Articles | Volume 3, issue 5
https://doi.org/10.5194/amt-3-1233-2010
https://doi.org/10.5194/amt-3-1233-2010
14 Sep 2010
 | 14 Sep 2010

Atmospheric influence on a laser beam observed on the OICETS – ARTEMIS communication demonstration link

A. Löscher

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances
Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, and Daniel Cummins
Atmos. Meas. Tech., 17, 4757–4775, https://doi.org/10.5194/amt-17-4757-2024,https://doi.org/10.5194/amt-17-4757-2024, 2024
Short summary
Evaluation of the effects of different lightning protection rods on the data quality of C-band weather radars
Cornelius Hald, Maximilian Schaper, Annette Böhm, Michael Frech, Jan Petersen, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 17, 4695–4707, https://doi.org/10.5194/amt-17-4695-2024,https://doi.org/10.5194/amt-17-4695-2024, 2024
Short summary
Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers
Samuel K. Kristoffersen, William E. Ward, and Chris E. Meek
Atmos. Meas. Tech., 17, 3995–4014, https://doi.org/10.5194/amt-17-3995-2024,https://doi.org/10.5194/amt-17-3995-2024, 2024
Short summary
A new dual-frequency stratospheric–tropospheric and meteor radar: system description and first results
Qingchen Xu, Iain Murray Reid, Bing Cai, Christian Adami, Zengmao Zhang, Mingliang Zhao, and Wen Li
Atmos. Meas. Tech., 17, 2957–2975, https://doi.org/10.5194/amt-17-2957-2024,https://doi.org/10.5194/amt-17-2957-2024, 2024
Short summary
The Doppler wind, temperature, and aerosol RMR lidar system at Kühlungsborn, Germany – Part 1: Technical specifications and capabilities
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
Atmos. Meas. Tech., 17, 2789–2809, https://doi.org/10.5194/amt-17-2789-2024,https://doi.org/10.5194/amt-17-2789-2024, 2024
Short summary

Cited articles

Churnside, J. H. and Clifford, S. F.: Log-normal Rician probability-density function of optical scintillations in the turbulent atmosphere, J. Opt. Soc. Am. A., 4, 10 October, 1923–1930, 1987.
Gorbunov, M. E. and Kirchengast, G.: Fluctuations of radio occultation signals in the X/K band in the presence of anisotropic turbulence and differential retrieval performance, Radio Sci., 42(1–10), RS4025, https://doi.org/10.1029/2006RS003544, 2007.
Gurvich, A. S., Kan, V., and Fedorova, V. O.: Refraction angle fluctuations in the atmosphere from space observations of stellar scintillations, Atmos. Ocean. Phys., 31(6), 742–749, 1996.
Gurvich, A. S. and Chunchuzov, I. P.: Parameters of the fine density structure in the stratosphere obtained from spacecraft observations of stellar scintillations, J. Geophys. Res., 108, 4166–4170, 2003.
Henninger, H. and Wilfert, O.: An introduction to Free-space Optical Communications, Radioengineering, 19(2), 203–212, 2010.