Articles | Volume 17, issue 1
https://doi.org/10.5194/amt-17-113-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-113-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Objective identification of pressure wave events from networks of 1 Hz, high-precision sensors
Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27695, USA
Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27695, USA
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695, USA
Matthew A. Miller
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695, USA
Laura M. Tomkins
Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27695, USA
Related authors
Luke R. Allen, Sandra E. Yuter, Declan M. Crowe, Matthew A. Miller, and K. Lee Thornhill
Atmos. Chem. Phys., 25, 6679–6701, https://doi.org/10.5194/acp-25-6679-2025, https://doi.org/10.5194/acp-25-6679-2025, 2025
Short summary
Short summary
We analyzed in-cloud characteristics using in situ measurements from 42 research flights across two field campaigns into non-orographic, non-lake-effect winter storms. Much of the storm volume contains weak vertical motions (a few centimeters per second), and most updrafts ≥ 0.5 m s-1 are small (< 1 km). Within 2 km of cloud radar echo top, stronger vertical motions and conditions for ice particle growth are more common. Overturning air motions near cloud top appear important for the production of snow particles.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Chem. Phys., 25, 1765–1790, https://doi.org/10.5194/acp-25-1765-2025, https://doi.org/10.5194/acp-25-1765-2025, 2025
Short summary
Short summary
Atmospheric gravity waves (GWs) are air oscillations in which buoyancy is the restoring force, and they may enhance precipitation under certain conditions. We used 3+ seasons of pressure data to identify GWs with wavelengths ≤ 170 km in the Toronto and New York metropolitan areas in the context of snow storms. We found only six GW events during snow storms, suggesting that GWs on those scales are uncommon at the two locations during snow storms and, thus, do not often enhance snowfall.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022, https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
Atmos. Chem. Phys., 25, 9999–10026, https://doi.org/10.5194/acp-25-9999-2025, https://doi.org/10.5194/acp-25-9999-2025, 2025
Short summary
Short summary
This study investigates how radar-detected snow bands relate to snowfall rates during winter storms in the northeastern United States. Using over a decade of data, we found that snow bands are not consistently linked to heavy snowfall at the surface, as snow particles are often dispersed by wind before reaching the ground. These findings highlight limitations of using radar reflectivity for predicting snow rates and suggest focusing on radar echo duration to better understand snowfall patterns.
Luke R. Allen, Sandra E. Yuter, Declan M. Crowe, Matthew A. Miller, and K. Lee Thornhill
Atmos. Chem. Phys., 25, 6679–6701, https://doi.org/10.5194/acp-25-6679-2025, https://doi.org/10.5194/acp-25-6679-2025, 2025
Short summary
Short summary
We analyzed in-cloud characteristics using in situ measurements from 42 research flights across two field campaigns into non-orographic, non-lake-effect winter storms. Much of the storm volume contains weak vertical motions (a few centimeters per second), and most updrafts ≥ 0.5 m s-1 are small (< 1 km). Within 2 km of cloud radar echo top, stronger vertical motions and conditions for ice particle growth are more common. Overturning air motions near cloud top appear important for the production of snow particles.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Chem. Phys., 25, 1765–1790, https://doi.org/10.5194/acp-25-1765-2025, https://doi.org/10.5194/acp-25-1765-2025, 2025
Short summary
Short summary
Atmospheric gravity waves (GWs) are air oscillations in which buoyancy is the restoring force, and they may enhance precipitation under certain conditions. We used 3+ seasons of pressure data to identify GWs with wavelengths ≤ 170 km in the Toronto and New York metropolitan areas in the context of snow storms. We found only six GW events during snow storms, suggesting that GWs on those scales are uncommon at the two locations during snow storms and, thus, do not often enhance snowfall.
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024, https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Short summary
We have created a new method to better identify enhanced features in radar data from winter storms. Unlike the clear-cut features seen in warm-season storms, features in winter storms are often fuzzier with softer edges. Our technique is unique because it uses two adaptive thresholds that change based on the background radar values. It can identify both strong and subtle features in the radar data and takes into account uncertainties in the detection process.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022, https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Matthew A. Miller, Sandra E. Yuter, Nicole P. Hoban, Laura M. Tomkins, and Brian A. Colle
Atmos. Meas. Tech., 15, 1689–1702, https://doi.org/10.5194/amt-15-1689-2022, https://doi.org/10.5194/amt-15-1689-2022, 2022
Short summary
Short summary
Apparent waves in the atmosphere and similar features in storm winds can be detected by taking the difference between successive Doppler weather radar scans measuring radar-relative storm air motions. Applying image filtering to the difference data better isolates the detected signal. This technique is a useful tool in weather research and forecasting since such waves can trigger or enhance precipitation.
Cited articles
Adam, D.: Tonga Volcano created Puzzling Atmospheric Ripples, Nature, 602, 497, https://doi.org/10.1038/d41586-022-00127-1, 2022. a, b
Adams-Selin, R. D. and Johnson, R. H.: Mesoscale Surface Pressure and Temperature Features Associated with Bow Echoes, Mon. Weather Rev., 138, 212–227, https://doi.org/10.1175/2009MWR2892.1, 2010. a
Allen, G., Vaughan, G., Toniazzo, T., Coe, H., Connolly, P., Yuter, S. E., Burleyson, C. D., Minnis, P., and Ayers, J. K.: Gravity-wave-induced perturbations in marine stratocumulus: Gravity-Wave-Induced Perturbations in Marine Stratocumulus, Q. J. Roy. Meteor. Soc., 139, 32–45, https://doi.org/10.1002/qj.1952, 2013. a
Allen, L.: lrallen34/pressure-wave-detection-public: Code for Objective identification of pressure wave events from networks of 1 Hz, high-precision sensors, Zenodo [code], https://doi.org/10.5281/zenodo.10150876, 2023. a, b
Allen, L., Tomkins, L., and Yuter, S.: Supplemental videos of the paper “Objective identification of pressure wave events from networks of 1-Hz, high-precision sensors”, TIB AV-Portal [video], https://doi.org/10.5446/s_1476, 2023a. a
Allen, L., Tomkins, L., and Yuter, S.: 14 Sep 2021 KOKX Reflectivity and Doppler Velocity Waves. Supplemental videos of the paper “Objective identification of pressure wave events from networks of 1-Hz, high-precision sensors”, TIB AV-Portal [video], https://doi.org/10.5446/62542, 2023b. a
Allen, L., Tomkins, L., and Yuter, S.: 15 Nov 2020 KBUF Reflectivity and Doppler Velocity Waves. Supplemental videos of the paper “Objective identification of pressure wave events from networks of 1-Hz, high-precision sensors”, TIB AV-Portal [video], https://doi.org/10.5446/62541, 2023c. a
Allen, L., Tomkins, M., and Yuter, S.: 04 Feb 2022 KOKX Reflectivity and Doppler Velocity Waves. Supplemental videos of the paper “Objective identification of pressure wave events from networks of 1-Hz, high-precision sensors”, TIB AV-Portal [video], https://doi.org/10.5446/62540, 2023d. a
Allen, L., Tomkins, L., and Yuter, S.: 25 Feb 2022 KBUF Reflectivity and Doppler Velocity Waves. Supplemental videos of the paper “Objective identification of pressure wave events from networks of 1-Hz, high-precision sensors”, TIB AV-Portal [video], https://doi.org/10.5446/62539, 2023e. a
American Meteorological Society: Standard atmosphere – Glossary of Meteorology, https://glossary.ametsoc.org/wiki/Standard_atmosphere (last access: 18 December 2023), 2022. a
Amores, A., Monserrat, S., Marcos, M., Argüeso, D., Villalonga, J., Jordà, G., and Gomis, D.: Numerical Simulation of Atmospheric Lamb Waves Generated by the 2022 Hunga-Tonga Volcanic Eruption, Geophys. Res. Lett., 49, e2022GL098240, https://doi.org/10.1029/2022GL098240, 2022. a, b, c
Anthony, R. E., Ringler, A. T., Wilson, D. C., and Wolin, E.: Do Low-Cost Seismographs Perform Well Enough for Your Network? An Overview of Laboratory Tests and Field Observations of the OSOP Raspberry Shake 4D, Seismol. Res. Lett., 90, 219–228, https://doi.org/10.1785/0220180251, 2018. a, b
Bedard, A. J.: Infrasound Originating Near Mountainous Regions in Colorado, J. Appl. Meteorol. Clim., 17, 1014–1022, https://doi.org/10.1175/1520-0450(1978)017<1014:IONMRI>2.0.CO;2, 1978. a
Bhatia, A. and Fountain, H.: `It's Super Spectacular.' See How the Tonga Volcano Unleashed a Once-in-a-Century Shockwave, The New York Times, https://www.nytimes.com/interactive/2022/04/14/upshot/tonga-pressure-wave.html (last access: 18 December 2023), 2022. a
Bosart, L. F., Bracken, W. E., and Seimon, A.: A Study of Cyclone Mesoscale Structure with Emphasis on a Large-Amplitude Inertia–Gravity Wave, Mon. Weather Rev., 126, 1497–1527, https://doi.org/10.1175/1520-0493(1998)126<1497:ASOCMS>2.0.CO;2, 1998. a, b
Bosch: BMP388 Data Sheet, https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/bmp388/ (last access: 18 December 2023), 2020. a
Bosch: BME280 Data Sheet, https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/ (last access: 18 December 2023), 2022. a
Burt, S.: Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tonga–Hunga Ha'apai on 15 January 2022, Weather, 77, 76–81, https://doi.org/10.1002/wea.4182, 2022. a, b
Canavero, F. G. and Einaudi, F.: Time and Space Variability of Spectral Estimates of Atmospheric Pressure, J. Atmos. Sci., 44, 1589–1604, https://doi.org/10.1175/1520-0469(1987)044<1589:TASVOS>2.0.CO;2, 1987. a
Carr, J. L., Horváth, Á., Wu, D. L., and Friberg, M. D.: Stereo Plume Height and Motion Retrievals for the Record-Setting Hunga Tonga-Hunga Ha'apai Eruption of 15 January 2022, Geophys. Res. Lett., 49, e2022GL098131, https://doi.org/10.1029/2022GL098131, 2022. a
Christie, D. R., Muirhead, K. J., and Hales, A. L.: On Solitary Waves in the Atmosphere, J. Atmos. Sci., 35, 805–825, https://doi.org/10.1175/1520-0469(1978)035<0805:OSWITA>2.0.CO;2, 1978. a, b
Coffer, B. E. and Parker, M. D.: Infrasound signals in simulated nontornadic and pre-tornadic supercells, J. Acoust. Soc. Am., 151, 939–954, https://doi.org/10.1121/10.0009400, 2022. a
Connolly, P. J., Vaughan, G., Cook, P., Allen, G., Coe, H., Choularton, T. W., Dearden, C., and Hill, A.: Modelling the effects of gravity waves on stratocumulus clouds observed during VOCALS-UK, Atmos. Chem. Phys., 13, 7133–7152, https://doi.org/10.5194/acp-13-7133-2013, 2013. a, b
de Groot-Hedlin, C. D., Hedlin, M. A. H., and Walker, K. T.: Detection of gravity waves across the USArray: A case study, Earth Planet. Sc. Lett., 402, 346–352, https://doi.org/10.1016/j.epsl.2013.06.042, 2014. a, b
Eaton, S. W., Cárdenas, E. S., Hix, J. D., Johnson, J. T., Watson, S. M., Chichester, D. L., Garcés, M. A., Magaña-Zook, S. A., Maceira, M., Marcillo, O. E., Chai, C., d'Entremont, B. P., and Reichardt, T. A.: An algorithmic approach to predicting mechanical draft cooling tower fan speeds from infrasound signals, Appl. Acoust., 199, 109015, https://doi.org/10.1016/j.apacoust.2022.109015, 2022. a
Einaudi, F., Bedard, A. J., and Finnigan, J. J.: A Climatology of Gravity Waves and Other Coherent Disturbances at the Boulder Atmospheric Observatory during March–April 1984, J. Atmos. Sci., 46, 303–329, https://doi.org/10.1175/1520-0469(1989)046<0303:ACOGWA>2.0.CO;2, 1989. a, b
Fovell, R. G., Mullendore, G. L., and Kim, S.-H.: Discrete Propagation in Numerically Simulated Nocturnal Squall Lines, Mon. Weather Rev., 134, 3735–3752, https://doi.org/10.1175/MWR3268.1, 2006. a
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003. a, b
Gaffin, D. M., Parker, S. S., and Kirkwood, P. D.: An Unexpectedly Heavy and Complex Snowfall Event across the Southern Appalachian Region, Weather Forecast., 18, 224–235, https://doi.org/10.1175/1520-0434(2003)018<0224:AUHACS>2.0.CO;2, 2003. a, b
Global Volcanism Program: Report on Hunga Tonga-Hunga Ha'apai (Tonga), in: Weekly Volcanic Activity Report, 12 January–18 January 2022, edited by: Sennert, S. K., Smithsonian Institution and US Geological Survey, https://volcano.si.edu/showreport.cfm?doi=GVP.WVAR20220112-243040 (last access: 18 December 2023), 2022. a, b
Gray, S. L., Martínez-Alvarado, O., Baker, L. H., and Clark, P. A.: Conditional symmetric instability in sting-jet storms, Q. J. Roy. Meteor. Soc., 137, 1482–1500, https://doi.org/10.1002/qj.859, 2011. a
Grivet-Talocia, S., Einaudi, F., Clark, W. L., Dennett, R. D., Nastrom, G. D., and VanZandt, T. E.: A 4-yr Climatology of Pressure Disturbances Using a Barometer Network in Central Illinois, Mon. Weather Rev., 127, 1613–1629, https://doi.org/10.1175/1520-0493(1999)127<1613:AYCOPD>2.0.CO;2, 1999. a, b, c, d
Johnson, R. H. and Hamilton, P. J.: The Relationship of Surface Pressure Features to the Precipitation and Airflow Structure of an Intense Midlatitude Squall Line, Mon. Weather Rev., 116, 1444–1473, https://doi.org/10.1175/1520-0493(1988)116<1444:TROSPF>2.0.CO;2, 1988. a, b
Kjelaas, A. G., Beran, D. W., Hooke, W. H., and Bean, B. R.: Waves Observed in the Planetary Boundary Layer using an Array of Acoustic Sounders, J. Atmos. Sci., 31, 2040–2045, https://doi.org/10.1175/1520-0469(1974)031<2040:WOITPB>2.0.CO;2, 1974. a, b, c
Koch, S. E. and O'Handley, C.: Operational Forecasting and Detection of Mesoscale Gravity Waves, Weather Forecast., 12, 253–281, https://doi.org/10.1175/1520-0434(1997)012<0253:OFADOM>2.0.CO;2, 1997. a, b
Koch, S. E. and Saleeby, S.: An Automated System for the Analysis of Gravity Waves and Other Mesoscale Phenomena, Weather Forecast., 16, 661–679, https://doi.org/10.1175/1520-0434(2001)016<0661:AASFTA>2.0.CO;2, 2001. a, b
Lilly, J.: jLab: A data analysis package for Matlab, v.1.7.1, Zenodo, https://doi.org/10.5281/zenodo.4547006, 2021. a
Lilly, J. M. and Olhede, S. C.: Generalized Morse Wavelets as a Superfamily of Analytic Wavelets, IEEE T. Signal Proces., 60, 6036–6041, https://doi.org/10.1109/TSP.2012.2210890, 2012. a
Lindzen, R. S. and Tung, K.-K.: Banded Convective Activity and Ducted Gravity Waves, Mon. Weather Rev., 104, 1602–1617, https://doi.org/10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2, 1976. a, b
Markowski, P. and Richardson, Y.: Mesoscale Meteorology in Midlatitudes, John Wiley & Sons, Ltd, Chichester, UK, https://doi.org/10.1002/9780470682104, 2010. a, b, c
Matoza, R. S., Fee, D., Assink, J. D., Iezzi, A. M., Green, D. N., Kim, K., Toney, L., Lecocq, T., Krishnamoorthy, S., Lalande, J.-M., Nishida, K., Gee, K. L., Haney, M. M., Ortiz, H. D., Brissaud, Q., Martire, L., Rolland, L., Vergados, P., Nippress, A., Park, J., Shani-Kadmiel, S., Witsil, A., Arrowsmith, S., Caudron, C., Watada, S., Perttu, A. B., Taisne, B., Mialle, P., Le Pichon, A., Vergoz, J., Hupe, P., Blom, P. S., Waxler, R., De Angelis, S., Snively, J. B., Ringler, A. T., Anthony, R. E., Jolly, A. D., Kilgour, G., Averbuch, G., Ripepe, M., Ichihara, M., Arciniega-Ceballos, A., Astafyeva, E., Ceranna, L., Cevuard, S., Che, I.-Y., De Negri, R., Ebeling, C. W., Evers, L. G., Franco-Marin, L. E., Gabrielson, T. B., Hafner, K., Harrison, R. G., Komjathy, A., Lacanna, G., Lyons, J., Macpherson, K. A., Marchetti, E., McKee, K. F., Mellors, R. J., Mendo-Pérez, G., Mikesell, T. D., Munaibari, E., Oyola-Merced, M., Park, I., Pilger, C., Ramos, C., Ruiz, M. C., Sabatini, R., Schwaiger, H. F., Tailpied, D., Talmadge, C., Vidot, J., Webster, J., and Wilson, D. C.: Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga, Science, 377, 95–100, https://doi.org/10.1126/science.abo7063, 2022. a
McMurdie, L. A., Heymsfield, G. M., Yorks, J. E., Braun, S. A., Skofronick-Jackson, G., Rauber, R. M., Yuter, S., Colle, B., McFarquhar, G. M., Poellot, M., Novak, D. R., Lang, T. J., Kroodsma, R., McLinden, M., Oue, M., Kollias, P., Kumjian, M. R., Greybush, S. J., Heymsfield, A. J., Finlon, J. A., McDonald, V. L., and Nicholls, S.: Chasing Snowstorms: The Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Campaign, B. Am. Meteorol. Soc., 103, E1243–E1269, https://doi.org/10.1175/BAMS-D-20-0246.1, 2022. a
Meyer, F.: Topographic distance and watershed lines, Signal Process., 38, 113–125, https://doi.org/10.1016/0165-1684(94)90060-4, 1994. a
Miller, M. and Allen, L.: Data for Objective identification of pressure wave events from networks of 1 Hz, high-precision sensors, Zenodo [data set], https://doi.org/10.5281/zenodo.8136536, 2023. a
NOAA National Centers for Environmental Information: Automated Surface/Weather Observing Systems (ASOS/AWOS), NOAA National Centers for Environmental Information [data set], https://www.ncei.noaa.gov/products/land-based-station/automated-surface-weather-observing-systems (last access: 18 December 2023), 2021a. a, b
NOAA National Centers for Environmental Information: Global BUFR Data Stream: Upper Air Reports from the National Weather Service Telecommunications Gateway (NWS TG), NOAA National Centers for Environmental Information [data set], https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C01500 (last access: 18 December 2023), 2021b. a, b
NOAA National Weather Service Radar Operations Center: NOAA Next Generation Radar (NEXRAD) Level II Base Data, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5W9574V, 1991. a, b
Olhede, S. and Walden, A.: Generalized Morse wavelets, IEEE T. Signal Proces., 50, 2661–2670, https://doi.org/10.1109/TSP.2002.804066, 2002. a
Pierce, A. D. and Posey, J. W.: Theory of the Excitation and Propagation of Lamb's Atmospheric Edge Mode from Nuclear Explosions, Geophys. J. Int., 26, 341–368, https://doi.org/10.1111/j.1365-246X.1971.tb03406.x, 1971. a
Proud, S. R., Prata, A. T., and Schmauß, S.: The January 2022 eruption of Hunga Tonga-Hunga Ha'apai volcano reached the mesosphere, Science, 378, 554–557, https://doi.org/10.1126/science.abo4076, 2022. a
ReVelle, D. O.: Acoustic-Gravity Waves from Bolide Sources, Earth Moon Planets, 102, 345–356, https://doi.org/10.1007/s11038-007-9181-3, 2008. a
Seifert, A. and Heus, T.: Large-eddy simulation of organized precipitating trade wind cumulus clouds, Atmos. Chem. Phys., 13, 5631–5645, https://doi.org/10.5194/acp-13-5631-2013, 2013. a
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998. a
Vergoz, J., Hupe, P., Listowski, C., Le Pichon, A., Garcés, M. A., Marchetti, E., Labazuy, P., Ceranna, L., Pilger, C., Gaebler, P., Näsholm, S. P., Brissaud, Q., Poli, P., Shapiro, N., De Negri, R., and Mialle, P.: IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis, Earth Planet. Sc. Lett., 591, 117639, https://doi.org/10.1016/j.epsl.2022.117639, 2022. a, b
Yuter, S. E., Hader, J. D., Miller, M. A., and Mechem, D. B.: Abrupt cloud clearing of marine stratocumulus in the subtropical southeast Atlantic, Science, 361, 697–701, https://doi.org/10.1126/science.aar5836, 2018. a
Zhang, F., Davis, C. A., Kaplan, M. L., and Koch, S. E.: Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the East Coast of the United States, Q. J. Roy. Meteor. Soc., 127, 2209–2245, 2001. a
Short summary
We present a data set of high-precision surface air pressure observations and a method for detecting wave signals from the time series of pressure. A wavelet-based method is used to find wave signals at specific times and wave periods. From networks of pressure sensors spaced tens of kilometers apart, the wave phase speed and direction are estimated. Examples of wave events and their meteorological context are shown using radar data, weather balloon data, and other surface weather observations.
We present a data set of high-precision surface air pressure observations and a method for...