Articles | Volume 15, issue 11
https://doi.org/10.5194/amt-15-3353-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-3353-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Performance characterization of low-cost air quality sensors for off-grid deployment in rural Malawi
Ashley S. Bittner
Department of Civil, Construction and Environmental Engineering, North
Carolina State University, Raleigh, NC 27606, USA
Eben S. Cross
QuantAQ, Inc., Somerville, MA 02143, USA
David H. Hagan
QuantAQ, Inc., Somerville, MA 02143, USA
Carl Malings
NASA Postdoctoral Program Fellow, Goddard Space Flight Center,
Greenbelt, MD 20771, USA
Eric Lipsky
Department of Energy Engineering, Penn State Greater Allegheny
University, McKeesport, PA 15132, USA
Department of Civil, Construction and Environmental Engineering, North
Carolina State University, Raleigh, NC 27606, USA
Related authors
No articles found.
Martine E. Mathieu-Campbell, Chuqi Guo, Andrew P. Grieshop, and Jennifer Richmond-Bryant
Atmos. Meas. Tech., 17, 6735–6749, https://doi.org/10.5194/amt-17-6735-2024, https://doi.org/10.5194/amt-17-6735-2024, 2024
Short summary
Short summary
The main source of measurement error from particulate matter PurpleAir sensors is relative humidity. Recent bias correction methods have not focused on the humid southeastern United States (US). To provide high-quality spatial and temporal data to inform community exposure in this area, our study developed and evaluated PurpleAir correction models for use in the warm–humid climate zones of the US. We found improved performance metrics, with error metrics decreasing by 16–23 % for our models.
Eric A. Wendt, Casey Quinn, Christian L'Orange, Daniel D. Miller-Lionberg, Bonne Ford, Jeffrey R. Pierce, John Mehaffy, Michael Cheeseman, Shantanu H. Jathar, David H. Hagan, Zoey Rosen, Marilee Long, and John Volckens
Atmos. Meas. Tech., 14, 6023–6038, https://doi.org/10.5194/amt-14-6023-2021, https://doi.org/10.5194/amt-14-6023-2021, 2021
Short summary
Short summary
Fine particulate matter air pollution is one of the leading contributors to adverse health outcomes on the planet. Here, we describe the design and validation of a low-cost, compact, and autonomous instrument capable of measuring particulate matter levels directly, via mass sampling, and optically, via mass and sunlight extinction measurements. We demonstrate the instrument's accuracy relative to reference measurements and its potential for community-level sampling.
Cited articles
Alphasense, Ltd.: CO-B4 Carbon Monoxide Sensor Technical Specification, Doc. Ref. COB4/JUL19 datasheet, https://www.alphasense.com/wp-content/uploads/2019/09/CO-B4.pdf (last access: 2 June 2022), 2019.
Alphasense FAQs: https://www.alphasense.com/faqs/, last access: 11 October 2021.
Amegah, A. K.: Proliferation of low-cost sensors. What prospects for air
pollution epidemiologic research in Sub-Saharan Africa?, Environ. Pollut.,
241, 1132–1137, https://doi.org/10.1016/j.envpol.2018.06.044, 2018.
Amegah, A. K. and Agyei-Mensah, S.: Urban air pollution in Sub-Saharan
Africa: Time for action, Environ. Pollut., 220, 738–743,
https://doi.org/10.1016/j.envpol.2016.09.042, 2017.
Aung, T. W., Jain, G., Sethuraman, K., Baumgartner, J., Reynolds, C. C.,
Grieshop, A. P., Marshall, J. D., and Brauer, M.: Health and
Climate-Relevant Pollutant Concentrations from a Carbon-Finance Approved
Cookstove Intervention in Rural India, Environ. Sci. Technol., 50,
7228–7238, https://doi.org/10.1021/acs.est.5b06208, 2016.
Awokola, B. I., Okello, G., Mortimer, K. J., Jewell, C. P., Erhart, A., and
Semple, S.: Measuring Air Quality for Advocacy in Africa (MA3): Feasibility
and Practicality of Longitudinal Ambient PM2.5 Measurement Using Low-Cost
Sensors, Int. J. Environ. Res. Public Health, 17, 7243,
https://doi.org/10.3390/ijerph17197243, 2020.
Badura, M., Batog, P., Drzeniecka-Osiadacz, A., and Modzel, P.: Evaluation
of Low-Cost Sensors for Ambient PM2.5 Monitoring, J. Sensors, 2018, 5096540, https://doi.org/10.1155/2018/5096540, 2018.
Bean, J. K.: Evaluation methods for low-cost particulate matter sensors, Atmos. Meas. Tech., 14, 7369–7379, https://doi.org/10.5194/amt-14-7369-2021, 2021.
Bittner, A., Cross, E. S., Hagan, D. H., Malings, C., Lipsky, E., and
Grieshop, A.: Data accompanying “Data accompanying: Performance characterization of low-cost air quality sensors for off-grid deployment in rural Malaw”, Dryad [data set],
https://doi.org/10.5061/dryad.cz8w9gj4n, 2022.
Box, G. E. P. and Cox, D. R.: An Analysis of Transformations, J. Roy. Stat.
Soc. B Met., 26, 211–252, 1964.
Buchholz, R. R., Deeter, M. N., Worden, H. M., Gille, J., Edwards, D. P., Hannigan, J. W., Jones, N. B., Paton-Walsh, C., Griffith, D. W. T., Smale, D., Robinson, J., Strong, K., Conway, S., Sussmann, R., Hase, F., Blumenstock, T., Mahieu, E., and Langerock, B.: Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC, Atmos. Meas. Tech., 10, 1927–1956, https://doi.org/10.5194/amt-10-1927-2017, 2017.
Buehler, C., Xiong, F., Zamora, M. L., Skog, K. M., Kohrman-Glaser, J., Colton, S., McNamara, M., Ryan, K., Redlich, C., Bartos, M., Wong, B., Kerkez, B., Koehler, K., and Gentner, D. R.: Stationary and portable multipollutant monitors for high-spatiotemporal-resolution air quality studies including online calibration, Atmos. Meas. Tech., 14, 995–1013, https://doi.org/10.5194/amt-14-995-2021, 2021.
Bulot, F. M. J., Johnston, S. J., Basford, P. J., Easton, N. H. C.,
Apetroaie-Cristea, M., Foster, G. L., Morris, A. K. R., Cox, S. J., and
Loxham, M.: Long-term field comparison of multiple low-cost particulate
matter sensors in an outdoor urban environment, Sci. Rep-UK, 9, 7497,
https://doi.org/10.1038/s41598-019-43716-3, 2019.
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain,
B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms
contribute to air quality monitoring and exposure estimates?, Environ.
Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007,
2017.
Chatzidiakou, L., Krause, A., Popoola, O. A. M., Di Antonio, A., Kellaway, M., Han, Y., Squires, F. A., Wang, T., Zhang, H., Wang, Q., Fan, Y., Chen, S., Hu, M., Quint, J. K., Barratt, B., Kelly, F. J., Zhu, T., and Jones, R. L.: Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments, Atmos. Meas. Tech., 12, 4643–4657, https://doi.org/10.5194/amt-12-4643-2019, 2019.
Considine, E. M., Reid, C. E., Ogletree, M. R., and Dye, T.: Improving
accuracy of air pollution exposure measurements: Statistical correction of a
municipal low-cost airborne particulate matter sensor network, Environ.
Pollut., 268, 115833, https://doi.org/10.1016/j.envpol.2020.115833, 2021.
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018.
Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., and Jayne, J. T.: Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements, Atmos. Meas. Tech., 10, 3575–3588, https://doi.org/10.5194/amt-10-3575-2017, 2017.
Delmas, R. A., Druilhet, A., Cros, B., Durand, P., Delon, C., Lacaux, J. P.,
Brustet, J. M., Serça, D., Affre, C., Guenther, A., Greenberg, J.,
Baugh, W., Harley, P., Klinger, L., Ginoux, P., Brasseur, G., Zimmerman, P.
R., Grégoire, J. M., Janodet, E., Tournier, A., Perros, P., Marion, Th.,
Gaudichet, A., Cachier, H., Ruellan, S., Masclet, P., Cautenet, S., Poulet,
D., Biona, C. B., Nganga, D., Tathy, J. P., Minga, A., Loemba-Ndembi, J.,
and Ceccato, P.: Experiment for Regional Sources and Sinks of Oxidants
(EXPRESSO): An overview, J. Geophys. Res., 104, 30609–30624,
https://doi.org/10.1029/1999JD900291, 1999.
DeWitt, H. L., Gasore, J., Rupakheti, M., Potter, K. E., Prinn, R. G., Ndikubwimana, J. D. D., Nkusi, J., and Safari, B.: Seasonal and diurnal variability in O3, black carbon, and CO measured at the Rwanda Climate Observatory, Atmos. Chem. Phys., 19, 2063–2078, https://doi.org/10.5194/acp-19-2063-2019, 2019.
Di Antonio, A., Popoola, O. A. M., Ouyang, B., Saffell, J., and Jones, R.
L.: Developing a Relative Humidity Correction for Low-Cost Sensors Measuring
Ambient Particulate Matter, Sensors-Basel, 18, 2790,
https://doi.org/10.3390/s18092790, 2018.
Dionisio, K. L., Arku, R. E., Hughes, A. F., Vallarino, J., Carmichael, H.,
Spengler, J. D., Agyei-Mensah, S., and Ezzati, M.: Air Pollution in Accra
Neighborhoods: Spatial, Socioeconomic, and Temporal Patterns, Environ. Sci. Technol., 44,
2270–2276, https://doi.org/10.1021/es903276s, 2010.
Duvall, R., Clements, A., Hagler, G., Kamal, A., Vasu Kilar, Goodman, L.,
Frederick, S., Johnson Barkjohn K., VonWald, I., Greene, D., and Dye, T.:
Performance Testing Protocols, Metrics, and Target Values for Fine
Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Site,
Non-Regulatory Supplemental and Informational Monitoring Applications, U.S.
EPA Office of Research and Development, Washington, DC, EPA/600/R-20/280, 2021a.
Duvall, R., Clements, A., Hagler, G., Kamal, A., Vasu Kilar, Goodman, L.,
Frederick, S., Johnson Barkjohn K., VonWald, I., Greene, D., and Dye, T.:
Performance Testing Protocols, Metrics, and Target Values for Ozone Air
Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory and
Informational Monitoring Applications, U.S. EPA Office of Research and
Development, Washington, DC, EPA/600/R-20/279, 2021b.
Du, Y., Wang, Q., Sun, Q., Zhang, T., Li, T., and Yan, B.: Assessment of
PM2.5 monitoring using MicroPEM: A validation study in a city with elevated
PM2.5 levels, Ecotox. Environ. Safe., 171, 518–522,
https://doi.org/10.1016/j.ecoenv.2019.01.002, 2019.
El-Nadry, M., Li, W., El-Askary, H., Awad, M. A., and Mostafa, A. R.: Urban
Health Related Air Quality Indicators over the Middle East and North Africa
Countries Using Multiple Satellites and AERONET Data, Remote Sens., 11, 2096,
https://doi.org/10.3390/rs11182096, 2019.
Emmons, L. K., Deeter, M. N., Gille, J. C., Edwards, D. P., Attié,
J.-L., Warner, J., Ziskin, D., Francis, G., Khattatov, B., Yudin, V.,
Lamarque, J.-F., Ho, S.-P., Mao, D., Chen, J. S., Drummond, J., Novelli, P.,
Sachse, G., Coffey, M. T., Hannigan, J. W., Gerbig, C., Kawakami, S., Kondo,
Y., Takegawa, N., Schlager, H., Baehr, J., and Ziereis, H.: Validation of
Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with
aircraft in situ profiles, J. Geophys. Res-Atmos., 109, D03309, https://doi.org/10.1029/2003JD004101, 2004.
Emmons, L. K., Edwards, D. P., Deeter, M. N., Gille, J. C., Campos, T., Nédélec, P., Novelli, P., and Sachse, G.: Measurements of Pollution In The Troposphere (MOPITT) validation through 2006, Atmos. Chem. Phys., 9, 1795–1803, https://doi.org/10.5194/acp-9-1795-2009, 2009.
Fullerton, D. G., Semple, S., Kalambo, F., Suseno, A., Malamba, R.,
Henderson, G., Ayres, J. G., and Gordon, S. B.: Biomass fuel use and indoor
air pollution in homes in Malawi, Occup. Environ. Med., 66, 777–783,
https://doi.org/10.1136/oem.2008.045013, 2009.
Fullerton, D. G., Suseno, A., Semple, S., Kalambo, F., Malamba, R., White,
S., Jack, S., Calverley, P. M., and Gordon, S. B.: Wood smoke exposure,
poverty and impaired lung function in Malawian adults, Int. J. Tuberc. Lung D., 15, 391–398, 2011.
Giordano, M. R., Malings, C., Pandis, S. N., Presto, A. A., McNeill, V. F.,
Westervelt, D. M., Beekmann, M., and Subramanian, R.: From low-cost sensors
to high-quality data: A summary of challenges and best practices for
effectively calibrating low-cost particulate matter mass sensors, J. Aerosol
Sci., 158, 105833, https://doi.org/10.1016/j.jaerosci.2021.105833, 2021.
Gulia, S., Khanna, I., Shukla, K., and Khare, M.: Ambient air pollutant
monitoring and analysis protocol for low and middle income countries: An
element of comprehensive urban air quality management framework, Atmos.
Environ., 222, 117120, https://doi.org/10.1016/j.atmosenv.2019.117120, 2020.
Hagan, D. H. and Kroll, J. H.: Assessing the accuracy of low-cost optical particle sensors using a physics-based approach, Atmos. Meas. Tech., 13, 6343–6355, https://doi.org/10.5194/amt-13-6343-2020, 2020.
Hagan, D. H., Isaacman-VanWertz, G., Franklin, J. P., Wallace, L. M. M., Kocar, B. D., Heald, C. L., and Kroll, J. H.: Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments, Atmos. Meas. Tech., 11, 315–328, https://doi.org/10.5194/amt-11-315-2018, 2018.
Hagan, D. H., Gani, S., Bhandari, S., Patel, K., Habib, G., Apte, J. S.,
Hildebrandt Ruiz, L., and Kroll, J. H.: Inferring Aerosol Sources from
Low-Cost Air Quality Sensor Measurements: A Case Study in Delhi, India,
Environ. Sci. Technol. Lett., 6, 467–472,
https://doi.org/10.1021/acs.estlett.9b00393, 2019.
Hersey, S. P., Garland, R. M., Crosbie, E., Shingler, T., Sorooshian, A., Piketh, S., and Burger, R.: An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data, Atmos. Chem. Phys., 15, 4259–4278, https://doi.org/10.5194/acp-15-4259-2015, 2015.
Jary, H. R., Aston, S., Ho, A., Giorgi, E., Kalata, N., Nyirenda, M.,
Mallewa, J., Peterson, I., Gordon, S. B., and Mortimer, K.: Household air
pollution, chronic respiratory disease and pneumonia in Malawian adults: A
case-control study, Wellcome Open Res., 2, 103, https://doi.org/10.12688/wellcomeopenres.12621.1, 2017.
Kelly, K. E., Xing, W. W., Sayahi, T., Mitchell, L., Becnel, T., Gaillardon,
P.-E., Meyer, M., and Whitaker, R. T.: Community-Based Measurements Reveal
Unseen Differences during Air Pollution Episodes, Environ. Sci. Technol.,
55, 120–128, https://doi.org/10.1021/acs.est.0c02341, 2021.
Laakso, L., Laakso, H., Aalto, P. P., Keronen, P., Petäjä, T., Nieminen, T., Pohja, T., Siivola, E., Kulmala, M., Kgabi, N., Molefe, M., Mabaso, D., Phalatse, D., Pienaar, K., and Kerminen, V.-M.: Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment, Atmos. Chem. Phys., 8, 4823–4839, https://doi.org/10.5194/acp-8-4823-2008, 2008.
Lewis, A. and Edwards, P.: Validate personal air-pollution sensors, Nature, 535, 29–31, https://doi.org/10.1038/535029a, 2016.
Lewis, A. C., Lee, J. D., Edwards, P. M., Shaw, M. D., Evans, M. J., Moller,
S. J., Smith, K. R., Buckley, J. W., Ellis, M., Gillot, S. R., and White,
A.: Evaluating the performance of low cost chemical sensors for air
pollution research, Faraday Discuss., 189, 85–103,
https://doi.org/10.1039/C5FD00201J, 2016.
Li, J., Hauryliuk, A., Malings, C., Eilenberg, S. R., Subramanian, R., and
Presto, A. A.: Characterizing the Aging of Alphasense NO2 Sensors in
Long-Term Field Deployments, ACS Sens., 6, 2952–2959, https://doi.org/10.1021/acssensors.1c00729, 2021.
Liousse, C., Assamoi, E., Criqui, P., Granier, C., and Rosset, R.: Explosive
growth in African combustion emissions from 2005 to 2030, Environ. Res.
Lett., 9, 035003, https://doi.org/10.1088/1748-9326/9/3/035003, 2014.
Malawi Bureau of Standards: Malawi Standard: Industrial Emissions, Emissions Limits for Stationary and Mobile Sources-Specification, MS737: 2011, Blantyre, p. 73, http://mbsmw.org/wp-content/uploads/2017/10/2017-Malawi-Standards-Catalogue.pdf (last access: 3 June 2022), 2005.
Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N.,
Kara, L. B., Presto, A. A., and Subramanian, R.: Supplementary Data for
“Development of a General Calibration Model and Long-Term Performance
Evaluation of Low-Cost Sensors for Air Pollutant Gas Monitoring” (abridged
version) (2.0), Zenodo [code], https://doi.org/10.5281/zenodo.1482011,
2018.
Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N., Kara, L. B., Presto, A. A., and R. Subramanian: Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring, Atmos. Meas. Tech., 12, 903–920, https://doi.org/10.5194/amt-12-903-2019, 2019a.
Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L.,
Presto, A. A., and Subramanian, R.: Fine particle mass monitoring with
low-cost sensors: Corrections and long-term performance evaluation, Aerosol
Sci. Tech., 0, 1–15, https://doi.org/10.1080/02786826.2019.1623863, 2019b.
Malings, C., Westervelt, D. M., Hauryliuk, A., Presto, A. A., Grieshop, A., Bittner, A., Beekmann, M., and R. Subramanian: Application of low-cost fine particulate mass monitors to convert satellite aerosol optical depth to surface concentrations in North America and Africa, Atmos. Meas. Tech., 13, 3873–3892, https://doi.org/10.5194/amt-13-3873-2020, 2020.
Mapoma, H. and Xie, X.: State of Air Quality in Malawi, J. Environ. Prot.,
4, 1258–1264, https://doi.org/10.4236/jep.2013.411146, 2013.
Marais, E. A. and Wiedinmyer, C.: Air Quality Impact of Diffuse and
Inefficient Combustion Emissions in Africa (DICE-Africa), Environ. Sci.
Technol., 50, 10739–10745, https://doi.org/10.1021/acs.est.6b02602, 2016.
Martin, R. V., Brauer, M., van Donkelaar, A., Shaddick, G., Narain, U., and
Dey, S.: No one knows which city has the highest concentration of fine
particulate matter, Atmos. Environ.: X, 3, 100040,
https://doi.org/10.1016/j.aeaoa.2019.100040, 2019.
McFarlane, C., Isevulambire, P. K., Lumbuenamo, R. S., Ndinga, A. M. E.,
Dhammapala, R., Jin, X., McNeill, V. F., Malings, C., Subramanian, R., and
Westervelt, D. M.: First Measurements of Ambient PM2.5 in Kinshasa,
Democratic Republic of Congo and Brazzaville, Republic of Congo Using
Field-calibrated Low-cost Sensors, Aerosol Air Qual. Res., 21,
200619–200619, https://doi.org/10.4209/aaqr.200619, 2021.
Mead, M. I., Popoola, O. A. M., Stewart, G. B., Landshoff, P., Calleja, M.,
Hayes, M., Baldovi, J. J., McLeod, M. W., Hodgson, T. F., Dicks, J., Lewis,
A., Cohen, J., Baron, R., Saffell, J. R., and Jones, R. L.: The use of
electrochemical sensors for monitoring urban air quality in low-cost,
high-density networks, Atmos. Environ., 70, 186–203,
https://doi.org/10.1016/j.atmosenv.2012.11.060, 2013.
Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., Mullins, B., Rahman, M. M., Ristovski, Z., Shafiei, M., Tjondronegoro, D., Westerdahl, D., and Williams, R.: Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?, Environ. Int., 116, 286–299, https://doi.org/10.1016/j.envint.2018.04.018, 2018.
Murray, C. J. L., Aravkin, A. Y., Zheng, P., et al.: Global burden
of 87 risk factors in 204 countries and territories, 1990–2019: a
systematic analysis for the Global Burden of Disease Study 2019, The Lancet,
396, 1223–1249, https://doi.org/10.1016/S0140-6736(20)30752-2, 2020.
National Statistics Office: The Fourth Integrated Household Survey: Household Socio-economic Characteristics Report, Republic of Malawi, IHS4, p. 109, http://www.nsomalawi.mw/images/stories/data_on_line/economics/ihs/IHS4/IHS4%20REPORT.pdf (last access: 3 June 2022), 2017.
Nieman, W. A., van Wilgen, B. W., and Leslie, A. J.: A reconstruction of the
recent fire regimes of Majete Wildlife Reserve, Malawi, using remote
sensing, Fire Ecol., 17, 4, https://doi.org/10.1186/s42408-020-00090-0,
2021.
Nthusi, V.: Nairobi Air Quality Monitoring Sensor Network Report – April 2017, https://doi.org/10.13140/RG.2.2.10240.64009, 2017.
Petkova, E. P., Jack, D. W., Volavka-Close, N. H., and Kinney, P. L.:
Particulate matter pollution in African cities, Air Qual. Atmos. Health, 6,
603–614, https://doi.org/10.1007/s11869-013-0199-6, 2013.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Pinder, R. W., Klopp, J. M., Kleiman, G., Hagler, G. S. W., Awe, Y., and
Terry, S.: Opportunities and challenges for filling the air quality data gap
in low- and middle-income countries, Atmos. Environ., 215, 116794,
https://doi.org/10.1016/j.atmosenv.2019.06.032, 2019.
Popoola, O. A. M., Stewart, G. B., Mead, M. I., and Jones, R. L.:
Development of a baseline-temperature correction methodology for
electrochemical sensors and its implications for long-term stability,
Atmos. Environ., 147, 330–343,
https://doi.org/10.1016/j.atmosenv.2016.10.024, 2016.
Queface, A. J., Piketh, S. J., Eck, T. F., Tsay, S.-C., and Mavume, A. F.:
Climatology of aerosol optical properties in Southern Africa, Atmos.
Environ., 45, 2910–2921, https://doi.org/10.1016/j.atmosenv.2011.01.056,
2011.
Rahal, F.: Low-cost sensors, an interesting alternative for air quality
monitoring in Africa, Clean Air Journal, 30, 2,
https://doi.org/10.17159/caj/2020/30/2.9223, 2020.
Rai, A. C., Kumar, P., Pilla, F., Skouloudis, A. N., Di Sabatino, S., Ratti,
C., Yasar, A., and Rickerby, D.: End-user perspective of low-cost sensors
for outdoor air pollution monitoring, Sci. Total Environ., 607–608,
691–705, https://doi.org/10.1016/j.scitotenv.2017.06.266, 2017.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005.
Saha, P. K., Khlystov, A., and Grieshop, A. P.: Downwind evolution of the volatility and mixing state of near-road aerosols near a US interstate highway, Atmos. Chem. Phys., 18, 2139–2154, https://doi.org/10.5194/acp-18-2139-2018, 2018.
Sahu, R., Nagal, A., Dixit, K. K., Unnibhavi, H., Mantravadi, S., Nair, S., Simmhan, Y., Mishra, B., Zele, R., Sutaria, R., Motghare, V. M., Kar, P., and Tripathi, S. N.: Robust statistical calibration and characterization of portable low-cost air quality monitoring sensors to quantify real-time O3 and NO2 concentrations in diverse environments, Atmos. Meas. Tech., 14, 37–52, https://doi.org/10.5194/amt-14-37-2021, 2021.
Scheel, H. E., Brunke, E.-G., Sladkovic, R., and Seiler, W.: In situ CO
concentrations at the sites Zugspitze (47∘ N, 11∘ E) and
Cape Point (34∘ S, 18∘ E) in April and October 1994, J.
Geophys. Res-Atmos., 103, 19295–19304, https://doi.org/10.1029/96JD04010,
1998.
Sewor, C., Obeng, A. A., and Amegah, A. K.: Commentary: The Ghana Urban Air
Quality Project (GHAir): Bridging air pollution data gaps in Ghana, Clean
Air Journal, 31, 1, https://doi.org/10.17159/caj/2021/31/1.11172, 2021.
Shikwambana, L. and Tsoeleng, L. T.: Impacts of population growth and land
use on air quality. A case study of Tshwane, Rustenburg and Emalahleni,
South Africa, S. Afr. Geogr. J., 102, 209–222,
https://doi.org/10.1080/03736245.2019.1670234, 2020.
Sousan, S., Koehler, K., Hallett, L., and Peters, T. M.: Evaluation of the
Alphasense optical particle counter (OPC-N2) and the Grimm portable aerosol
spectrometer (PAS-1.108), Aerosol Sci. Tech., 50, 1352–1365,
https://doi.org/10.1080/02786826.2016.1232859, 2016.
Spinelle, L., Gerboles, M., and Aleixandre, M.: Performance Evaluation of
Amperometric Sensors for the Monitoring of O3 and NO2 in Ambient Air at ppb
Level, Chem. Engineer. Trans., 120, 480–483,
https://doi.org/10.1016/j.proeng.2015.08.676, 2015.
Spinelle, L., Gerboles, M., Aleixandre, M., and Bonavitacola, F.: Evaluation
of Metal Oxides Sensors for the Monitoring of O3 in Ambient Air at Ppb
Level, Procedia Engineer., 54, 319–324,
https://doi.org/10.3303/CET1654054, 2016.
Stevens, T. and Madani, K.: Future climate impacts on maize farming and food
security in Malawi, Sci. Rep., 6, 36241, https://doi.org/10.1038/srep36241, 2016.
Subramanian, R. and Garland, R.: Editorial: The powerful potential of
low-cost sensors for air quality research in Africa, Clean Air Journal, 31, 1, https://doi.org/10.17159/caj/2021/31/1.11274, 2021.
Subramanian, R., Ellis, A., Torres-Delgado, E., Tanzer, R., Malings, C.,
Rivera, F., Morales, M., Baumgardner, D., Presto, A., and Mayol-Bracero, O.
L.: Air Quality in Puerto Rico in the Aftermath of Hurricane Maria: A Case
Study on the Use of Lower Cost Air Quality Monitors, ACS Earth Space Chem., 2, 1179–1186,
https://doi.org/10.1021/acsearthspacechem.8b00079, 2018.
Subramanian, R., Kagabo, A. S., Baharane, V., Guhirwa, S., Sindayigaya, C.,
Malings, C., Williams, N. J., Kalisa, E., Li, H., Adams, P., Robinson, A.
L., DeWitt, H. L., Gasore, J., and Jaramillo, P.: Air pollution in Kigali,
Rwanda: spatial and temporal variability, source contributions, and the
impact of car-free Sundays, Clean Air Journal, 30, 2,
https://doi.org/10.17159/caj/2020/30/2.8023, 2020.
The Guardian: UN moves staff after mobs kill five in Malawi vampire scare, 9 October 2017, https://www.theguardian.com/world/2017/oct/09/un-moves-malawi-staff-vampire-scare#:~:text=The%20United%20Nations%20has%20pulled,aid%20agencies%20and%20NGOs%20work, (last access: 24 May 2022), 2017.
Thorson, J., Collier-Oxandale, A., and Hannigan, M.: Using A Low-Cost Sensor
Array and Machine Learning Techniques to Detect Complex Pollutant Mixtures
and Identify Likely Sources, Sensors, 19, 3723,
https://doi.org/10.3390/s19173723, 2019.
Toihir, A. M., Venkataraman, S., Mbatha, N., Sangeetha, S. K., Bencherif,
H., Brunke, E.-G., and Labuschagne, C.: Studies on CO variation and trends
over South Africa and the Indian Ocean using TES satellite data, S. Afr. J.
Sci., 111, 1–9, 2015.
Topalović, D. B., Davidović, M. D., Jovanović, M., Bartonova,
A., Ristovski, Z., and Jovašević-Stojanović, M.: In search of an
optimal in-field calibration method of low-cost gas sensors for ambient air
pollutants: Comparison of linear, multilinear and artificial neural network
approaches, Atmos. Environ., 213, 640–658,
https://doi.org/10.1016/j.atmosenv.2019.06.028, 2019.
Wernecke, B. and Wright, C.: Commentary: Opportunities for the application
of low-cost sensors in epidemiological studies to advance evidence of air
pollution impacts on human health, Clean Air Journal, 31, 1, https://doi.org/10.17159/caj/2021/31/1.11219, 2021.
Williams, R., Kaufman, A., Hanley, T., Rice, J., and Garvey, S.: Evaluation of Field-deployed Low Cost PM Sensors, U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/464 (NTIS PB 2015-102104), 2014a.
Williams, R., Long, R., Beaver, M., Kaufman, A., Zeiger, F., Heimbinder, M., Hang, I., Yap, R., Acharya, B., Ginwald, B., Kupcho, K., Robinson, S., Zaouak, O., Aubert, B., Hannigan, M., Piedrahita, R., Masson, N., Moran, B., Rook, M., Heppner, P., Cogar, C., Nikzad, N., and Griswold, W.: Sensor Evaluation Report, U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/143 (NTIS PB2015-100611), 2014b.
Yurganov, L., McMillan, W., Grechko, E., and Dzhola, A.: Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers, Atmos. Chem. Phys., 10, 3479–3494, https://doi.org/10.5194/acp-10-3479-2010, 2010.
Yurganov, L. N., McMillan, W. W., Dzhola, A. V., Grechko, E. I., Jones, N.
B., and Van der Werf, G. R.: Global AIRS and MOPITT CO measurements:
Validation, comparison, and links to biomass burning variations and carbon
cycle, J. Geophys. Res-Atmos., 113, D09301, https://doi.org/10.1029/2007JD009229,
2008.
Zhang, T., Chillrud, S. N., Pitiranggon, M., Ross, J., Ji, J., and Yan, B.:
Development of an approach to correcting MicroPEM baseline drift, Environ.
Res., 164, 39–44, https://doi.org/10.1016/j.envres.2018.01.045, 2018.
Zhou, Z., Dionisio, K. L., Arku, R. E., Quaye, A., Hughes, A. F., Vallarino,
J., Spengler, J. D., Hill, A., Agyei-Mensah, S., and Ezzati, M.: Household
and community poverty, biomass use, and air pollution in Accra, Ghana, P. Natl. Acad. Sci. USA, 108, 11028–11033, https://doi.org/10.1073/pnas.1019183108, 2011.
Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., and R. Subramanian: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, Atmos. Meas. Tech., 11, 291–313, https://doi.org/10.5194/amt-11-291-2018, 2018.
Short summary
We present findings from a 1-year pilot deployment of low-cost integrated air quality sensor packages in rural Malawi using calibration models developed during collocation with US regulatory monitors. We compare the results with data from remote sensing products and previous field studies. We conclude that while the remote calibration approach can help extract useful data, great care is needed when assessing low-cost sensor data collected in regions without reference instrumentation.
We present findings from a 1-year pilot deployment of low-cost integrated air quality sensor...