Articles | Volume 15, issue 13
https://doi.org/10.5194/amt-15-4047-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-4047-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A study on the performance of low-cost sensors for source apportionment at an urban background site
Dimitrios Bousiotis
CORRESPONDING AUTHOR
Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham,
Edgbaston, Birmingham, B15 2TT, United Kingdom
David C. S. Beddows
Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham,
Edgbaston, Birmingham, B15 2TT, United Kingdom
Ajit Singh
Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham,
Edgbaston, Birmingham, B15 2TT, United Kingdom
Molly Haugen
Department of Engineering, University of Cambridge, Trumpington
Street, Cambridge, CB2 1PZ, United Kingdom
Sebastián Diez
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
Pete M. Edwards
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
Adam Boies
Department of Engineering, University of Cambridge, Trumpington
Street, Cambridge, CB2 1PZ, United Kingdom
Roy M. Harrison
Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham,
Edgbaston, Birmingham, B15 2TT, United Kingdom
Francis D. Pope
Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham,
Edgbaston, Birmingham, B15 2TT, United Kingdom
Related authors
Ülkü Alver Şahin, Roy M. Harrison, Mohammed S. Alam, David C. S. Beddows, Dimitrios Bousiotis, Zongbo Shi, Leigh R. Crilley, William Bloss, James Brean, Isha Khanna, and Rulan Verma
Atmos. Chem. Phys., 22, 5415–5433, https://doi.org/10.5194/acp-22-5415-2022, https://doi.org/10.5194/acp-22-5415-2022, 2022
Short summary
Short summary
Wide-range particle size spectra have been measured in three seasons in Delhi and are interpreted in terms of sources and processes. Condensational growth is a major feature of the fine fraction, and a coarse fraction contributes substantially – but only in summer.
Dimitrios Bousiotis, Francis D. Pope, David C. S. Beddows, Manuel Dall'Osto, Andreas Massling, Jakob Klenø Nøjgaard, Claus Nordstrøm, Jarkko V. Niemi, Harri Portin, Tuukka Petäjä, Noemi Perez, Andrés Alastuey, Xavier Querol, Giorgos Kouvarakis, Nikos Mihalopoulos, Stergios Vratolis, Konstantinos Eleftheriadis, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021, https://doi.org/10.5194/acp-21-11905-2021, 2021
Short summary
Short summary
Formation of new particles is a key process in the atmosphere. New particle formation events arising from nucleation of gaseous precursors have been analysed in extensive datasets from 13 sites in five European countries in terms of frequency, nucleation rate, and particle growth rate, with several common features and many differences identified. Although nucleation frequencies are lower at roadside sites, nucleation rates and particle growth rates are typically higher.
Dimitrios Bousiotis, Ajit Singh, Molly Haugen, David C. S. Beddows, Sebastián Diez, Killian L. Murphy, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 14, 4139–4155, https://doi.org/10.5194/amt-14-4139-2021, https://doi.org/10.5194/amt-14-4139-2021, 2021
Short summary
Short summary
Measurement and source apportionment of atmospheric pollutants are crucial for the assessment of air quality and the implementation of policies for their improvement. This study highlights the current capability of low-cost sensors in source identification and differentiation using clustering approaches. Future directions towards particulate matter source apportionment using low-cost OPCs are highlighted.
Dimitrios Bousiotis, James Brean, Francis D. Pope, Manuel Dall'Osto, Xavier Querol, Andrés Alastuey, Noemi Perez, Tuukka Petäjä, Andreas Massling, Jacob Klenø Nøjgaard, Claus Nordstrøm, Giorgos Kouvarakis, Stergios Vratolis, Konstantinos Eleftheriadis, Jarkko V. Niemi, Harri Portin, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 3345–3370, https://doi.org/10.5194/acp-21-3345-2021, https://doi.org/10.5194/acp-21-3345-2021, 2021
Short summary
Short summary
New particle formation events from 16 sites over Europe have been studied, and the influence of meteorological and atmospheric composition variables has been investigated. Some variables, like solar radiation intensity and temperature, have a positive effect on the occurrence of these events, while others have a negative effect, affecting different aspects such as the rate at which particles are formed or grow. This effect varies depending on the site type and magnitude of these variables.
Juncheng Qian, Thomas Wynn, Bowen Liu, Yuli Shan, Suzanne E. Bartington, Francis D. Pope, Yuqing Dai, and Zongbo Shi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3839, https://doi.org/10.5194/egusphere-2025-3839, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We developed a multi-stage AutoML calibration framework to improve low-cost indoor PM2.5 sensor accuracy. Using chamber tests with varied emission sources, the method corrected drift, humidity effects, and non-linear responses, raising R2 above 0.9 and halving RMSE. The approach enables reliable, scalable indoor air quality monitoring for research and public health applications.
John W. Halfacre, Lewis Marden, Marvin D. Shaw, Lucy J. Carpenter, Emily Matthews, Thomas J. Bannan, Hugh Coe, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Patrick R. Veres, Michael A. Robinson, Steven S. Brown, and Pete M. Edwards
Atmos. Meas. Tech., 18, 3799–3818, https://doi.org/10.5194/amt-18-3799-2025, https://doi.org/10.5194/amt-18-3799-2025, 2025
Short summary
Short summary
Nitryl chloride (ClNO2) is a reservoir of chlorine atoms and nitrogen oxides, both of which play important roles in atmospheric chemistry. However, all ambient ClNO2 observations so far have been made by a single technique, mass spectrometry, which needs complex calibrations. Here, we present a laser-based method that detects ClNO2 (TD-TILDAS – thermal dissociation–tunable infrared laser direct absorption spectrometry) without the need for complicated calibrations. The results show excellent agreement between these two methods from both laboratory and ambient samples.
Loren Temple, Stuart Young, Thomas Bannan, Stephanie Batten, Stéphane Bauguitte, Hugh Coe, Eve Grant, Stuart Lacy, James Lee, Emily Matthews, Dominika Pasternak, Samuel Rogers, Andrew Rollins, Jake Vallow, Mingxi Yang, and Pete Edwards
EGUsphere, https://doi.org/10.5194/egusphere-2025-3678, https://doi.org/10.5194/egusphere-2025-3678, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Sulfur dioxide (SO2) is a key precursor to aerosol formation, particularly in remote marine environments, ultimately affecting cloud properties and climate. Accurate quantification of atmospheric SO2 is therefore crucial. This work compares a custom-built laser-based instrument to two commercial SO2 analysers during measurements from a large research aircraft. Our results show that this custom-built system offers greater sensitivity at time resolutions required for aircraft measurements.
Aino Ovaska, Elio Rauth, Daniel Holmberg, Paulo Artaxo, John Backman, Benjamin Bergmans, Don Collins, Marco Aurélio Franco, Shahzad Gani, Roy M. Harrison, Rakes K. Hooda, Tareq Hussein, Antti-Pekka Hyvärinen, Kerneels Jaars, Adam Kristensson, Markku Kulmala, Lauri Laakso, Ari Laaksonen, Nikolaos Mihalopoulos, Colin O'Dowd, Jakub Ondracek, Tuukka Petäjä, Kristina Plauškaitė, Mira Pöhlker, Ximeng Qi, Peter Tunved, Ville Vakkari, Alfred Wiedensohler, Kai Puolamäki, Tuomo Nieminen, Veli-Matti Kerminen, Victoria A. Sinclair, and Pauli Paasonen
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-18, https://doi.org/10.5194/ar-2025-18, 2025
Preprint under review for AR
Short summary
Short summary
We trained machine learning models to estimate the number of aerosol particles large enough to form clouds and generated daily estimates for the entire globe. The models performed well in many continental regions but struggled in remote and marine areas. Still, this approach offers a way to quantify these particles in areas that lack direct measurements, helping us understand their influence on clouds and climate on a global scale.
Clara Jaén, Mireia Udina, Roy Harrison, Joan O. Grimalt, and Barend L. Van Drooge
EGUsphere, https://doi.org/10.5194/egusphere-2025-2419, https://doi.org/10.5194/egusphere-2025-2419, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Distance changes air pollution in a city, but so does the time of the day and the year, due to varying emission sources and weather conditions. These changes were studied at ground level and 400 meters above the city, and showed that wood burning affected the air quality in winter, while products of atmospheric reaction processes dominated the air in summer. Traffic emissions arrive to the elevated site during the day, while they were trapped at lower level in the night.
Huang Zheng, Shaofei Kong, Deping Ding, Marjan Savadkoohi, Congbo Song, Mingming Zheng, and Roy Harrison
EGUsphere, https://doi.org/10.5194/egusphere-2025-2113, https://doi.org/10.5194/egusphere-2025-2113, 2025
Short summary
Short summary
This study analyzes 13 years of BC data in China, uncovering patterns in its concentration and sources. Spatial-temporal variations and trends of BC are reported. Our analysis revealed that the reduction rates of BC and its sources varied across different station types, with spatial differences in the drivers of reduction. These long-term observations provide valuable insights to enhance understanding of pollution trends and improve models for predicting air quality.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, P. Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gómez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal L. Weagle, and Xi Zhao
Atmos. Chem. Phys., 25, 4665–4702, https://doi.org/10.5194/acp-25-4665-2025, https://doi.org/10.5194/acp-25-4665-2025, 2025
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Here, we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the data sets to model output.
James Brean, David C. S. Beddows, Eija Asmi, Aki Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Rolf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall'Osto
Atmos. Chem. Phys., 25, 1145–1162, https://doi.org/10.5194/acp-25-1145-2025, https://doi.org/10.5194/acp-25-1145-2025, 2025
Short summary
Short summary
Our results emphasise how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Sarah E. Hancock, Daniel J. Jacob, Zichong Chen, Hannah Nesser, Aaron Davitt, Daniel J. Varon, Melissa P. Sulprizio, Nicholas Balasus, Lucas A. Estrada, María Cazorla, Laura Dawidowski, Sebastián Diez, James D. East, Elise Penn, Cynthia A. Randles, John Worden, Ilse Aben, Robert J. Parker, and Joannes D. Maasakkers
Atmos. Chem. Phys., 25, 797–817, https://doi.org/10.5194/acp-25-797-2025, https://doi.org/10.5194/acp-25-797-2025, 2025
Short summary
Short summary
We quantify 2021 methane emissions in South America at up to 25 km × 25 km resolution using satellite methane observations. We find a 55 % upward adjustment to anthropogenic emission inventories, including those reported to the UN Framework Convention on Climate Change under the Paris Agreement. Our estimates match inventories for Brazil, Bolivia, and Paraguay but are much higher for other countries. Livestock emissions (65 % of anthropogenic emissions) show the largest discrepancies.
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco, Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Héllen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair C. Lewis, James R. Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
Atmos. Chem. Phys., 25, 625–638, https://doi.org/10.5194/acp-25-625-2025, https://doi.org/10.5194/acp-25-625-2025, 2025
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across seven European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. The risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones, highlighting the need for targeted air quality management to protect public health and improve urban air quality.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Sebastian Diez, Stuart Lacy, Hugh Coe, Josefina Urquiza, Max Priestman, Michael Flynn, Nicholas Marsden, Nicholas A. Martin, Stefan Gillott, Thomas Bannan, and Pete M. Edwards
Atmos. Meas. Tech., 17, 3809–3827, https://doi.org/10.5194/amt-17-3809-2024, https://doi.org/10.5194/amt-17-3809-2024, 2024
Short summary
Short summary
In this paper we present an overview of the QUANT project, which to our knowledge is one of the largest evaluations of commercial sensors to date. The objective was to evaluate the performance of a range of commercial products and also to nourish the different applications in which these technologies can offer relevant information.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Jianghao Li, Alastair C. Lewis, Jim R. Hopkins, Stephen J. Andrews, Tim Murrells, Neil Passant, Ben Richmond, Siqi Hou, William J. Bloss, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 24, 6219–6231, https://doi.org/10.5194/acp-24-6219-2024, https://doi.org/10.5194/acp-24-6219-2024, 2024
Short summary
Short summary
A summertime ozone event at an urban site in Birmingham is sensitive to volatile organic compounds (VOCs) – particularly those of oxygenated VOCs. The roles of anthropogenic VOC sources in urban ozone chemistry are examined by integrating the 1990–2019 national atmospheric emission inventory into model scenarios. Road transport remains the most powerful means of further reducing ozone in this case study, but the benefits may be offset if solvent emissions of VOCs continue to increase.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
Atmos. Meas. Tech., 16, 4885–4898, https://doi.org/10.5194/amt-16-4885-2023, https://doi.org/10.5194/amt-16-4885-2023, 2023
Short summary
Short summary
Pollen grains are important components of the atmosphere and have the potential to impact upon cloud processes via their ability to help in the formation of rain droplets. This study investigates the hygroscopicity of two different pollen species using an acoustic levitator. Pollen grains are levitated, and their response to changes in relative humidity is investigated. A key advantage of this method is that it is possible study pollen shape under varying environmental conditions.
Alfred W. Mayhew, Peter M. Edwards, and Jaqueline F. Hamilton
Atmos. Chem. Phys., 23, 8473–8485, https://doi.org/10.5194/acp-23-8473-2023, https://doi.org/10.5194/acp-23-8473-2023, 2023
Short summary
Short summary
Isoprene nitrates are chemical species commonly found in the atmosphere that are important for their impacts on air quality and climate. This paper investigates modelled changes to daytime isoprene nitrate concentrations resulting from changes in NOx and O3. The results highlight the complex, nonlinear chemistry of this group of species under typical conditions for megacities such as Beijing, with many species showing increased concentrations when NOx is decreased and/or ozone is increased.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
John W. Halfacre, Jordan Stewart, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Michael Flynn, Stephen J. Andrews, Steven S. Brown, Patrick R. Veres, and Pete M. Edwards
Atmos. Meas. Tech., 16, 1407–1429, https://doi.org/10.5194/amt-16-1407-2023, https://doi.org/10.5194/amt-16-1407-2023, 2023
Short summary
Short summary
This study details a new sampling method for the optical detection of hydrogen chloride (HCl). HCl is an important atmospheric reservoir for chlorine atoms, which can affect nitrogen oxide cycling and the lifetimes of volatile organic compounds and ozone. However, HCl has a high affinity for interacting with surfaces, thereby preventing fast, quantitative measurements. The sampling technique in this study minimizes these surface interactions and provides a high-quality measurement of HCl.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
James Brean, David C. S. Beddows, Roy M. Harrison, Congbo Song, Peter Tunved, Johan Ström, Radovan Krejci, Eyal Freud, Andreas Massling, Henrik Skov, Eija Asmi, Angelo Lupi, and Manuel Dall'Osto
Atmos. Chem. Phys., 23, 2183–2198, https://doi.org/10.5194/acp-23-2183-2023, https://doi.org/10.5194/acp-23-2183-2023, 2023
Short summary
Short summary
Our results emphasize how understanding the geographical variation in surface types across the Arctic is key to understanding secondary aerosol sources. We provide a harmonised analysis of new particle formation across the Arctic.
Teles C. Furlani, RenXi Ye, Jordan Stewart, Leigh R. Crilley, Peter M. Edwards, Tara F. Kahan, and Cora J. Young
Atmos. Meas. Tech., 16, 181–193, https://doi.org/10.5194/amt-16-181-2023, https://doi.org/10.5194/amt-16-181-2023, 2023
Short summary
Short summary
This study describes a new technique to measure total gaseous chlorine, which is the sum of gas-phase chlorine-containing chemicals. The method converts any chlorine-containing molecule to hydrogen chloride that can be detected in real time using a cavity ring-down spectrometer. The new method was validated through laboratory experiments, as well as by making measurements of ambient outdoor air and indoor air during cleaning with a chlorine-based cleaner.
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Alfred W. Mayhew, Ben H. Lee, Joel A. Thornton, Thomas J. Bannan, James Brean, James R. Hopkins, James D. Lee, Beth S. Nelson, Carl Percival, Andrew R. Rickard, Marvin D. Shaw, Peter M. Edwards, and Jaqueline F. Hamilton
Atmos. Chem. Phys., 22, 14783–14798, https://doi.org/10.5194/acp-22-14783-2022, https://doi.org/10.5194/acp-22-14783-2022, 2022
Short summary
Short summary
Isoprene nitrates are chemical species commonly found in the atmosphere that are important for their impacts on air quality and climate. This paper compares 3 different representations of the chemistry of isoprene nitrates in computational models highlighting cases where the choice of chemistry included has significant impacts on the concentration and composition of the modelled nitrates. Calibration of mass spectrometers is also shown to be an important factor when analysing isoprene nitrates.
Andrea Mazzeo, Michael Burrow, Andrew Quinn, Eloise A. Marais, Ajit Singh, David Ng'ang'a, Michael J. Gatari, and Francis D. Pope
Atmos. Chem. Phys., 22, 10677–10701, https://doi.org/10.5194/acp-22-10677-2022, https://doi.org/10.5194/acp-22-10677-2022, 2022
Short summary
Short summary
A modelling system for meteorology and chemistry transport processes, WRF–CHIMERE, has been tested and validated for three East African conurbations using the most up-to-date anthropogenic emissions available. Results show that the model is able to reproduce hourly and daily temporal variabilities in aerosol concentrations that are close to observations in both urban and rural environments, encouraging the adoption of numerical modelling as a tool for air quality management in East Africa.
Sebastian Diez, Stuart E. Lacy, Thomas J. Bannan, Michael Flynn, Tom Gardiner, David Harrison, Nicholas Marsden, Nicholas A. Martin, Katie Read, and Pete M. Edwards
Atmos. Meas. Tech., 15, 4091–4105, https://doi.org/10.5194/amt-15-4091-2022, https://doi.org/10.5194/amt-15-4091-2022, 2022
Short summary
Short summary
Regardless of the cost of the measuring instrument, there are no perfect measurements. For this reason, we compare the quality of the information provided by cheap devices when they are used to measure air pollutants and we try to emphasise that before judging the potential usefulness of the devices, the user must specify his own needs. Since commonly used performance indices/metrics can be misleading in qualifying this, we propose complementary visual analysis to the more commonly used metrics.
Tony Bush, Nick Papaioannou, Felix Leach, Francis D. Pope, Ajit Singh, G. Neil Thomas, Brian Stacey, and Suzanne Bartington
Atmos. Meas. Tech., 15, 3261–3278, https://doi.org/10.5194/amt-15-3261-2022, https://doi.org/10.5194/amt-15-3261-2022, 2022
Short summary
Short summary
Poor air quality is a human health risk which demands high-spatiotemporal-resolution monitoring data to manage. Low-cost air quality sensors present a convenient pathway to delivering these needs, compared to traditional methods, but bring methodological challenges which can limit operational ability. In this study within Oxford, UK, we develop machine learning methods to improve the quality of low-cost sensors for NO2, PM10 (particulate matter) and PM2.5 and demonstrate their effectiveness.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Ülkü Alver Şahin, Roy M. Harrison, Mohammed S. Alam, David C. S. Beddows, Dimitrios Bousiotis, Zongbo Shi, Leigh R. Crilley, William Bloss, James Brean, Isha Khanna, and Rulan Verma
Atmos. Chem. Phys., 22, 5415–5433, https://doi.org/10.5194/acp-22-5415-2022, https://doi.org/10.5194/acp-22-5415-2022, 2022
Short summary
Short summary
Wide-range particle size spectra have been measured in three seasons in Delhi and are interpreted in terms of sources and processes. Condensational growth is a major feature of the fine fraction, and a coarse fraction contributes substantially – but only in summer.
Yingze Tian, Xiaoning Wang, Peng Zhao, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1007, https://doi.org/10.5194/acp-2021-1007, 2022
Revised manuscript not accepted
Short summary
Short summary
Chemical mass balance (CMB) is a widely used method to apportion the sources of PM2.5. We explore the sensitivity of CMB results to input data of organic markers only (OM-CMB) with a combination of organic and inorganic markers (IOM-CMB), as well as using different chemical profiles for sources. Our results indicate the superiority of combining inorganic and organic tracers and using locally-relevant source profiles in source apportionment of PM.
Leigh R. Crilley, Louisa J. Kramer, Francis D. Pope, Chris Reed, James D. Lee, Lucy J. Carpenter, Lloyd D. J. Hollis, Stephen M. Ball, and William J. Bloss
Atmos. Chem. Phys., 21, 18213–18225, https://doi.org/10.5194/acp-21-18213-2021, https://doi.org/10.5194/acp-21-18213-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) is a key source of atmospheric oxidants. We evaluate if the ocean surface is a source of HONO for the marine boundary layer, using measurements from two contrasting coastal locations. We observed no evidence for a night-time ocean surface source, in contrast to previous work. This points to significant geographical variation in the predominant HONO formation mechanisms in marine environments, reflecting possible variability in the sea-surface microlayer composition.
Deepchandra Srivastava, Jingsha Xu, Tuan V. Vu, Di Liu, Linjie Li, Pingqing Fu, Siqi Hou, Natalia Moreno Palmerola, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 21, 14703–14724, https://doi.org/10.5194/acp-21-14703-2021, https://doi.org/10.5194/acp-21-14703-2021, 2021
Short summary
Short summary
This study presents the source apportionment of PM2.5 performed by positive matrix factorization (PMF) at urban and rural sites in Beijing. These factors are interpreted as traffic emissions, biomass burning, road and soil dust, coal and oil combustion, and secondary inorganics. PMF failed to resolve some sources identified by CMB and AMS and appears to overestimate the dust sources. Comparison with earlier PMF studies from the Beijing area highlights inconsistent findings using this method.
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021, https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
Short summary
Ozone production at an urban site in Delhi is sensitive to volatile organic compound (VOC) concentrations, particularly those of the aromatic, monoterpene, and alkene VOC classes. The change in ozone production by varying atmospheric pollutants according to their sources, as defined in an emissions inventory, is investigated. The study suggests that reducing road transport emissions alone does not reduce reactive VOCs in the atmosphere enough to perturb an increase in ozone production.
Dimitrios Bousiotis, Francis D. Pope, David C. S. Beddows, Manuel Dall'Osto, Andreas Massling, Jakob Klenø Nøjgaard, Claus Nordstrøm, Jarkko V. Niemi, Harri Portin, Tuukka Petäjä, Noemi Perez, Andrés Alastuey, Xavier Querol, Giorgos Kouvarakis, Nikos Mihalopoulos, Stergios Vratolis, Konstantinos Eleftheriadis, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021, https://doi.org/10.5194/acp-21-11905-2021, 2021
Short summary
Short summary
Formation of new particles is a key process in the atmosphere. New particle formation events arising from nucleation of gaseous precursors have been analysed in extensive datasets from 13 sites in five European countries in terms of frequency, nucleation rate, and particle growth rate, with several common features and many differences identified. Although nucleation frequencies are lower at roadside sites, nucleation rates and particle growth rates are typically higher.
Congbo Song, Manuel Dall'Osto, Angelo Lupi, Mauro Mazzola, Rita Traversi, Silvia Becagli, Stefania Gilardoni, Stergios Vratolis, Karl Espen Yttri, David C. S. Beddows, Julia Schmale, James Brean, Agung Ghani Kramawijaya, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 11317–11335, https://doi.org/10.5194/acp-21-11317-2021, https://doi.org/10.5194/acp-21-11317-2021, 2021
Short summary
Short summary
We present a cluster analysis of relatively long-term (2015–2019) aerosol aerodynamic volume size distributions up to 20 μm in the Arctic for the first time. The study found that anthropogenic and natural aerosols comprised 27 % and 73 % of the occurrence of the coarse-mode aerosols, respectively. Our study shows that about two-thirds of the coarse-mode aerosols are related to two sea-spray-related aerosol clusters, indicating that sea spray aerosol may more complex in the Arctic environment.
Dimitrios Bousiotis, Ajit Singh, Molly Haugen, David C. S. Beddows, Sebastián Diez, Killian L. Murphy, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 14, 4139–4155, https://doi.org/10.5194/amt-14-4139-2021, https://doi.org/10.5194/amt-14-4139-2021, 2021
Short summary
Short summary
Measurement and source apportionment of atmospheric pollutants are crucial for the assessment of air quality and the implementation of policies for their improvement. This study highlights the current capability of low-cost sensors in source identification and differentiation using clustering approaches. Future directions towards particulate matter source apportionment using low-cost OPCs are highlighted.
Siqi Hou, Di Liu, Jingsha Xu, Tuan V. Vu, Xuefang Wu, Deepchandra Srivastava, Pingqing Fu, Linjie Li, Yele Sun, Athanasia Vlachou, Vaios Moschos, Gary Salazar, Sönke Szidat, André S. H. Prévôt, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 8273–8292, https://doi.org/10.5194/acp-21-8273-2021, https://doi.org/10.5194/acp-21-8273-2021, 2021
Short summary
Short summary
This study provides a newly developed method which combines radiocarbon (14C) with organic tracers to enable source apportionment of primary and secondary fossil vs. non-fossil sources of carbonaceous aerosols at an urban and a rural site of Beijing. The source apportionment results were compared with those by chemical mass balance and AMS/ACSM-PMF methods. Correlations of WINSOC and WSOC with different sources of OC were also performed to elucidate the formation mechanisms of SOC.
Jingsha Xu, Di Liu, Xuefang Wu, Tuan V. Vu, Yanli Zhang, Pingqing Fu, Yele Sun, Weiqi Xu, Bo Zheng, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 7321–7341, https://doi.org/10.5194/acp-21-7321-2021, https://doi.org/10.5194/acp-21-7321-2021, 2021
Short summary
Short summary
Source apportionment of fine aerosols in an urban site of Beijing used a chemical mass balance (CMB) model. Seven primary sources (industrial/residential coal burning, biomass burning, gasoline/diesel vehicles, cooking and vegetative detritus) explained an average of 75.7 % and 56.1 % of fine OC in winter and summer, respectively. CMB was found to resolve more primary OA sources than AMS-PMF, but the latter apportioned more secondary OA sources.
Steven J. Campbell, Kate Wolfer, Battist Utinger, Joe Westwood, Zhi-Hui Zhang, Nicolas Bukowiecki, Sarah S. Steimer, Tuan V. Vu, Jingsha Xu, Nicholas Straw, Steven Thomson, Atallah Elzein, Yele Sun, Di Liu, Linjie Li, Pingqing Fu, Alastair C. Lewis, Roy M. Harrison, William J. Bloss, Miranda Loh, Mark R. Miller, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 21, 5549–5573, https://doi.org/10.5194/acp-21-5549-2021, https://doi.org/10.5194/acp-21-5549-2021, 2021
Short summary
Short summary
In this study, we quantify PM2.5 oxidative potential (OP), a metric widely suggested as a potential measure of particle toxicity, in Beijing in summer and winter using four acellular assays. We correlate PM2.5 OP with a comprehensive range of atmospheric and particle composition measurements, demonstrating inter-assay differences and seasonal variation of PM2.5 OP. Using multivariate statistical analysis, we highlight specific particle chemical components and sources that influence OP.
Dimitrios Bousiotis, James Brean, Francis D. Pope, Manuel Dall'Osto, Xavier Querol, Andrés Alastuey, Noemi Perez, Tuukka Petäjä, Andreas Massling, Jacob Klenø Nøjgaard, Claus Nordstrøm, Giorgos Kouvarakis, Stergios Vratolis, Konstantinos Eleftheriadis, Jarkko V. Niemi, Harri Portin, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 3345–3370, https://doi.org/10.5194/acp-21-3345-2021, https://doi.org/10.5194/acp-21-3345-2021, 2021
Short summary
Short summary
New particle formation events from 16 sites over Europe have been studied, and the influence of meteorological and atmospheric composition variables has been investigated. Some variables, like solar radiation intensity and temperature, have a positive effect on the occurrence of these events, while others have a negative effect, affecting different aspects such as the rate at which particles are formed or grow. This effect varies depending on the site type and magnitude of these variables.
Mike J. Newland, Daniel J. Bryant, Rachel E. Dunmore, Thomas J. Bannan, W. Joe F. Acton, Ben Langford, James R. Hopkins, Freya A. Squires, William Dixon, William S. Drysdale, Peter D. Ivatt, Mathew J. Evans, Peter M. Edwards, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, C. Nicholas Hewitt, James D. Lee, Tianqu Cui, Jason D. Surratt, Xinming Wang, Alastair C. Lewis, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 1613–1625, https://doi.org/10.5194/acp-21-1613-2021, https://doi.org/10.5194/acp-21-1613-2021, 2021
Short summary
Short summary
We report the formation of secondary pollutants in the urban megacity of Beijing that are typically associated with remote regions such as rainforests. This is caused by extremely low levels of nitric oxide (NO), typically expected to be high in urban areas, observed in the afternoon. This work has significant implications for how we understand atmospheric chemistry in the urban environment and thus for how to implement effective policies to improve urban air quality.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Atallah Elzein, Gareth J. Stewart, Stefan J. Swift, Beth S. Nelson, Leigh R. Crilley, Mohammed S. Alam, Ernesto Reyes-Villegas, Ranu Gadi, Roy M. Harrison, Jacqueline F. Hamilton, and Alastair C. Lewis
Atmos. Chem. Phys., 20, 14303–14319, https://doi.org/10.5194/acp-20-14303-2020, https://doi.org/10.5194/acp-20-14303-2020, 2020
Short summary
Short summary
We collected high-frequency air particle samples (PM2.5) in Beijing (China) and Delhi (India) and measured the concentration of PAHs in daytime and night-time. PAHs were higher in Delhi than in Beijing, and the five-ring PAHs contribute the most to the total PAH concentration. We compared the emission sources and identified the major sectors that could be subject to mitigation measures. The adverse health effects from inhalation exposure to PAHs in Delhi are 2.2 times higher than in Beijing.
Henrik Skov, Jens Hjorth, Claus Nordstrøm, Bjarne Jensen, Christel Christoffersen, Maria Bech Poulsen, Jesper Baldtzer Liisberg, David Beddows, Manuel Dall'Osto, and Jesper Heile Christensen
Atmos. Chem. Phys., 20, 13253–13265, https://doi.org/10.5194/acp-20-13253-2020, https://doi.org/10.5194/acp-20-13253-2020, 2020
Short summary
Short summary
Mercury is toxic in all its forms. It bioaccumulates in food webs, is ubiquitous in the atmosphere, and atmospheric transport is an important source for this element in the Arctic. Measurements of gaseous elemental mercury have been carried out at the Villum Research Station at Station Nord in northern Greenland since 1999. The measurements are compared with model results from the Danish Eulerian Hemispheric Model. In this way, the dynamics of mercury are investigated.
Sarah S. Steimer, Daniel J. Patton, Tuan V. Vu, Marios Panagi, Paul S. Monks, Roy M. Harrison, Zoë L. Fleming, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 20, 13303–13318, https://doi.org/10.5194/acp-20-13303-2020, https://doi.org/10.5194/acp-20-13303-2020, 2020
Short summary
Short summary
Air pollution is of growing concern due to its negative effect on public health, especially in low- and middle-income countries. This study investigates how the chemical composition of particles in Beijing changes under different measurement conditions (pollution levels, season) to get a better understanding of the sources of this form of air pollution.
James Brean, David C. S. Beddows, Zongbo Shi, Brice Temime-Roussel, Nicolas Marchand, Xavier Querol, Andrés Alastuey, María Cruz Minguillón, and Roy M. Harrison
Atmos. Chem. Phys., 20, 10029–10045, https://doi.org/10.5194/acp-20-10029-2020, https://doi.org/10.5194/acp-20-10029-2020, 2020
Short summary
Short summary
New particle formation is a key process influencing both local air quality and climatically active cloud condensation nuclei concentrations. This study has carried out fundamental measurements of nucleation processes in Barcelona, Spain, and concludes that a mechanism involving stabilisation of sulfuric acid clusters by low molecular weight amines is primarily responsible for new particle formation events.
Cited articles
Austin, E., Novosselov, I., Seto, E., and Yost, M. G.: Laboratory evaluation
of the Shinyei PPD42NS low-cost particulate matter sensor, PLoS One, 10,
1–17, https://doi.org/10.1371/journal.pone.0137789, 2015.
Beddows, D. C. S. and Harrison, R. M.: Receptor modelling of both particle composition and size distribution from a background site in London, UK – a two-step approach, Atmos. Chem. Phys., 19, 4863–4876, https://doi.org/10.5194/acp-19-4863-2019, 2019.
Beddows, D. C. S., Harrison, R. M., Green, D. C., and Fuller, G. W.: Receptor modelling of both particle composition and size distribution from a background site in London, UK, Atmos. Chem. Phys., 15, 10107–10125, https://doi.org/10.5194/acp-15-10107-2015, 2015.
Bousiotis, D., Pope, F. D., Beddows, D. C. S., Dall'Osto, M., Massling, A., Nøjgaard, J. K., Nordstrøm, C., Niemi, J. V., Portin, H., Petäjä, T., Perez, N., Alastuey, A., Querol, X., Kouvarakis, G., Mihalopoulos, N., Vratolis, S., Eleftheriadis, K., Wiedensohler, A., Weinhold, K., Merkel, M., Tuch, T., and Harrison, R. M.: A phenomenology of new particle formation (NPF) at 13 European sites, Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021, 2021a.
Bousiotis, D., Singh, A., Haugen, M., Beddows, D. C. S., Diez, S., Murphy, K. L., Edwards, P. M., Boies, A., Harrison, R. M., and Pope, F. D.: Assessing the sources of particles at an urban background site using both regulatory instruments and low-cost sensors – a comparative study, Atmos. Meas. Tech., 14, 4139–4155, https://doi.org/10.5194/amt-14-4139-2021, 2021b.
Carslaw, D. C. and Ropkins, K.: openair – An R package for air quality
data analysis, Environ. Modell. Softw., 27–28, 52–61,
https://doi.org/10.1016/j.envsoft.2011.09.008, 2012.
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018.
Crilley, L. R., Singh, A., Kramer, L. J., Shaw, M. D., Alam, M. S., Apte, J. S., Bloss, W. J., Hildebrandt Ruiz, L., Fu, P., Fu, W., Gani, S., Gatari, M., Ilyinskaya, E., Lewis, A. C., Ng'ang'a, D., Sun, Y., Whitty, R. C. W., Yue, S., Young, S., and Pope, F. D.: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors, Atmos. Meas. Tech., 13, 1181–1193, https://doi.org/10.5194/amt-13-1181-2020, 2020.
De Vito, S., Esposito, E., Castell, N., Schneider, P., and Bartonova, A.: On
the robustness of field calibration for smart air quality monitors, Sensor.
Actuat. B-Chem., 310, 127869, https://doi.org/10.1016/j.snb.2020.127869, 2020.
Draxler, R. R. and Hess, G. D.: An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition, Aust. Meteorol. Mag., 47, 295–308, 1998.
Feinberg, S. N., Williams, R., Hagler, G., Low, J., Smith, L., Brown, R.,
Garver, D., Davis, M., Morton, M., Schaefer, J., and Campbell, J.: Examining
spatiotemporal variability of urban particulate matter and application of
high-time resolution data from a network of low-cost air pollution sensors,
Atmos. Environ., 213, 579–584, https://doi.org/10.1016/j.atmosenv.2019.06.026,
2019.
Giordano, M. R., Malings, C., Pandis, S. N., Presto, A. A., McNeill, V. F.,
Westervelt, D. M., Beekmann, M., and Subramanian, R.: From low-cost sensors
to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors, J.
Aerosol Sci., 158, 105833, https://doi.org/10.1016/j.jaerosci.2021.105833, 2021.
Hagan, D. H. and Kroll, J. H.: Assessing the accuracy of low-cost optical particle sensors using a physics-based approach, Atmos. Meas. Tech., 13, 6343–6355, https://doi.org/10.5194/amt-13-6343-2020, 2020.
Hagan, D. H., Gani, S., Bhandari, S., Patel, K., Habib, G., Apte, J. S.,
Hildebrandt Ruiz, L., and Kroll, J. H.: Inferring Aerosol Sources from
Low-Cost Air Quality Sensor Measurements: A Case Study in Delhi, India,
Environ. Sci. Tech. Let., 6, 467–472, https://doi.org/10.1021/acs.estlett.9b00393, 2019.
Harrison, R. M., Beddows, D. C. S., and Dall'Osto, M.: PMF analysis of
wide-range particle size spectra collected on a major highway, Environ. Sci.
Technol., 45, 5522–5528, https://doi.org/10.1021/es2006622, 2011.
Haugen, M. J., Singh, A., Bousiotis, D., Pope, F. D., and Boies, A. M.:
Demonstrating the ability to differentiate between semi-volatile and solid
particle events with low-cost lung-deposited surface area and black carbon
particle sensors, Atmosphere, 13, 747, https://doi.org/10.3390/atmos13050747, 2022.
Hopke, P. K.: Review of receptor modeling methods for source apportionment,
J. Air Waste Manage., 66, 237–259, https://doi.org/10.1080/10962247.2016.1140693, 2016.
Jovašević-Stojanović, M., Bartonova, A., Topalović, D.,
Lazović, I., Pokrić, B., and Ristovski, Z.: On the use of small and
cheaper sensors and devices for indicative citizen-based monitoring of
respirable particulate matter, Environ. Pollut., 206, 696–704,
https://doi.org/10.1016/j.envpol.2015.08.035, 2015.
Kan, H., Chen, B., and Hong, C.: Health impact of outdoor air pollution in
China: Current knowledge and future research needs, Environ. Health Persp., 117, 12737, https://doi.org/10.1289/ehp.12737, 2009.
Kanaroglou, P. S., Jerrett, M., Morrison, J., Beckerman, B., Arain, M. A.,
Gilbert, N. L., and Brook, J. R.: Establishing an air pollution monitoring
network for intra-urban population exposure assessment: A
location-allocation approach, Atmos. Environ., 39, 2399–2409,
https://doi.org/10.1016/j.atmosenv.2004.06.049, 2005.
Kosmopoulos, G., Salamalikis, V., Pandis, S. N., Yannopoulos, P., Bloutsos,
A. A., and Kazantzidis, A.: Low-cost sensors for measuring airborne
particulate matter: Field evaluation and calibration at a South-Eastern
European site, Sci. Total Environ., 748, 141396,
https://doi.org/10.1016/j.scitotenv.2020.141396, 2020.
Krause, A., Zhao, J., and Birmili, W.: Low-cost sensors and indoor air
quality: A test study in three residential homes in Berlin, Germany,
Gefahrst. Reinhalt. L., 79, 87–94, https://doi.org/10.37544/0949-8036-2019-03-49, 2019.
Leoni, C., Pokorná, P., Hovorka, J., Masiol, M., Topinka, J., Zhao, Y.,
Křůmal, K., Cliff, S., Mikuška, P., and Hopke, P. K.: Source
apportionment of aerosol particles at a European air pollution hot spot
using particle number size distributions and chemical composition, Environ.
Pollut., 234, 145–154, https://doi.org/10.1016/j.envpol.2017.10.097, 2018.
Lepistö, T., Kuuluvainen, H., Lintusaari, H., Kuittinen, N., Salo, L.,
Helin, A., Niemi, J.V., Manninen, H.E., Timonen, H., Jalava, P., Saarikoski,
S., and Rönkkö, T.: Connection between lung deposited surface area
(LDSA) and black carbon (BC) concentrations in road traffic and harbour
environments, Atmos. Environ., 272, 118931,
https://doi.org/10.1016/j.atmosenv.2021.118931, 2022.
Lewis, A. C., von Schneidemesser, E., and Peltier, R. E.: Low-cost sensors
for the measurement of atmospheric composition: overview of topic and future
applications, World Meteorological Organization, Geneva, Switzerland, WMO-No. 1215, 46 pp., ISBN 978-92-63-11215-6, 2018.
Liang, Y., Wu, C., Jiang, S., Li, Y. J., Wu, D., Li, M., Cheng, P., Yang,
W., Cheng, C., Li, L., Deng, T., Sun, J. Y., He, G., Liu, B., Yao, T., Wu,
M., and Zhou, Z.: Field comparison of electrochemical gas sensor data
correction algorithms for ambient air measurements, Sensor. Actuat. B Chem., 327, 128897, https://doi.org/10.1016/j.snb.2020.128897, 2021.
Lin, C. T., Baker, A. R., Jickells, T. D., Kelly, S., and Lesworth, T.: An
assessment of the significance of sulphate sources over the Atlantic Ocean
based on sulphur isotope data, Atmos. Environ., 62, 615–621,
https://doi.org/10.1016/j.atmosenv.2012.08.052, 2012.
Mahbub, P., Ayoko, G. A., Goonetilleke, A., and Egodawatta, P.: Analysis of the build-up of semi and non volatile organic compounds on urban roads, Water
Res., 45, 2835–2844, https://doi.org/10.1016/j.watres.2011.02.033, 2011.
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., and Bezirtzoglou, E.:
Environmental and Health Impacts of Air Pollution: A Review, Frontiers in Public Health, 8, 1–13, https://doi.org/10.3389/fpubh.2020.00014, 2020.
Mannucci, P. M. and Franchini, M.: Health effects of ambient air pollution
in developing countries, Int. J. Environ. Res. Pu., 14, 1048,
https://doi.org/10.3390/ijerph14091048, 2017.
Miskell, G., Salmond, J. A., and Williams, D. E.: Use of a handheld low-cost
sensor to explore the effect of urban design features on local-scale spatial
and temporal air quality variability, Sci. Total Environ., 619–620,
480–490, https://doi.org/10.1016/j.scitotenv.2017.11.024, 2018.
Moore, F. C.: Climate change and air pollution: Exploring the synergies and
potential for mitigation in industrializing countries, Sustainability, 1,
43–54, https://doi.org/10.3390/su1010043, 2009.
Nagendra, S., Reddy Yasa, P., Narayana, M., Khadirnaikar, S., and Pooja Rani:
Mobile monitoring of air pollution using low cost sensors to visualize
spatio-temporal variation of pollutants at urban hotspots, Sustain. Cities
Soc., 44, 520–535, https://doi.org/10.1016/j.scs.2018.10.006, 2019.
Omokungbe, O. R., Fawole, O. G., Owoade, O. K., Popoola, O. A. M., Jones, R.
L., Olise, F. S., Ayoola, M. A., Abiodun, P. O., Toyeje, A. B., Olufemi, A.
P., Sunmonu, L. A., and Abiye, O. E.: Analysis of the variability of airborne
particulate matter with prevailing meteorological conditions across a
semi-urban environment using a network of low-cost air quality sensors,
Heliyon, 6, e04207, https://doi.org/10.1016/j.heliyon.2020.e04207, 2020.
Paatero, P.: User's guide for positive matrix factorization programs PMF2 and
PMF3, Part1: tutorial, University of Helsinki, Helsinki, Finland, 2004a.
Paatero, P.: User's guide for positive matrix factorization programs PMF2 and
PMF3, Part2: references. University of Helsinki, Helsinki, Finland, 2004b.
Paatero, P. and Tapper, U.: Analysis of different modes of factor analysis
as least squares fit problems, Chemometr. Intell. Lab., 18, 183–194,
https://doi.org/10.1016/0169-7439(93)80055-M, 1993.
Paatero, P. and Tapper, U.: Positive Matrix Factorization: A Non-negative
factor model with optimal utilization of error estimates of data values,
Environmetrics, 5, 111–126, 1994.
Paatero, P., Hopke, P. K., Song, X.-H., and Ramadan, Z.: Understanding and
controlling rotations in factor analytic models, Chemometr. Intell. Lab.,
60, 253–264, 2002.
Pascal, M., Corso, M., Chanel, O., Declercq, C., Badaloni, C., Cesaroni, G.,
Henschel, S., Meister, K., Haluza, D., Martin-Olmedo, P., and Medina, S.:
Assessing the public health impacts of urban air pollution in 25 European
cities: Results of the Aphekom project, Sci. Total Environ., 449, 390–400, https://doi.org/10.1016/j.scitotenv.2013.01.077, 2013.
Penza, M.: Chapter 12 – Low-cost sensors for outdoor air quality monitoring, in: Advance Nanomaterials for Inexpensive Gas Microsensors, edited by: Llobet, E., Elsevier, 235–288, https://doi.org/10.1016/B978-0-12-814827-3.00012-8, 2020.
Petkova, E. P., Jack, D. W., Volavka-Close, N. H., and Kinney, P. L.:
Particulate matter pollution in African cities, Air Qual. Atmos. Hlth.,
6, 603–614, https://doi.org/10.1007/s11869-013-0199-6, 2013.
Pokorná, P., Hovorka, J., and Hopke, P. K.: Elemental composition and
source identification of very fine aerosol particles in a European air
pollution hot-spot, Atmos. Pollut. Res., 7, 671–679,
https://doi.org/10.1016/j.apr.2016.03.001, 2016.
Pope, F. and Bousiotis, D.: Research data supporting “A study on the performance of low-cost sensors for source apportionment at an urban background site”, UBIRA eData [data set], https://doi.org/10.25500/edata.bham.00000856, 2022.
Pope, F. D., Gatari, M., Ng'ang'a, D., Poynter, A., and Blake, R.: Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors, Atmos. Chem. Phys., 18, 15403–15418, https://doi.org/10.5194/acp-18-15403-2018, 2018.
Popoola, O. A. M., Carruthers, D., Lad, C., Bright, V. B., Mead, M. I.,
Stettler, M. E. J., Saffell, J. R., and Jones, R. L.: Use of networks of low
cost air quality sensors to quantify air quality in urban settings, Atmos.
Environ., 194, 58–70, https://doi.org/10.1016/j.atmosenv.2018.09.030, 2018.
Prakash, J., Choudhary, S., Raliya, R., Chadha, T., Fang, J., George, M. P., and Biswas, P.: Deployment of Networked Low-Cost Sensors and Comparison to
Real-Time Stationary Monitors in New Delhi, J. Air Waste Manage.,
71, 1347–1360, https://doi.org/10.1080/10962247.2021.1890276, 2021.
Raes, F., Dingenen, R. Van, Elisabetta, V., Wilson, J., Putaud, J. P.,
Seinfeld, J. H., and Adams, P.: Formation and cycling of aerosols in the
global troposphere, Atmos. Environ., 34, 4215–4240, 2000.
Reff, A., Eberly, S. I., and Bhave, P. V.: Receptor Modeling of Ambient
Particulate Matter Data Using Positive Matrix Factorization: Review of
Existing Methods, J. Air Waste Manage., 57, 146–154,
https://doi.org/10.1080/10473289.2007.10465319, 2007.
Rivas, I., Vicens, L., Basagaña, X., Tobías, A., Katsouyanni, K.,
Walton, H., Hüglin, C., Alastuey, A., Kulmala, M., Harrison, R. M.,
Pekkanen, J., Querol, X., Sunyer, J., and Kelly, F. J.: Associations between
sources of particle number and mortality in four European cities, Environ.
Int., 155, 106662, https://doi.org/10.1016/j.envint.2021.106662, 2021.
Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz, W. A., and
Bartonova, A.: Mapping urban air quality in near real-time using
observations from low-cost sensors and model information, Environ. Int.,
106, 234–247, https://doi.org/10.1016/j.envint.2017.05.005, 2017.
Schnelle-Kreis, J., Sklorz, M., Orasche, J., Stölzel, M., Peters, A., and
Zimmermann, R.: Semi volatile organic compounds in ambient PM2.5. Seasonal trends and daily resolved source contributions, Environ. Sci. Technol., 41, 3821–3828, https://doi.org/10.1021/es060666e, 2007.
Shafran-Nathan, R., Etzion, Y., Zivan, O., and Broday, D. M.: Estimating the
spatial variability of fine particles at the neighborhood scale using a
distributed network of particle sensors, Atmos. Environ., 218, 117011, https://doi.org/10.1016/j.atmosenv.2019.117011, 2019.
Shindler, L.: Development of a low-cost sensing platform for air quality
monitoring: application in the city of Rome, Environ. Technol., 42, 618–631, https://doi.org/10.1080/09593330.2019.1640290, 2021.
Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A.,
Enami, S., Arangio, A. M., Fröhlich-Nowoisky, J., Fujitani, Y.,
Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas, K., Morino, Y.,
Pöschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A., and Sato, K.: Aerosol Health Effects from Molecular to Global Scales,
Environ. Sci. Technol., 51, 13545–13567, https://doi.org/10.1021/acs.est.7b04417, 2017.
Smith, K. R., Edwards, P. M., Ivatt, P. D., Lee, J. D., Squires, F., Dai, C., Peltier, R. E., Evans, M. J., Sun, Y., and Lewis, A. C.: An improved low-power measurement of ambient NO2 and O3 combining electrochemical sensor clusters and machine learning, Atmos. Meas. Tech., 12, 1325–1336, https://doi.org/10.5194/amt-12-1325-2019, 2019.
Sousan, S., Koehler, K., Thomas, G., Park, J. H., Hillman, M., Halterman, A., and Peters, T. M.: Inter-comparison of low cost sensors for measuring the
mass concentration of occupational aerosols, Aerosol Sci. Technol., 50,
462–473, https://doi.org/10.1080/02786826.2016.1162901, 2016.
Utsunomiya, A. and Wakamatsu, S.: Temperature and humidity dependence on
aerosol composition in the northern Kyushu, Japan, Atmos. Environ., 30,
2379–2386, https://doi.org/10.1016/1352-2310(95)00350-9, 1996.
Vajs, I., Drajic, D., Gligoric, N., Radovanovic, I., and Popovic, I.:
Developing relative humidity and temperature corrections for low-cost
sensors using machine learning, Sensors, 21, 3338, https://doi.org/10.3390/s21103338,
2021.
Valavanidis, A., Fiotakis, K., and Vlachogianni, T.: Airborne particulate
matter and human health: Toxicological assessment and importance of size and
composition of particles for oxidative damage and carcinogenic mechanisms,
J. Environ. Sci. Heal. C, 26, 339–362, https://doi.org/10.1080/10590500802494538, 2008.
Wang, P., Xu, F., Gui, H., Wang, H., and Chen, D. R.: Effect of relative
humidity on the performance of five cost-effective PM sensors, Aerosol Sci.
Technol., 55, 957–974, https://doi.org/10.1080/02786826.2021.1910136, 2021.
Weissert, L., Alberti, K., Miles, E., Miskell, G., Feenstra, B., Henshaw, G.
S., Papapostolou, V., Patel, H., Polidori, A., Salmond, J. A., and Williams,
D. E.: Low-cost sensor networks and land-use regression: Interpolating
nitrogen dioxide concentration at high temporal and spatial resolution in
Southern California, Atmos. Environ., 223, 117287,
https://doi.org/10.1016/j.atmosenv.2020.117287, 2020.
Whitty, R., Pfeffer, M., Ilyinskaya, E., Roberts, T., Schmidt, A., Barsotti, S., Strauch, . W., Crilley, L., Pope, F., Bellanger, H., Mendoza, E., Mather, T., Liu, E., Peters, N., Taylor, I., Francis, H., Hernández Leiva, X., Lynch, D., Nobert, S., and Baxter, P.: Effectiveness of low-cost air quality monitors for identifying volcanic SO2 and PM downwind from Masaya volcano, Nicaragua, Volcanica, 5, 33–59, https://doi.org/10.30909/vol.05.01.3359, 2022.
Wu, S., Ni, Y., Li, H., Pan, L., Yang, D., Baccarelli, A. A., Deng, F.,
Chen, Y., Shima, M., and Guo, X.: Short-term exposure to high ambient air
pollution increases airway inflammation and respiratory symptoms in chronic
obstructive pulmonary disease patients in Beijing, China, Environ. Int., 94,
76–82, https://doi.org/10.1016/j.envint.2016.05.004, 2016.
Xu, Y. and Zhang, J. S.: Understanding SVOCs, ASHRAE Journal, 53, 121–125, 2011.
Zeger, S. L., Dominici, F., McDermott, A., and Samet, J. M.: Mortality in the
medicare population and Chronic exposure to fine Particulate air pollution
in urban centers (2000-2005), Environ. Health Persp., 116, 1614–1619, https://doi.org/10.1289/ehp.11449, 2008.
Short summary
In the last decade, low-cost sensors have revolutionised the field of air quality monitoring. This paper extends the ability of low-cost sensors to not only measure air pollution, but also to understand where the pollution comes from. This "source apportionment" is a critical step in air quality management to allow for the mitigation of air pollution. The techniques developed in this paper have the potential for great impact in both research and industrial applications.
In the last decade, low-cost sensors have revolutionised the field of air quality monitoring....