Articles | Volume 15, issue 5
https://doi.org/10.5194/amt-15-1465-2022
https://doi.org/10.5194/amt-15-1465-2022
Research article
 | 
16 Mar 2022
Research article |  | 16 Mar 2022

Spectral performance analysis of the Aeolus Fabry–Pérot and Fizeau interferometers during the first years of operation

Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan

Related authors

Spectral performance analysis of the Fizeau interferometer onboard ESA's Aeolus wind lidar satellite
Michael Vaughan, Kevin Ridley, Benjamin Witschas, Oliver Lux, Ines Nikolaus, and Oliver Reitebuch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-202,https://doi.org/10.5194/amt-2024-202, 2024
Preprint under review for AMT
Short summary
Validation of Aeolus L2B products over the tropical Atlantic using radiosondes
Maurus Borne, Peter Knippertz, Martin Weissmann, Benjamin Witschas, Cyrille Flamant, Rosimar Rios-Berrios, and Peter Veals
Atmos. Meas. Tech., 17, 561–581, https://doi.org/10.5194/amt-17-561-2024,https://doi.org/10.5194/amt-17-561-2024, 2024
Short summary
Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech., 16, 1087–1101, https://doi.org/10.5194/amt-16-1087-2023,https://doi.org/10.5194/amt-16-1087-2023, 2023
Short summary
Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022,https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
Quality control and error assessment of the Aeolus L2B wind results from the Joint Aeolus Tropical Atlantic Campaign
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022,https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Optimization of a direct-detection UV wind lidar architecture for 3D wind reconstruction at high altitude
Thibault Boulant, Tomline Michel, and Matthieu Valla
Atmos. Meas. Tech., 17, 7049–7064, https://doi.org/10.5194/amt-17-7049-2024,https://doi.org/10.5194/amt-17-7049-2024, 2024
Short summary
The GRAS-2 radio occultation mission
Joel Rasch, Anders Carlström, Jacob Christensen, and Thomas Liljegren
Atmos. Meas. Tech., 17, 6213–6222, https://doi.org/10.5194/amt-17-6213-2024,https://doi.org/10.5194/amt-17-6213-2024, 2024
Short summary
The ALOMAR Rayleigh/Mie/Raman lidar: status after 30 years of operation
Jens Fiedler and Gerd Baumgarten
Atmos. Meas. Tech., 17, 5841–5859, https://doi.org/10.5194/amt-17-5841-2024,https://doi.org/10.5194/amt-17-5841-2024, 2024
Short summary
Chilean Observation Network De MeteOr Radars (CONDOR): Multi-Static System Configuration & Wind Comparison with Co-located Lidar
Zishun Qiao, Alan Z. Liu, Gunter Stober, Javier Fuentes, Fabio Vargas, Christian L. Adami, and Iain M. Reid
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-126,https://doi.org/10.5194/amt-2024-126, 2024
Revised manuscript accepted for AMT
Short summary
Tracking Traveling Ionospheric Disturbances through Doppler-shifted AM radio transmissions
Claire Trop, James LaBelle, Philip Erickson, Shun-Rong Zhang, David McGaw, and Terrence Kovacs
EGUsphere, https://doi.org/10.5194/egusphere-2024-2383,https://doi.org/10.5194/egusphere-2024-2383, 2024
Short summary

Cited articles

Baars, H., Herzog, A., Heese, B., Ohneiser, K., Hanbuch, K., Hofer, J., Yin, Z., Engelmann, R., and Wandinger, U.: Validation of Aeolus wind products above the Atlantic Ocean, Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020, 2020. a
Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., Gentry, B. M., Hardesty, R. M., Källén, E., Kavaya, M. J., Langland, R., Ma, Z., Masutani, M., McCarty, W., Pierce, R. B., Pu, Z., Riishojgaard, L. P., Ryan, J., Tucker, S., Weissmann, M., and Yoe, J. G.: Lidar-Measured Wind Profiles: The Missing Link in the Global Observing System:, B. Am. Meteorol. Soc., 95, 543 – 564, https://doi.org/10.1175/BAMS-D-12-00164.1, 2014. a
Bedka, K. M., Nehrir, A. R., Kavaya, M., Barton-Grimley, R., Beaubien, M., Carroll, B., Collins, J., Cooney, J., Emmitt, G. D., Greco, S., Kooi, S., Lee, T., Liu, Z., Rodier, S., and Skofronick-Jackson, G.: Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign, Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, 2021. a
Born, M. and Wolf, E.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Pergamon, Oxford, England, 1980. a
Brossel, J.: Multiple-beam localized fringes: Part I. Intensity distribution and localization, P. Phys. Soc., 59, 224, https://doi.org/10.1088/0959-5309/59/2/306, 1947. a
Download
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.