Tech., 41, 907–913, 2007.
Petters, M. D., Carrico, C. M., Kreidenweis, S. M., Prenni, A. J., DeMott, P. J., Collett Jr., J. L., and Moosmuller, H.: Cloud condensation nucleation activity of biomass burning aerosol, J. Geophys. Res., 114, D22205, https://doi.org/10.1029/2009jd012353, 2009.
Pöhlker, M. L., Pöhlker, C., Ditas, F., Klimach, T., Hrabe de Angelis, I., Araújo, A., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditz, R., Gunthe, S. S., Kesselmeier, J., Könemann, T., Lavrič, J. V., Martin, S. T., Mikhailov, E., Moran-Zuloaga, D., Rose, D., Saturno, J., Su, H., Thalman, R., Walter, D., Wang, J., Wolff, S., Barbosa, H. M. J., Artaxo, P., Andreae, M. O., and Pöschl, U.: Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction, Atmos. Chem. Phys., 16, 15709–15740, https://doi.org/10.5194/acp-16-15709-2016, 2016.
Pöhlker, M. L., Ditas, F., Saturno, J., Klimach, T., Hrabě de Angelis, I., Araùjo, A. C., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditz, R., Gunthe, S. S., Holanda, B. A., Kandler, K., Kesselmeier, J., Könemann, T., Krüger, O. O., Lavrič, J. V., Martin, S. T., Mikhailov, E., Moran-Zuloaga, D., Rizzo, L. V., Rose, D., Su, H., Thalman, R., Walter, D., Wang, J., Wolff, S., Barbosa, H. M. J., Artaxo, P., Andreae, M. O., Pöschl, U., and Pöhlker, C.: Long-term observations of cloud condensation nuclei over the Amazon rain forest – Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols, Atmos. Chem. Phys., 18, 10289–10331, https://doi.org/10.5194/acp-18-10289-2018, 2018.
Roberts, G. C. and Nenes, A.: A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements, Aerosol Sci. Tech., 39, 206–221, 2005.
Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, Atmos. Chem. Phys., 8, 1153–1179, https://doi.org/10.5194/acp-8-1153-2008, 2008.
Rose, D., Gunthe, S. S., Su, H., Garland, R. M., Yang, H., Berghof, M., Cheng, Y. F., Wehner, B., Achtert, P., Nowak, A., Wiedensohler, A., Takegawa, N., Kondo, Y., Hu, M., Zhang, Y., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles, Atmos. Chem. Phys., 11, 2817–2836, https://doi.org/10.5194/acp-11-2817-2011, 2011.
Su, H., Rose, D., Cheng, Y. F., Gunthe, S. S., Massling, A., Stock, M., Wiedensohler, A., Andreae, M. O., and Pöschl, U.: Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation, Atmos. Chem. Phys., 10, 7489–7503, https://doi.org/10.5194/acp-10-7489-2010, 2010.
Su, H., Cheng, Y., Ma, N., Wang, Z., Wang, X., Pöhlker, M. L., Nillius, B., Wiedensohler, A., and Pöschl, U.: A broad supersaturation scanning (BS2) approach for rapid measurement of aerosol particle hygroscopicity and cloud condensation nuclei activity, Atmos. Meas. Tech., 9, 5183–5192, https://doi.org/10.5194/amt-9-5183-2016, 2016.
Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde, M.,
Facchini, M. C., Decesari, S., Fuzzi, S., Zhou, J., Mønster, J.,
and Rosenørn, T.: Hygroscopic growth and critical supersaturations
for mixed aerosol particles of inorganic and organic compounds of
atmospheric relevance, Atmos. Chem. Phys., 6, 1937–1952, https://doi.org/10.5194/acp-6-1937-2006, 2006.
Thalman, R., de Sá, S. S., Palm, B. B., Barbosa, H. M. J., Pöhlker, M. L., Alexander, M. L., Brito, J., Carbone, S., Castillo, P., Day, D. A., Kuang, C., Manzi, A., Ng, N. L., Sedlacek III, A. J., Souza, R., Springston, S., Watson, T., Pöhlker, C., Pöschl, U., Andreae, M. O., Artaxo, P., Jimenez, J. L., Martin, S. T., and Wang, J.: CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions, Atmos. Chem. Phys., 17, 11779–11801, https://doi.org/10.5194/acp-17-11779-2017, 2017.
Wang, Z., Su, H., Wang, X., Ma, N., Wiedensohler, A., Pöschl, U., and Cheng, Y.: Scanning supersaturation condensation particle counter applied as a nano-CCN counter for size-resolved analysis of the hygroscopicity and chemical composition of nanoparticles, Atmos. Meas. Tech., 8, 2161–2172, https://doi.org/10.5194/amt-8-2161-2015, 2015.
Wex, H., Petters, M. D., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R., Poulain, L., Wu, Z., Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1 – Evidence from measurements, Atmos. Chem. Phys., 9, 3987–3997, https://doi.org/10.5194/acp-9-3987-2009, 2009.
Wiedensohler, A.: An Approximation of the Bipolar Charge-Distribution for Particles in the Sub-Micron Size Range, J. Aerosol Sci. 19, 387–389, 1988.
Zhang, J., Spielman, S., Wang, Y., Zheng, G., Gong, X., Hering, S., and Wang, J.: Rapid measurement of RH-dependent aerosol hygroscopic growth using a humidity-controlled fast integrated mobility spectrometer (HFIMS), Atmos. Meas. Tech., 14, 5625–5635, https://doi.org/10.5194/amt-14-5625-2021, 2021.
Zhao, D. F., Buchholz, A., Kortner, B., Schlag, P., Rubach, F., Kiendler-Scharr, A., Tillmann, R., Wahner, A., Flores, J. M., Rudich, Y., Watne, Å. K., Hallquist, M., Wildt, J., and Mentel, T. F.: Size-dependent hygroscopicity parameter (κ) and chemical composition of secondary organic cloud condensation nuclei, Geophys. Res. Lett., 42, 10920–10928, https://doi.org/10.1002/2015GL066497, 2015.
Short summary
A broad supersaturation scanning CCN (BS2-CCN) system, in which particles are exposed to a range of supersaturation simultaneously, can measure a broad range of CCN activity distribution with a high time resolution. We describe how the BS2-CCN system can be effectively calibrated and which factors can affect the calibration curve. Intercomparison experiments between typical DMA-CCN and BS2-CCN measurements to evaluate the BS2-CCN system showed high correlation and good agreement.
A broad supersaturation scanning CCN (BS2-CCN) system, in which particles are exposed to a range...