Articles | Volume 16, issue 19
https://doi.org/10.5194/amt-16-4681-2023
https://doi.org/10.5194/amt-16-4681-2023
Research article
 | 
13 Oct 2023
Research article |  | 13 Oct 2023

Portable, low-cost samplers for distributed sampling of atmospheric gases

James F. Hurley, Alejandra Caceres, Deborah F. McGlynn, Mary E. Tovillo, Suzanne Pinar, Roger Schürch, Ksenia Onufrieva, and Gabriel Isaacman-VanWertz

Related authors

A new approach for measuring the carbon and oxygen content of atmospherically relevant compounds and mixtures
James F. Hurley, Nathan M. Kreisberg, Braden Stump, Chenyang Bi, Purushottam Kumar, Susanne V. Hering, Pat Keady, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 13, 4911–4925, https://doi.org/10.5194/amt-13-4911-2020,https://doi.org/10.5194/amt-13-4911-2020, 2020
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
An overview of outdoor low-cost gas-phase air quality sensor deployments: current efforts, trends, and limitations
Kristen Okorn and Laura T. Iraci
Atmos. Meas. Tech., 17, 6425–6457, https://doi.org/10.5194/amt-17-6425-2024,https://doi.org/10.5194/amt-17-6425-2024, 2024
Short summary
Multiphysical description of atmospheric pressure interface chemical ionisation in MION2 and Eisele type inlets
Henning Finkenzeller, Jyri Mikkilä, Cecilia Righi, Paxton Juuti, Mikko Sipilä, Matti Rissanen, Douglas Worsnop, Aleksei Shcherbinin, Nina Sarnela, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 5989–6001, https://doi.org/10.5194/amt-17-5989-2024,https://doi.org/10.5194/amt-17-5989-2024, 2024
Short summary
A portable nitrogen dioxide instrument using cavity-enhanced absorption spectroscopy
Steven A. Bailey, Reem A. Hannun, Andrew K. Swanson, and Thomas F. Hanisco
Atmos. Meas. Tech., 17, 5903–5910, https://doi.org/10.5194/amt-17-5903-2024,https://doi.org/10.5194/amt-17-5903-2024, 2024
Short summary
Development and deployment of a mid-cost CO2 sensor monitoring network to support atmospheric inverse modeling for quantifying urban CO2 emissions in Paris
Jinghui Lian, Olivier Laurent, Mali Chariot, Luc Lienhardt, Michel Ramonet, Hervé Utard, Thomas Lauvaux, François-Marie Bréon, Grégoire Broquet, Karina Cucchi, Laurent Millair, and Philippe Ciais
Atmos. Meas. Tech., 17, 5821–5839, https://doi.org/10.5194/amt-17-5821-2024,https://doi.org/10.5194/amt-17-5821-2024, 2024
Short summary
UAV-based in situ measurements of CO2 and CH4 fluxes over complex natural ecosystems
Abdullah Bolek, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech., 17, 5619–5636, https://doi.org/10.5194/amt-17-5619-2024,https://doi.org/10.5194/amt-17-5619-2024, 2024
Short summary

Cited articles

Aumont, B., Szopa, S., and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 2497–2517, https://doi.org/10.5194/acp-5-2497-2005, 2005. 
Betz, W. R. and Supina, W. R.: Use of thermally modified carbon black and carbon molecular sieve adsorbents in sampling air contaminants, Pure Appl. Chem., 61, 2047–2050, https://doi.org/10.1351/pac198961112047, 1989. 
Bianchi, A. P. and Varney, M. S.: Sampling and analysis of volatile organic compounds in estuarine air by gas chromatography and mass spectrometry, J. Chromatogr. A, 643, 11–23, https://doi.org/10.1016/0021-9673(93)80536-H, 1993. 
Borusiewicz, R. and Zięba-Palus, J.: Comparison of the effectiveness of Tenax TA® and Carbotrap 300® in concentration of flammable liquids compounds, J. Forensic Sci., 52, 70–74, https://doi.org/10.1111/j.1556-4029.2006.00314.x, 2007. 
Burnett, R. T., Pope III, C. A., Ezzati, M., Olives, C., Lim, S. S., and Mehta, S.: An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure, Environ. Health Persp., 122, 397–404, https://doi.org/10.1289/ehp.1307049, 2014. 
Download
Short summary
Volatile organic compounds (VOCs) have a wide range of sources and impacts on environments and human health that make them spatially, temporally, and chemically varied. Current methods lack the ability to collect samples in ways that provide spatial and chemical resolution without complex, costly instrumentation. We describe and validate a low-cost, portable VOC sampler and demonstrate its utility in collecting distributed coordinated samples.