Articles | Volume 15, issue 23
https://doi.org/10.5194/amt-15-7119-2022
https://doi.org/10.5194/amt-15-7119-2022
Research article
 | 
12 Dec 2022
Research article |  | 12 Dec 2022

Latent heating profiles from GOES-16 and its impacts on precipitation forecasts

Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski

Related authors

Latent heating profiles from GOES-16 and its comparison to heating from NEXRAD and GPM
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-97,https://doi.org/10.5194/amt-2021-97, 2021
Preprint withdrawn
Short summary
A simplified method for the detection of convection using high-resolution imagery from GOES-16
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech., 14, 3755–3771, https://doi.org/10.5194/amt-14-3755-2021,https://doi.org/10.5194/amt-14-3755-2021, 2021
Short summary
Applying machine learning methods to detect convection using Geostationary Operational Environmental Satellite-16 (GOES-16) advanced baseline imager (ABI) data
Yoonjin Lee, Christian D. Kummerow, and Imme Ebert-Uphoff
Atmos. Meas. Tech., 14, 2699–2716, https://doi.org/10.5194/amt-14-2699-2021,https://doi.org/10.5194/amt-14-2699-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025,https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary

Cited articles

Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., and Lin, H.: A North American hourly assimilation and model forecast cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1, 2016. 
Bytheway, J. L., Kummerow, C. D., and Alexander, C.: A features-based assessment of the evolution of warm season precipitation forecasts from the HRRR model over three years of development, Weather Forecast., 32, 1841–1856, https://doi.org/10.1175/WAF-D-17-0050.1, 2017. 
Chan, S. C. and Nigam, S.: Residual diagnosis of diabatic heating from ERA-40 and NCEP reanalyses: Intercomparisons with TRMM, J. Climate, 22, 414–428, https://doi.org/10.1175/2008JCLI2417.1, 2009. 
Del Genio, A. D., Wu, J., and Chen, Y.: Characteristics of mesoscale organization in WRF simulations of convection during TWP-ICE, J. Climate, 25, 5666–5688, https://doi.org/10.1175/JCLI-D-11-00422.1, 2012. 
DeMott, C. A.: The vertical structure and modulation of TOGA COARE convection: A radar perspective, Ph.D. thesis, Colorado State University, United States, 1–177 pp., 1996. 
Download
Short summary
Vertical profiles of latent heating are derived from GOES-16 to be used in convective initialization. They are compared with other latent heating products derived from NEXRAD and GPM satellites, and the results show that their values are very similar to the radar-derived products. Finally, using latent heating derived from GOES-16 for convective initialization shows improvements in precipitation forecasts, which are comparable to the results using latent heating derived from NEXRAD.
Share