Articles | Volume 14, issue 11
Atmos. Meas. Tech., 14, 7147–7152, 2021
https://doi.org/10.5194/amt-14-7147-2021
Atmos. Meas. Tech., 14, 7147–7152, 2021
https://doi.org/10.5194/amt-14-7147-2021

Research article 12 Nov 2021

Research article | 12 Nov 2021

Field testing two flux footprint models

Trevor W. Coates et al.

Related authors

Nonlinear turnover rates of soil carbon following cultivation of native grasslands and subsequent afforestation of croplands
Guillermo Hernandez-Ramirez, Thomas J. Sauer, Yury G. Chendev, and Alexander N. Gennadiev
SOIL, 7, 415–431, https://doi.org/10.5194/soil-7-415-2021,https://doi.org/10.5194/soil-7-415-2021, 2021
Short summary
Beef cattle methane emissions measured with tracer-ratio and inverse dispersion modelling techniques
Mei Bai, José I. Velazco, Trevor W. Coates, Frances A. Phillips, Thomas K. Flesch, Julian Hill, David G. Mayer, Nigel W. Tomkins, Roger S. Hegarty, and Deli Chen
Atmos. Meas. Tech., 14, 3469–3479, https://doi.org/10.5194/amt-14-3469-2021,https://doi.org/10.5194/amt-14-3469-2021, 2021
Short summary
Modelling nitrification inhibitor effects on N2O emissions after fall- and spring-applied slurry by reducing nitrifier NH4+ oxidation rate
Robert F. Grant, Sisi Lin, and Guillermo Hernandez-Ramirez
Biogeosciences, 17, 2021–2039, https://doi.org/10.5194/bg-17-2021-2020,https://doi.org/10.5194/bg-17-2021-2020, 2020
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Validation of a new cavity ring-down spectrometer for measuring tropospheric gaseous hydrogen chloride
Teles C. Furlani, Patrick R. Veres, Kathryn E. R. Dawe, J. Andrew Neuman, Steven S. Brown, Trevor C. VandenBoer, and Cora J. Young
Atmos. Meas. Tech., 14, 5859–5871, https://doi.org/10.5194/amt-14-5859-2021,https://doi.org/10.5194/amt-14-5859-2021, 2021
Short summary
Comparison of formaldehyde measurements by Hantzsch, CRDS and DOAS in the SAPHIR chamber
Marvin Glowania, Franz Rohrer, Hans-Peter Dorn, Andreas Hofzumahaus, Frank Holland, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Meas. Tech., 14, 4239–4253, https://doi.org/10.5194/amt-14-4239-2021,https://doi.org/10.5194/amt-14-4239-2021, 2021
Short summary
A field intercomparison of three passive air samplers for gaseous mercury in ambient air
Attilio Naccarato, Antonella Tassone, Maria Martino, Sacha Moretti, Antonella Macagnano, Emiliano Zampetti, Paolo Papa, Joshua Avossa, Nicola Pirrone, Michelle Nerentorp, John Munthe, Ingvar Wängberg, Geoff W. Stupple, Carl P. J. Mitchell, Adam R. Martin, Alexandra Steffen, Diana Babi, Eric M. Prestbo, Francesca Sprovieri, and Frank Wania
Atmos. Meas. Tech., 14, 3657–3672, https://doi.org/10.5194/amt-14-3657-2021,https://doi.org/10.5194/amt-14-3657-2021, 2021
Short summary
Beef cattle methane emissions measured with tracer-ratio and inverse dispersion modelling techniques
Mei Bai, José I. Velazco, Trevor W. Coates, Frances A. Phillips, Thomas K. Flesch, Julian Hill, David G. Mayer, Nigel W. Tomkins, Roger S. Hegarty, and Deli Chen
Atmos. Meas. Tech., 14, 3469–3479, https://doi.org/10.5194/amt-14-3469-2021,https://doi.org/10.5194/amt-14-3469-2021, 2021
Short summary
Methane emissions from an oil sands tailings pond: a quantitative comparison of fluxes derived by different methods
Yuan You, Ralf M. Staebler, Samar G. Moussa, James Beck, and Richard L. Mittermeier
Atmos. Meas. Tech., 14, 1879–1892, https://doi.org/10.5194/amt-14-1879-2021,https://doi.org/10.5194/amt-14-1879-2021, 2021
Short summary

Cited articles

Budishchev, A., Mi, Y., van Huissteden, J., Belelli-Marchesini, L., Schaepman-Strub, G., Parmentier, F. J. W., Fratini, G., Gallagher, A., Maximov, T. C., and Dolman, A. J.: Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling, Biogeosciences, 11, 4651–4664, https://doi.org/10.5194/bg-11-4651-2014, 2014. 
Coates, T. W., Flesch, T. K., McGinn, S. M., Charmley, E., and Chen, D.: Evaluating an eddy covariance technique to estimate point-source emissions and its potential application to grazing cattle, Agr. Forest. Meteorol., 234-235, 164–171, https://doi.org/10.1016/j.agrformet.2016.12.026, 2017. 
Dyer, A. J.: The adjustment of profiles and eddy fluxes, Q. J. Roy. Meteor. Soc., 8, 276–280, https://doi.org/10.1002/qj.49708938009, 1963. 
Felber, R., Münger, A., Neftel, A., and Ammann, C.: Eddy covariance methane flux measurements over a grazed pasture: effect of cows as moving point sources, Biogeosciences, 12, 3925–3940, https://doi.org/10.5194/bg-12-3925-2015, 2015. 
Flesch, T. K.: The footprint for flux measurements, from backward Lagrangian stochastic models, Bound.-Lay. Meteorol., 78, 399–404, https://doi.org/10.1007/BF00120943, 1996. 
Download
Short summary
A field study tested two footprint models for calculating surface emissions from downwind flux measurements. Emission rates from a 10 × 10 m synthetic source were estimated with the simple Kormann–Meixner model and a sophisticated Lagrangian stochastic model. Both models underestimated emissions by approximately 30 %, and no statistical differences were observed between the models. Footprint models are critically important for interpreting eddy covariance measurements.