Articles | Volume 17, issue 1
https://doi.org/10.5194/amt-17-247-2024
https://doi.org/10.5194/amt-17-247-2024
Research article
 | 
15 Jan 2024
Research article |  | 15 Jan 2024

Assessing sampling and retrieval errors of GPROF precipitation estimates over the Netherlands

Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet

Related authors

Barriers to urban hydrometeorological simulation: a review
Xuan Chen, Job Augustijn van der Werf, Arjan Droste, Miriam Coenders-Gerrits, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 29, 3447–3480, https://doi.org/10.5194/hess-29-3447-2025,https://doi.org/10.5194/hess-29-3447-2025, 2025
Short summary
Rain-on-wet-soil compound floods in lowlands: the combined effect of large rain events and shallow groundwater on discharge peaks in a changing climate
Claudia C. Brauer, Ruben O. Imhoff, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1712,https://doi.org/10.5194/egusphere-2025-1712, 2025
Short summary
Torrential rainfall in Valencia (Spain) recorded by personal weather stations preceding and during the 29 October 2024 floods
Nathalie Rombeek, Markus Hrachowitz, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1502,https://doi.org/10.5194/egusphere-2025-1502, 2025
Short summary
Evaporation measurements using commercial microwave links as scintillometers
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1128,https://doi.org/10.5194/egusphere-2025-1128, 2025
Short summary
The Dutch real-time gauge-adjusted radar precipitation product
Aart Overeem, Hidde Leijnse, Mats Veldhuizen, and Bastiaan Anker
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-160,https://doi.org/10.5194/essd-2025-160, 2025
Revised manuscript accepted for ESSD
Short summary

Cited articles

Aberson, K.: The spatial and temporal variability of the vertical dimension of rainstorms and their relation with precipitation intensity, internal report, https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubIR/IR2011-03.pdf (last access: 19 December 2023), 2011. a
Beekhuis, H. and Holleman, I.: Highlights of the digital-IF upgrade of the Dutch national radar network, online report, https://cdn.knmi.nl/system/data_center_publications/files/000/068/061/original/erad2008drup_0120.pdf?1495621011 (last access: 19 December 2023), 2008. a
Bogerd, L., Overeem, A., Leijnse, H., and Uijlenhoet, R.: A comprehensive five-year evaluation of IMERG late run precipitation estimates over the Netherlands, J. Hydrometeorol., 22, 1855–1868, https://doi.org/10.1175/JHM-D-21-0002.1, 2021. a, b
Casella, D., Panegrossi, G., Sanò, P., Milani, L., Petracca, M., and Dietrich, S.: A novel algorithm for detection of precipitation in tropical regions using PMW radiometers, Atmos. Meas. Tech., 8, 1217–1232, https://doi.org/10.5194/amt-8-1217-2015, 2015. a
Chang, N.-B. and Hong, Y.: Multiscale hydrologic remote sensing: perspectives and applications, CRC Press, ISBN 978-1-00-068727-9, 2012. a
Download
Short summary
Algorithms merge satellite radiometer data from various frequency channels, each tied to a different footprint size. We studied the uncertainty associated with sampling (over the Netherlands using 4 years of data) as precipitation is highly variable in space and time by simulating ground-based data as satellite footprints. Though sampling affects precipitation estimates, it doesn’t explain all discrepancies. Overall, uncertainties in the algorithm seem more influential than how data is sampled.
Share