Articles | Volume 7, issue 9
Atmos. Meas. Tech., 7, 2919–2935, 2014
https://doi.org/10.5194/amt-7-2919-2014

Special issue: Tropospheric profiling (ISTP9)

Atmos. Meas. Tech., 7, 2919–2935, 2014
https://doi.org/10.5194/amt-7-2919-2014
Research article
12 Sep 2014
Research article | 12 Sep 2014

Impact of radar data assimilation for the simulation of a heavy rainfall case in central Italy using WRF–3DVAR

I. Maiello et al.

Related authors

A meteorological–hydrological regional ensemble forecast for an early-warning system over small Apennine catchments in Central Italy
Rossella Ferretti, Annalina Lombardi, Barbara Tomassetti, Lorenzo Sangelantoni, Valentina Colaiuda, Vincenzo Mazzarella, Ida Maiello, Marco Verdecchia, and Gianluca Redaelli
Hydrol. Earth Syst. Sci., 24, 3135–3156, https://doi.org/10.5194/hess-24-3135-2020,https://doi.org/10.5194/hess-24-3135-2020, 2020
Short summary
Impact of multiple radar reflectivity data assimilation on the numerical simulation of a flash flood event during the HyMeX campaign
Ida Maiello, Sabrina Gentile, Rossella Ferretti, Luca Baldini, Nicoletta Roberto, Errico Picciotti, Pier Paolo Alberoni, and Frank Silvio Marzano
Hydrol. Earth Syst. Sci., 21, 5459–5476, https://doi.org/10.5194/hess-21-5459-2017,https://doi.org/10.5194/hess-21-5459-2017, 2017
Short summary
Comparison between 3D-Var and 4D-Var data assimilation methods for the simulation of a heavy rainfall case in central Italy
Vincenzo Mazzarella, Ida Maiello, Vincenzo Capozzi, Giorgio Budillon, and Rossella Ferretti
Adv. Sci. Res., 14, 271–278, https://doi.org/10.5194/asr-14-271-2017,https://doi.org/10.5194/asr-14-271-2017, 2017
Short summary
Overview of the first HyMeX Special Observation Period over Italy: observations and model results
R. Ferretti, E. Pichelli, S. Gentile, I. Maiello, D. Cimini, S. Davolio, M. M. Miglietta, G. Panegrossi, L. Baldini, F. Pasi, F. S. Marzano, A. Zinzi, S. Mariani, M. Casaioli, G. Bartolini, N. Loglisci, A. Montani, C. Marsigli, A. Manzato, A. Pucillo, M. E. Ferrario, V. Colaiuda, and R. Rotunno
Hydrol. Earth Syst. Sci., 18, 1953–1977, https://doi.org/10.5194/hess-18-1953-2014,https://doi.org/10.5194/hess-18-1953-2014, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Modelling the spectral shape of continuous-wave lidar measurements in a turbulent wind tunnel
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022,https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary
Three-way calibration checks using ground-based, ship-based, and spaceborne radars
Alain Protat, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby
Atmos. Meas. Tech., 15, 915–926, https://doi.org/10.5194/amt-15-915-2022,https://doi.org/10.5194/amt-15-915-2022, 2022
Short summary
Rainfall retrieval algorithm for commercial microwave links: stochastic calibration
Wagner Wolff, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 15, 485–502, https://doi.org/10.5194/amt-15-485-2022,https://doi.org/10.5194/amt-15-485-2022, 2022
Short summary
Inter-comparison of wind measurements in the atmospheric boundary layer and the lower troposphere with Aeolus and a ground-based coherent Doppler lidar network over China
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech., 15, 131–148, https://doi.org/10.5194/amt-15-131-2022,https://doi.org/10.5194/amt-15-131-2022, 2022
Short summary
Towards operational multi-GNSS tropospheric products at GFZ Potsdam
Karina Wilgan, Galina Dick, Florian Zus, and Jens Wickert
Atmos. Meas. Tech., 15, 21–39, https://doi.org/10.5194/amt-15-21-2022,https://doi.org/10.5194/amt-15-21-2022, 2022
Short summary

Cited articles

Barker, D. M., Huang, W., Guo, Y.-G., and Bourgeois, A.: A Three-Dimensional Variational (3DVAR) Data Assimilation System For Use With MM5, NCAR Tech. Note, NCAR/TN-453+STR, UCAR Communications, Boulder, CO, 68 pp., 2003.
Barker, D. M., Huang, W., Guo, Y.-R., Bourgeois, A., and Xiao, Q.: A Three-Dimensional Variational (3DVAR) Data Assimilation System For Use With MM5: Implementation and Initial Results, Mon. Weather Rev., 132, 897–914, 2004.
Bech, J., Codina, B., Lorente, J., and Bebbington, D.: The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient, J. Atmos. Oceanic Technol., 20, 845–855, 2003.
Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation, Mon. Weather Rev., 129, 569–585, 2001
Chou M.-D. and Suarez, M. J.: An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Tech. Memo, 104606, 3, 85 pp., 1994.