Articles | Volume 15, issue 24
https://doi.org/10.5194/amt-15-7293-2022
https://doi.org/10.5194/amt-15-7293-2022
Research article
 | 
20 Dec 2022
Research article |  | 20 Dec 2022

Inferring surface energy fluxes using drone data assimilation in large eddy simulations

Norbert Pirk, Kristoffer Aalstad, Sebastian Westermann, Astrid Vatne, Alouette van Hove, Lena Merete Tallaksen, Massimo Cassiani, and Gabriel Katul

Related authors

Inferring methane emissions from African livestock by fusing drone, tower, and satellite data
Alouette van Hove, Kristoffer Aalstad, Vibeke Lind, Claudia Arndt, Vincent Odongo, Rodolfo Ceriani, Francesco Fava, John Hulth, and Norbert Pirk
Biogeosciences, 22, 4163–4186, https://doi.org/10.5194/bg-22-4163-2025,https://doi.org/10.5194/bg-22-4163-2025, 2025
Short summary
Wintertime Production and Storage of Methane in Thermokarst Ponds of Subarctic Norway
Anfisa Pismeniuk, Peter Dörsch, Mats Ippach, Clarissa Willmes, Sunniva Sheffield, Norbert Pirk, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3059,https://doi.org/10.5194/egusphere-2025-3059, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Evaporation from northern latitude wetlands
Astrid Vatne, Norbert Pirk, Kolbjørn Engeland, Ane Victoria Vollsnes, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1140,https://doi.org/10.5194/egusphere-2025-1140, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Separating the albedo-reducing effect of different light-absorbing particles on snow using deep learning
Lou-Anne Chevrollier, Adrien Wehrlé, Joseph M. Cook, Norbert Pirk, Liane G. Benning, Alexandre M. Anesio, and Martyn Tranter
The Cryosphere, 19, 1527–1538, https://doi.org/10.5194/tc-19-1527-2025,https://doi.org/10.5194/tc-19-1527-2025, 2025
Short summary
Spatio-temporal information propagation using sparse observations in hyper-resolution ensemble-based snow data assimilation
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023,https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary

Cited articles

Aalstad, K., Westermann, S., Schuler, T. V., Boike, J., and Bertino, L.: Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites, The Cryosphere, 12, 247–270, https://doi.org/10.5194/tc-12-247-2018, 2018. a, b, c, d, e
Aalstad, K., Westermann, S., and Bertino, L.: Evaluating satellite retrieved fractional snow-covered area at a high-Arctic site using terrestrial photography, Remote Sens. Environ., 239, 111618, https://doi.org/10.1016/j.rse.2019.111618, 2020. a
Alonso-González, E., Gutmann, E., Aalstad, K., Fayad, A., Bouchet, M., and Gascoin, S.: Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-covered area, Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, 2021. a, b
Alonso-González, E., Aalstad, K., Baba, M. W., Revuelto, J., López-Moreno, J. I., Fiddes, J., Essery, R., and Gascoin, S.: MuSA: The Multiscale Snow Data Assimilation System (v1.0), Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2022-137, in review, 2022. a, b
Ardeshiri, H., Cassiani, M., Park, S. Y., Stohl, A., Pisso, I., and Dinger, A. S.: On the Convergence and Capability of the Large-Eddy Simulation of Concentration Fluctuations in Passive Plumes for a Neutral Boundary Layer at Infinite Reynolds Number, Bound.-Lay. Meteorol., 176, 291–327, https://doi.org/10.1007/s10546-020-00537-6, 2020. a
Download
Short summary
In this study, we show how sparse and noisy drone measurements can be combined with an ensemble of turbulence-resolving wind simulations to estimate uncertainty-aware surface energy exchange. We demonstrate the feasibility of this drone data assimilation framework in a series of synthetic and real-world experiments. This new framework can, in future, be applied to estimate energy and gas exchange in heterogeneous landscapes more representatively than conventional methods.
Share