Articles | Volume 7, issue 10
https://doi.org/10.5194/amt-7-3597-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/amt-7-3597-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Measurements of hydrogen sulfide (H2S) using PTR-MS: calibration, humidity dependence, inter-comparison and results from field studies in an oil and gas production region
R. Li
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
Department of Atmospheric {&} Oceanic Sciences, University of Colorado, Boulder, CO 80309, USA
C. Warneke
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
M. Graus
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
now at: Institute of Meteorology and Geophysics, Innsbruck University, Austria
R. Field
Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071, USA
F. Geiger
Karlsruhe Institute of Technology, IMK-ASF, Karlsruhe, Germany
P. R. Veres
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
J. Soltis
Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071, USA
Air Quality Research Division, Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada
S. M. Murphy
Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071, USA
C. Sweeney
Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
G. Pétron
Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
J. M. Roberts
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
J. de Gouw
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
Related authors
Bin Yuan, John Liggio, Jeremy Wentzell, Shao-Meng Li, Harald Stark, James M. Roberts, Jessica Gilman, Brian Lerner, Carsten Warneke, Rui Li, Amy Leithead, Hans D. Osthoff, Robert Wild, Steven S. Brown, and Joost A. de Gouw
Atmos. Chem. Phys., 16, 2139–2153, https://doi.org/10.5194/acp-16-2139-2016, https://doi.org/10.5194/acp-16-2139-2016, 2016
Short summary
Short summary
We describe high-resolution measurements of nitrated phenols using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS). Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Box model simulations were able to reproduce the measured nitrated phenols.
C. Warneke, P. Veres, S. M. Murphy, J. Soltis, R. A. Field, M. G. Graus, A. Koss, S.-M. Li, R. Li, B. Yuan, J. M. Roberts, and J. A. de Gouw
Atmos. Meas. Tech., 8, 411–420, https://doi.org/10.5194/amt-8-411-2015, https://doi.org/10.5194/amt-8-411-2015, 2015
Eric A. Ray, Fred L. Moore, Hella Garny, Eric J. Hintsa, Bradley D. Hall, Geoff S. Dutton, David Nance, James W. Elkins, Steven C. Wofsy, Jasna Pittman, Bruce Daube, Bianca C. Baier, Jianghanyang Li, and Colm Sweeney
Atmos. Chem. Phys., 24, 12425–12445, https://doi.org/10.5194/acp-24-12425-2024, https://doi.org/10.5194/acp-24-12425-2024, 2024
Short summary
Short summary
In this study we describe new techniques to derive age of air from multiple simultaneous measurements of long-lived trace gases in order to improve the fidelity of the age-of-air estimates and to be able to compare age of air from measurements taken from different instruments, platforms and decades. This technique also allows new transport information to be obtained from the measurements such as the primary source latitude that can also be compared to models.
Michael F. Link, Megan S. Claflin, Christina E. Cecelski, Ayomide A. Akande, Delaney Kilgour, Paul A. Heine, Matthew Coggon, Chelsea E. Stockwell, Andrew Jensen, Jie Yu, Han N. Huynh, Jenna C. Ditto, Carsten Warneke, William Dresser, Keighan Gemmell, Spiro Jorga, Rileigh L. Robertson, Joost de Gouw, Timothy Bertram, Jonathan P. D. Abbatt, Nadine Borduas-Dedekind, and Dustin Poppendieck
EGUsphere, https://doi.org/10.5194/egusphere-2024-3132, https://doi.org/10.5194/egusphere-2024-3132, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for the measurement of volatile organic compounds (VOCs) both indoors and outdoors. An analytical challenge for PTR-MS measurements is the formation of unintended measurement interferences, product ion distributions (PIDs), that may appear in the data as VOCs of interest. We developed a method for quantifying PID formation and use interlaboratory comparison data to put quantitative constraints on PID formation.
Hendrik Fuchs, Aaron Stainsby, Florian Berg, René Dubus, Michelle Färber, Andreas Hofzumahaus, Frank Holland, Kelvin H. Bates, Steven S. Brown, Matthew M. Coggon, Glenn S. Diskin, Georgios I. Gkatzelis, Christopher M. Jernigan, Jeff Peischl, Michael A. Robinson, Andrew W. Rollins, Nell B. Schafer, Rebecca H. Schwantes, Chelsea E. Stockwell, Patrick R. Veres, Carsten Warneke, Eleanor M. Waxman, Lu Xu, Kristen Zuraski, Andreas Wahner, and Anna Novelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2752, https://doi.org/10.5194/egusphere-2024-2752, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Significant improvements have been made to the instruments used to measure OH reactivity, which is equivalent to the sum of air pollutant concentrations. Accurate and precise measurements with a high time resolution have been achieved, allowing use on aircraft, as demonstrated during flights in the USA.
Andrew O. Langford, Raul J. Alvarez II, Kenneth C. Aikin, Sunil Baidar, W. Alan Brewer, Steven S. Brown, Matthew M. Coggan, Patrick D. Cullis, Jessica Gilman, Georgios I. Gkatzelis, Detlev Helmig, Bryan J. Johnson, K. Emma Knowland, Rajesh Kumar, Aaron D. Lamplugh, Audra McClure-Begley, Brandi J. McCarty, Ann M. Middlebrook, Gabriele Pfister, Jeff Peischl, Irina Petropavlovskikh, Pamela S. Rickley, Andrew W. Rollins, Scott P. Sandberg, Christoph J. Senff, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1938, https://doi.org/10.5194/egusphere-2024-1938, 2024
Short summary
Short summary
High ozone (O3) formed by reactions of nitrogen oxides (NOx) and volatile organic compounds (VOCs) can harm human health and welfare. High O3 is usually associated with hot summer days, but under certain conditions, high O3 can also form under winter conditions. In this study, we describe a high O3 event that occurred in Colorado during the COVID-19 quarantine that was caused in part by the decrease in traffic, and in part by a shallow inversion created by descent of stratospheric air.
Edward J. Strobach, Sunil Baidar, Brian J. Carroll, Steven S. Brown, Kristen Zuraski, Matthew Coggon, Chelsea E. Stockwell, Lu Xu, Yelena L. Pichugina, W. Alan Brewer, Carsten Warneke, Jeff Peischl, Jessica Gilman, Brandi McCarty, Maxwell Holloway, and Richard Marchbanks
Atmos. Chem. Phys., 24, 9277–9307, https://doi.org/10.5194/acp-24-9277-2024, https://doi.org/10.5194/acp-24-9277-2024, 2024
Short summary
Short summary
Large-scale weather patterns are isolated from local patterns to study the impact that different weather scales have on air quality measurements. While impacts from large-scale meteorology were evaluated by separating ozone (O3) exceedance (>70 ppb) and non-exceedance (<70 ppb) days, we developed a technique that allows direct comparisons of small temporal variations between chemical and dynamics measurements under rapid dynamical transitions.
Alexander C. Bradley, Barbara Dix, Fergus Mackenzie, J. Pepijn Veefkind, and Joost A. de Gouw
EGUsphere, https://doi.org/10.5194/egusphere-2024-2352, https://doi.org/10.5194/egusphere-2024-2352, 2024
Short summary
Short summary
Currently measurement of methane from the TROPOMI satellite is biased with respect to surface reflectance. This study demonstrates a new method of correcting for this bias on a seasonal timescale to allow for differences in surface reflectance in areas of intense agriculture where growing seasons may introduce a reflectance bias. We have successfully implemented this technique in the Denver-Julesburg basin where agriculture and methane extraction infrastructure is often co-located.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1899, https://doi.org/10.5194/egusphere-2024-1899, 2024
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking are important sources that impact air quality. This study used a model to evaluate how these emissions impact ozone in the Los Angeles Basin, and quantifies the impact of gaseous cooking emissions for the first time. Accurate representation of these and other man-made sources in inventories is crucial to inform effective air quality policies.
Zachary Finewax, Aparajeo Chattopadhyay, J. Andrew Neuman, James Roberts, and James Burkholder
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-94, https://doi.org/10.5194/amt-2024-94, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This work provides a comprehensive sensitivity calibration of a chemical ionization instrument commonly used in field measurements for the measurement of the toxic isomers methyl isocyanate and hydroxyacetonitrile that are found in the atmosphere. The results from this work has demonstrated that the hydroyacetonitrile isomer was observed in previous field studies rather than the stated identification of methyl isocyanate.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Amanda R. Fay, David R. Munro, Galen A. McKinley, Denis Pierrot, Stewart C. Sutherland, Colm Sweeney, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 2123–2139, https://doi.org/10.5194/essd-16-2123-2024, https://doi.org/10.5194/essd-16-2123-2024, 2024
Short summary
Short summary
Presented here is a near-global monthly climatological estimate of the difference between atmosphere and ocean carbon dioxide concentrations. The ocean's ability to take up carbon, both now and in the future, is defined by this difference in concentrations. With over 30 million measurements of surface ocean carbon over the last 40 years and utilization of an extrapolation technique, a mean estimate of surface ocean ΔfCO2 is presented.
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Melissa A. Morris, Demetrios Pagonis, Douglas A. Day, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
Atmos. Meas. Tech., 17, 1545–1559, https://doi.org/10.5194/amt-17-1545-2024, https://doi.org/10.5194/amt-17-1545-2024, 2024
Short summary
Short summary
Polymer absorption of volatile organic compounds (VOCs) is important to characterize for atmospheric sampling setups (as interactions cause sampling delays) and indoor air quality. Here we test different polymer materials and quantify their absorptive capacities through modeling. We found the main polymers in carpets to be highly absorptive, acting as large reservoirs for indoor pollution. We also demonstrated how polymer tubes can be used as a low-cost gas separation technique.
Matthew M. Coggon, Chelsea E. Stockwell, Megan S. Claflin, Eva Y. Pfannerstill, Lu Xu, Jessica B. Gilman, Julia Marcantonio, Cong Cao, Kelvin Bates, Georgios I. Gkatzelis, Aaron Lamplugh, Erin F. Katz, Caleb Arata, Eric C. Apel, Rebecca S. Hornbrook, Felix Piel, Francesca Majluf, Donald R. Blake, Armin Wisthaler, Manjula Canagaratna, Brian M. Lerner, Allen H. Goldstein, John E. Mak, and Carsten Warneke
Atmos. Meas. Tech., 17, 801–825, https://doi.org/10.5194/amt-17-801-2024, https://doi.org/10.5194/amt-17-801-2024, 2024
Short summary
Short summary
Mass spectrometry is a tool commonly used to measure air pollutants. This study evaluates measurement artifacts produced in the proton-transfer-reaction mass spectrometer. We provide methods to correct these biases and better measure compounds that degrade air quality.
Tianran Han, Conghui Xie, Yayong Liu, Yanrong Yang, Yuheng Zhang, Yufei Huang, Xiangyu Gao, Xiaohua Zhang, Fangmin Bao, and Shao-Meng Li
Atmos. Meas. Tech., 17, 677–691, https://doi.org/10.5194/amt-17-677-2024, https://doi.org/10.5194/amt-17-677-2024, 2024
Short summary
Short summary
This study reported an integrated UAV measurement platform for GHG monitoring and its application for emission quantification from a coking plant. The key element of this system is a newly designed air sampler, consisting of a 150 m long tube with remote-controlled time stamping. When comparing the top-down results to those derived from the bottom-up inventory method, the present findings indicate that the use of IPCC emission factors for emission calculations can lead to overestimation.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Yanrong Yang, Yuheng Zhang, Tianran Han, Conghui Xie, Yayong Liu, Yufei Huang, Jietao Zhou, Haijiong Sun, Delong Zhao, Kui Zhang, and Shao-Meng Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-248, https://doi.org/10.5194/amt-2023-248, 2024
Preprint withdrawn
Short summary
Short summary
The paper introduces a correction algorithm for accurate wind speed measurement in a multirotor unmanned aerial vehicle (UAV) with a sonic anemometer. Addressing propeller rotation, UAV movement, and attitude changes, it integrates computational fluid dynamics simulation and regression analysis. This comprehensive algorithm corrects rotor disturbances, motion, and attitude variations. Validation against meteorological tower data demonstrates its enhanced reliability in wind speed measurements.
Lisa Azzarello, Rebecca A. Washenfelder, Michael A. Robinson, Alessandro Franchin, Caroline C. Womack, Christopher D. Holmes, Steven S. Brown, Ann Middlebrook, Tim Newberger, Colm Sweeney, and Cora J. Young
Atmos. Chem. Phys., 23, 15643–15654, https://doi.org/10.5194/acp-23-15643-2023, https://doi.org/10.5194/acp-23-15643-2023, 2023
Short summary
Short summary
We present a molecular size-resolved offline analysis of water-soluble brown carbon collected on an aircraft during FIREX-AQ. The smoke plumes were aged 0 to 5 h, where absorption was dominated by small molecular weight molecules, brown carbon absorption downwind did not consistently decrease, and the measurements differed from online absorption measurements of the same samples. We show how differences between online and offline absorption could be related to different measurement conditions.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Andrew R. Jensen, Abigail R. Koss, Ryder B. Hales, and Joost A. de Gouw
Atmos. Meas. Tech., 16, 5261–5285, https://doi.org/10.5194/amt-16-5261-2023, https://doi.org/10.5194/amt-16-5261-2023, 2023
Short summary
Short summary
Quantification of a wide range of volatile organic compounds by proton-transfer-reaction mass spectrometry (PTR-MS) can be achieved with direct calibration of only a subset of compounds, characterization of instrument response, and simple reaction kinetics. We characterized our Vocus PTR-MS and developed a toolkit as a guide through this process. A catalytic zero air generator provided the lowest detection limits, and short, frequent calibrations informed variability in instrument response.
Taomou Zong, Zhijun Wu, Junrui Wang, Kai Bi, Wenxu Fang, Yanrong Yang, Xuena Yu, Zhier Bao, Xiangxinyue Meng, Yuheng Zhang, Song Guo, Yang Chen, Chunshan Liu, Yue Zhang, Shao-Meng Li, and Min Hu
Atmos. Meas. Tech., 16, 3679–3692, https://doi.org/10.5194/amt-16-3679-2023, https://doi.org/10.5194/amt-16-3679-2023, 2023
Short summary
Short summary
This study developed and characterized an indoor chamber system (AIR) to simulate atmospheric multiphase chemistry processes. The AIR chamber can accurately control temperature and relative humidity (RH) over a broad range and simulate diurnal variation of ambient atmospheric RH. The aerosol generation unit can generate organic-coating seed particles with different phase states. The AIR chamber demonstrates high-quality performance in simulating secondary aerosol formation.
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
Jianghanyang Li, Bianca C. Baier, Fred Moore, Tim Newberger, Sonja Wolter, Jack Higgs, Geoff Dutton, Eric Hintsa, Bradley Hall, and Colm Sweeney
Atmos. Meas. Tech., 16, 2851–2863, https://doi.org/10.5194/amt-16-2851-2023, https://doi.org/10.5194/amt-16-2851-2023, 2023
Short summary
Short summary
Monitoring a suite of trace gases in the stratosphere will help us better understand the stratospheric circulation and its impact on the earth's radiation balance. However, such measurements are rare and usually expensive. We developed an instrument that can measure stratospheric trace gases using a low-cost sampling platform (AirCore). The results showed expected agreement with aircraft measurements, demonstrating this technique provides a low-cost and robust way to observe the stratosphere.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023, https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Short summary
Air quality in the USA has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfire pollution in the western USA in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we used a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western USA.
Anna Agustí-Panareda, Jérôme Barré, Sébastien Massart, Antje Inness, Ilse Aben, Melanie Ades, Bianca C. Baier, Gianpaolo Balsamo, Tobias Borsdorff, Nicolas Bousserez, Souhail Boussetta, Michael Buchwitz, Luca Cantarello, Cyril Crevoisier, Richard Engelen, Henk Eskes, Johannes Flemming, Sébastien Garrigues, Otto Hasekamp, Vincent Huijnen, Luke Jones, Zak Kipling, Bavo Langerock, Joe McNorton, Nicolas Meilhac, Stefan Noël, Mark Parrington, Vincent-Henri Peuch, Michel Ramonet, Miha Razinger, Maximilian Reuter, Roberto Ribas, Martin Suttie, Colm Sweeney, Jérôme Tarniewicz, and Lianghai Wu
Atmos. Chem. Phys., 23, 3829–3859, https://doi.org/10.5194/acp-23-3829-2023, https://doi.org/10.5194/acp-23-3829-2023, 2023
Short summary
Short summary
We present a global dataset of atmospheric CO2 and CH4, the two most important human-made greenhouse gases, which covers almost 2 decades (2003–2020). It is produced by combining satellite data of CO2 and CH4 with a weather and air composition prediction model, and it has been carefully evaluated against independent observations to ensure validity and point out deficiencies to the user. This dataset can be used for scientific studies in the field of climate change and the global carbon cycle.
John W. Halfacre, Jordan Stewart, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Michael Flynn, Stephen J. Andrews, Steven S. Brown, Patrick R. Veres, and Pete M. Edwards
Atmos. Meas. Tech., 16, 1407–1429, https://doi.org/10.5194/amt-16-1407-2023, https://doi.org/10.5194/amt-16-1407-2023, 2023
Short summary
Short summary
This study details a new sampling method for the optical detection of hydrogen chloride (HCl). HCl is an important atmospheric reservoir for chlorine atoms, which can affect nitrogen oxide cycling and the lifetimes of volatile organic compounds and ozone. However, HCl has a high affinity for interacting with surfaces, thereby preventing fast, quantitative measurements. The sampling technique in this study minimizes these surface interactions and provides a high-quality measurement of HCl.
Nasrin Mostafavi Pak, Jacob K. Hedelius, Sébastien Roche, Liz Cunningham, Bianca Baier, Colm Sweeney, Coleen Roehl, Joshua Laughner, Geoffrey Toon, Paul Wennberg, Harrison Parker, Colin Arrowsmith, Joseph Mendonca, Pierre Fogal, Tyler Wizenberg, Beatriz Herrera, Kimberly Strong, Kaley A. Walker, Felix Vogel, and Debra Wunch
Atmos. Meas. Tech., 16, 1239–1261, https://doi.org/10.5194/amt-16-1239-2023, https://doi.org/10.5194/amt-16-1239-2023, 2023
Short summary
Short summary
Ground-based remote sensing instruments in the Total Carbon Column Observing Network (TCCON) measure greenhouse gases in the atmosphere. Consistency between TCCON measurements is crucial to accurately infer changes in atmospheric composition. We use portable remote sensing instruments (EM27/SUN) to evaluate biases between TCCON stations in North America. We also improve the retrievals of EM27/SUN instruments and evaluate the previous (GGG2014) and newest (GGG2020) retrieval algorithms.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Lei Hu, Deborah Ottinger, Stephanie Bogle, Stephen A. Montzka, Philip L. DeCola, Ed Dlugokencky, Arlyn Andrews, Kirk Thoning, Colm Sweeney, Geoff Dutton, Lauren Aepli, and Andrew Crotwell
Atmos. Chem. Phys., 23, 1437–1448, https://doi.org/10.5194/acp-23-1437-2023, https://doi.org/10.5194/acp-23-1437-2023, 2023
Short summary
Short summary
Effective mitigation of greenhouse gas (GHG) emissions relies on an accurate understanding of emissions. Here we demonstrate the added value of using inventory- and atmosphere-based approaches for estimating US emissions of SF6, the most potent GHG known. The results suggest a large decline in US SF6 emissions, shed light on the possible processes causing the differences between the independent estimates, and identify opportunities for substantial additional emission reductions.
Lu Xu, Matthew M. Coggon, Chelsea E. Stockwell, Jessica B. Gilman, Michael A. Robinson, Martin Breitenlechner, Aaron Lamplugh, John D. Crounse, Paul O. Wennberg, J. Andrew Neuman, Gordon A. Novak, Patrick R. Veres, Steven S. Brown, and Carsten Warneke
Atmos. Meas. Tech., 15, 7353–7373, https://doi.org/10.5194/amt-15-7353-2022, https://doi.org/10.5194/amt-15-7353-2022, 2022
Short summary
Short summary
We describe the development and operation of a chemical ionization mass spectrometer using an ammonium–water cluster (NH4+·H2O) as a reagent ion. NH4+·H2O is a highly versatile reagent ion for measurements of a wide range of oxygenated organic compounds. The major product ion is the cluster with NH4+ produced via ligand-switching reactions. The instrumental sensitivities of analytes depend on the binding energy of the analyte–NH4+ cluster; sensitivities can be estimated using voltage scanning.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Joël Thanwerdas, Marielle Saunois, Isabelle Pison, Didier Hauglustaine, Antoine Berchet, Bianca Baier, Colm Sweeney, and Philippe Bousquet
Atmos. Chem. Phys., 22, 15489–15508, https://doi.org/10.5194/acp-22-15489-2022, https://doi.org/10.5194/acp-22-15489-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) concentrations have been rising since 2007, resulting from an imbalance between CH4 sources and sinks. The CH4 budget is generally estimated through top-down approaches using CH4 and δ13C(CH4) observations as constraints. The oxidation by chlorine (Cl) contributes little to the total oxidation of CH4 but strongly influences δ13C(CH4). Here, we compare multiple recent Cl fields and quantify the influence of Cl concentrations on CH4, δ13C(CH4), and CH4 budget estimates.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Broghan M. Erland, Cristen Adams, Andrea Darlington, Mackenzie L. Smith, Andrew K. Thorpe, Gregory R. Wentworth, Steve Conley, John Liggio, Shao-Meng Li, Charles E. Miller, and John A. Gamon
Atmos. Meas. Tech., 15, 5841–5859, https://doi.org/10.5194/amt-15-5841-2022, https://doi.org/10.5194/amt-15-5841-2022, 2022
Short summary
Short summary
Accurately estimating greenhouse gas (GHG) emissions is essential to reaching net-zero goals to combat the climate crisis. Airborne box-flights are ideal for assessing regional GHG emissions, as they can attain small error. We compare two box-flight algorithms and found they produce similar results, but daily variability must be considered when deriving emissions inventories. Increasing the consistency and agreement between airborne methods moves us closer to achieving more accurate estimates.
Katherine L. Hayden, Shao-Meng Li, John Liggio, Michael J. Wheeler, Jeremy J. B. Wentzell, Amy Leithead, Peter Brickell, Richard L. Mittermeier, Zachary Oldham, Cristian M. Mihele, Ralf M. Staebler, Samar G. Moussa, Andrea Darlington, Mengistu Wolde, Daniel Thompson, Jack Chen, Debora Griffin, Ellen Eckert, Jenna C. Ditto, Megan He, and Drew R. Gentner
Atmos. Chem. Phys., 22, 12493–12523, https://doi.org/10.5194/acp-22-12493-2022, https://doi.org/10.5194/acp-22-12493-2022, 2022
Short summary
Short summary
In this study, airborne measurements provided the most detailed characterization, to date, of boreal forest wildfire emissions. Measurements showed a large diversity of air pollutants expanding the volatility range typically reported. A large portion of organic species was unidentified, likely comprised of complex organic compounds. Aircraft-derived emissions improve wildfire chemical speciation and can support reliable model predictions of pollution from boreal forest wildfires.
Therese S. Carter, Colette L. Heald, Jesse H. Kroll, Eric C. Apel, Donald Blake, Matthew Coggon, Achim Edtbauer, Georgios Gkatzelis, Rebecca S. Hornbrook, Jeff Peischl, Eva Y. Pfannerstill, Felix Piel, Nina G. Reijrink, Akima Ringsdorf, Carsten Warneke, Jonathan Williams, Armin Wisthaler, and Lu Xu
Atmos. Chem. Phys., 22, 12093–12111, https://doi.org/10.5194/acp-22-12093-2022, https://doi.org/10.5194/acp-22-12093-2022, 2022
Short summary
Short summary
Fires emit many gases which can contribute to smog and air pollution. However, the amount and properties of these chemicals are not well understood, so this work updates and expands their representation in a global atmospheric model, including by adding new chemicals. We confirm that this updated representation generally matches measurements taken in several fire regions. We then show that fires provide ~15 % of atmospheric reactivity globally and more than 75 % over fire source regions.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Shang Liu, Barbara Barletta, Rebecca S. Hornbrook, Alan Fried, Jeff Peischl, Simone Meinardi, Matthew Coggon, Aaron Lamplugh, Jessica B. Gilman, Georgios I. Gkatzelis, Carsten Warneke, Eric C. Apel, Alan J. Hills, Ilann Bourgeois, James Walega, Petter Weibring, Dirk Richter, Toshihiro Kuwayama, Michael FitzGibbon, and Donald Blake
Atmos. Chem. Phys., 22, 10937–10954, https://doi.org/10.5194/acp-22-10937-2022, https://doi.org/10.5194/acp-22-10937-2022, 2022
Short summary
Short summary
California’s ozone persistently exceeds the air quality standards. We studied the spatial distribution of volatile organic compounds (VOCs) that produce ozone over the most polluted regions in California using aircraft measurements. We find that the oxygenated VOCs have the highest ozone formation potential. Spatially, biogenic VOCs are important during high ozone episodes in the South Coast Air Basin, while dairy emissions may be critical for ozone production in San Joaquin Valley.
Chong Han, Hongxing Yang, Kun Li, Patrick Lee, John Liggio, Amy Leithead, and Shao-Meng Li
Atmos. Chem. Phys., 22, 10827–10839, https://doi.org/10.5194/acp-22-10827-2022, https://doi.org/10.5194/acp-22-10827-2022, 2022
Short summary
Short summary
We presented yields and compositions of Si-containing SOAs generated from the reaction of cVMSs (D3–D6) with OH radicals. NOx played a negative role in cVMS SOA formation, while ammonium sulfate seeds enhanced D3–D5 SOA yields at short photochemical ages under high-NOx conditions. The aerosol mass spectra confirmed that the components of cVMS SOAs significantly relied on OH exposure. A global cVMS-derived SOA source strength was estimated in order to understand SOA formation potentials of cVMSs.
Sara Martínez-Alonso, Merritt N. Deeter, Bianca C. Baier, Kathryn McKain, Helen Worden, Tobias Borsdorff, Colm Sweeney, and Ilse Aben
Atmos. Meas. Tech., 15, 4751–4765, https://doi.org/10.5194/amt-15-4751-2022, https://doi.org/10.5194/amt-15-4751-2022, 2022
Short summary
Short summary
AirCore is a novel balloon sampling system that can measure, among others, vertical profiles of carbon monoxide (CO) from 25–30 km of altitude to near the surface. Our analyses of AirCore and satellite CO data show that AirCore profiles are suited for satellite data validation, the use of shorter aircraft vertical profiles in satellite validation results in small errors (1–3 percent points) mostly at 300 hPa and above, and the error introduced by clouds in TROPOMI land data is small (1–2 %).
Michael A. Robinson, J. Andrew Neuman, L. Gregory Huey, James M. Roberts, Steven S. Brown, and Patrick R. Veres
Atmos. Meas. Tech., 15, 4295–4305, https://doi.org/10.5194/amt-15-4295-2022, https://doi.org/10.5194/amt-15-4295-2022, 2022
Short summary
Short summary
Iodide chemical ionization mass spectrometry (CIMS) is commonly used in atmospheric chemistry laboratory studies and field campaigns. Deployment of the NOAA iodide CIMS instrument in the summer of 2021 indicated a significant and overlooked temperature dependence of the instrument sensitivity. This work explores which analytes are influenced by this phenomena. Additionally, we recommend controls to reduce this effect for future field deployments.
Linghan Zeng, Jack Dibb, Eric Scheuer, Joseph M. Katich, Joshua P. Schwarz, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Carsten Warneke, Anne E. Perring, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Richard H. Moore, Elizabeth B. Wiggins, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Lu Xu, and Rodney J. Weber
Atmos. Chem. Phys., 22, 8009–8036, https://doi.org/10.5194/acp-22-8009-2022, https://doi.org/10.5194/acp-22-8009-2022, 2022
Short summary
Short summary
Wildfires emit aerosol particles containing brown carbon material that affects visibility and global climate and is toxic. Brown carbon is poorly characterized due to measurement limitations, and its evolution in the atmosphere is not well known. We report on aircraft measurements of brown carbon from large wildfires in the western United States. We compare two methods for measuring brown carbon and study the evolution of brown carbon in the smoke as it moved away from the burning regions.
Min Huang, James H. Crawford, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Colm Sweeney
Atmos. Chem. Phys., 22, 7461–7487, https://doi.org/10.5194/acp-22-7461-2022, https://doi.org/10.5194/acp-22-7461-2022, 2022
Short summary
Short summary
This study demonstrates that ozone dry-deposition modeling can be improved by revising the model's dry-deposition parameterizations to better represent the effects of environmental conditions including the soil moisture fields. Applying satellite soil moisture data assimilation is shown to also have added value. Such advancements in coupled modeling and data assimilation can benefit the assessments of ozone impacts on human and vegetation health.
Colm Sweeney, Abhishek Chatterjee, Sonja Wolter, Kathryn McKain, Robert Bogue, Stephen Conley, Tim Newberger, Lei Hu, Lesley Ott, Benjamin Poulter, Luke Schiferl, Brad Weir, Zhen Zhang, and Charles E. Miller
Atmos. Chem. Phys., 22, 6347–6364, https://doi.org/10.5194/acp-22-6347-2022, https://doi.org/10.5194/acp-22-6347-2022, 2022
Short summary
Short summary
The Arctic Carbon Atmospheric Profiles (Arctic-CAP) project demonstrates the utility of aircraft profiles for independent evaluation of model-derived emissions and uptake of atmospheric CO2, CH4, and CO from land and ocean. Comparison with the Goddard Earth Observing System (GEOS) modeling system suggests that fluxes of CO2 are very consistent with observations, while those of CH4 have some regional and seasonal biases, and that CO comparison is complicated by transport errors.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Kun Zhang, Zhiqiang Liu, Xiaojuan Zhang, Qing Li, Andrew Jensen, Wen Tan, Ling Huang, Yangjun Wang, Joost de Gouw, and Li Li
Atmos. Chem. Phys., 22, 4853–4866, https://doi.org/10.5194/acp-22-4853-2022, https://doi.org/10.5194/acp-22-4853-2022, 2022
Short summary
Short summary
A significant increase in O3 concentrations was found during the lockdown period of COVID-19 in most areas of China. By field measurements coupled with machine learning, an observation-based model (OBM) and sensitivity analysis, we found the changes in the NOx / VOC ratio were a key reason for the significant rise in O3. To restrain O3 pollution, more efforts should be devoted to the control of anthropogenic OVOCs, alkenes and aromatics.
Martin Breitenlechner, Gordon A. Novak, J. Andrew Neuman, Andrew W. Rollins, and Patrick R. Veres
Atmos. Meas. Tech., 15, 1159–1169, https://doi.org/10.5194/amt-15-1159-2022, https://doi.org/10.5194/amt-15-1159-2022, 2022
Short summary
Short summary
We coupled a new ion source to a commercially available state-of-the-art trace gas analyzer. The instrument is particularly well suited for conducting high-altitude observations, addressing the challenges of low ambient pressures and a complex sample matrix. The new instrument and ion source provides significant advantages to more traditional modes of operation, without sacrificing the sensitivity and flexibility of this technique.
Lei Hu, Stephen A. Montzka, Fred Moore, Eric Hintsa, Geoff Dutton, M. Carolina Siso, Kirk Thoning, Robert W. Portmann, Kathryn McKain, Colm Sweeney, Isaac Vimont, David Nance, Bradley Hall, and Steven Wofsy
Atmos. Chem. Phys., 22, 2891–2907, https://doi.org/10.5194/acp-22-2891-2022, https://doi.org/10.5194/acp-22-2891-2022, 2022
Short summary
Short summary
The unexpected increase in CFC-11 emissions between 2012 and 2017 resulted in concerns about delaying the stratospheric ozone recovery. Although the subsequent decline of CFC-11 emissions indicated a mitigation in part to this problem, the regions fully responsible for these large emission changes were unclear. Here, our new estimate, based on atmospheric measurements from two global campaigns and from NOAA, suggests Asia primarily contributed to the global CFC-11 emission rise during 2012–2017.
Ka Ming Fung, Colette L. Heald, Jesse H. Kroll, Siyuan Wang, Duseong S. Jo, Andrew Gettelman, Zheng Lu, Xiaohong Liu, Rahul A. Zaveri, Eric C. Apel, Donald R. Blake, Jose-Luis Jimenez, Pedro Campuzano-Jost, Patrick R. Veres, Timothy S. Bates, John E. Shilling, and Maria Zawadowicz
Atmos. Chem. Phys., 22, 1549–1573, https://doi.org/10.5194/acp-22-1549-2022, https://doi.org/10.5194/acp-22-1549-2022, 2022
Short summary
Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary
Short summary
Satellite-derived NOx emissions from biomass burning are estimated with TROPOMI observations. Two common emission estimation methods are applied, and sensitivity tests with model output were performed to determine the accuracy of these methods. The effect of smoke aerosols on TROPOMI NO2 columns is estimated and compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America.
Jin Liao, Glenn M. Wolfe, Reem A. Hannun, Jason M. St. Clair, Thomas F. Hanisco, Jessica B. Gilman, Aaron Lamplugh, Vanessa Selimovic, Glenn S. Diskin, John B. Nowak, Hannah S. Halliday, Joshua P. DiGangi, Samuel R. Hall, Kirk Ullmann, Christopher D. Holmes, Charles H. Fite, Anxhelo Agastra, Thomas B. Ryerson, Jeff Peischl, Ilann Bourgeois, Carsten Warneke, Matthew M. Coggon, Georgios I. Gkatzelis, Kanako Sekimoto, Alan Fried, Dirk Richter, Petter Weibring, Eric C. Apel, Rebecca S. Hornbrook, Steven S. Brown, Caroline C. Womack, Michael A. Robinson, Rebecca A. Washenfelder, Patrick R. Veres, and J. Andrew Neuman
Atmos. Chem. Phys., 21, 18319–18331, https://doi.org/10.5194/acp-21-18319-2021, https://doi.org/10.5194/acp-21-18319-2021, 2021
Short summary
Short summary
Formaldehyde (HCHO) is an important oxidant precursor and affects the formation of O3 and other secondary pollutants in wildfire plumes. We disentangle the processes controlling HCHO evolution from wildfire plumes sampled by NASA DC-8 during FIREX-AQ. We find that OH abundance rather than normalized OH reactivity is the main driver of fire-to-fire variability in HCHO secondary production and estimate an effective HCHO yield per volatile organic compound molecule oxidized in wildfire plumes.
James M. Roberts
Atmos. Chem. Phys., 21, 16793–16795, https://doi.org/10.5194/acp-21-16793-2021, https://doi.org/10.5194/acp-21-16793-2021, 2021
Short summary
Short summary
This comment provides evidence that recently reported measurements of the isotope composition of wildfire-derived oxides of nitrogen have a significant interference from other nitrogen compounds. In addition, the conceptual model used to interpret the results was missing several key reactions.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Sepehr Fathi, Mark Gordon, Paul A. Makar, Ayodeji Akingunola, Andrea Darlington, John Liggio, Katherine Hayden, and Shao-Meng Li
Atmos. Chem. Phys., 21, 15461–15491, https://doi.org/10.5194/acp-21-15461-2021, https://doi.org/10.5194/acp-21-15461-2021, 2021
Short summary
Short summary
We have investigated the accuracy of aircraft-based mass balance methodologies through computer model simulations of the atmosphere and air quality at a regional high-resolution scale. We have defined new quantitative metrics to reduce emission retrieval uncertainty by evaluating top-down mass balance estimates against the known simulated meteorology and input emissions. We also recommend methodologies and flight strategies for improved retrievals in future aircraft-based studies.
Xuan Wang, Daniel J. Jacob, William Downs, Shuting Zhai, Lei Zhu, Viral Shah, Christopher D. Holmes, Tomás Sherwen, Becky Alexander, Mathew J. Evans, Sebastian D. Eastham, J. Andrew Neuman, Patrick R. Veres, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Thomas J. Bannan, Carl J. Percival, Ben H. Lee, and Joel A. Thornton
Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, https://doi.org/10.5194/acp-21-13973-2021, 2021
Short summary
Short summary
Halogen radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a new mechanistic description and comprehensive simulation of tropospheric halogens in a global 3-D model and compare the model results with surface and aircraft measurements. We find that halogen chemistry decreases the global tropospheric burden of ozone by 11 %, NOx by 6 %, and OH by 4 %.
Teles C. Furlani, Patrick R. Veres, Kathryn E. R. Dawe, J. Andrew Neuman, Steven S. Brown, Trevor C. VandenBoer, and Cora J. Young
Atmos. Meas. Tech., 14, 5859–5871, https://doi.org/10.5194/amt-14-5859-2021, https://doi.org/10.5194/amt-14-5859-2021, 2021
Short summary
Short summary
This study characterized and validated a commercial spectroscopic instrument for the measurement of hydrogen chloride (HCl) in the atmosphere. Near the Earth’s surface, HCl acts as the dominant reservoir for other chlorine-containing reactive chemicals that play an important role in atmospheric chemistry. The properties of HCl make it challenging to measure. This instrument can overcome many of these challenges, enabling reliable HCl measurements.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Yenny Gonzalez, Róisín Commane, Ethan Manninen, Bruce C. Daube, Luke D. Schiferl, J. Barry McManus, Kathryn McKain, Eric J. Hintsa, James W. Elkins, Stephen A. Montzka, Colm Sweeney, Fred Moore, Jose L. Jimenez, Pedro Campuzano Jost, Thomas B. Ryerson, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Eric Ray, Paul O. Wennberg, John Crounse, Michelle Kim, Hannah M. Allen, Paul A. Newman, Britton B. Stephens, Eric C. Apel, Rebecca S. Hornbrook, Benjamin A. Nault, Eric Morgan, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 11113–11132, https://doi.org/10.5194/acp-21-11113-2021, https://doi.org/10.5194/acp-21-11113-2021, 2021
Short summary
Short summary
Vertical profiles of N2O and a variety of chemical species and aerosols were collected nearly from pole to pole over the oceans during the NASA Atmospheric Tomography mission. We observed that tropospheric N2O variability is strongly driven by the influence of stratospheric air depleted in N2O, especially at middle and high latitudes. We also traced the origins of biomass burning and industrial emissions and investigated their impact on the variability of tropospheric N2O.
Konstantin Baibakov, Samuel LeBlanc, Keyvan Ranjbar, Norman T. O'Neill, Mengistu Wolde, Jens Redemann, Kristina Pistone, Shao-Meng Li, John Liggio, Katherine Hayden, Tak W. Chan, Michael J. Wheeler, Leonid Nichman, Connor Flynn, and Roy Johnson
Atmos. Chem. Phys., 21, 10671–10687, https://doi.org/10.5194/acp-21-10671-2021, https://doi.org/10.5194/acp-21-10671-2021, 2021
Short summary
Short summary
We find that the airborne measurements of the vertical extinction due to aerosols (aerosol optical depth, AOD) obtained in the Athabasca Oil Sands Region (AOSR) can significantly exceed ground-based values. This can have an effect on estimating the AOSR radiative impact and is relevant to satellite validation based on ground-based measurements. We also show that the AOD can marginally increase as the plumes are being transported away from the source and the new particles are being formed.
Elizabeth B. Wiggins, Arlyn Andrews, Colm Sweeney, John B. Miller, Charles E. Miller, Sander Veraverbeke, Roisin Commane, Steven Wofsy, John M. Henderson, and James T. Randerson
Atmos. Chem. Phys., 21, 8557–8574, https://doi.org/10.5194/acp-21-8557-2021, https://doi.org/10.5194/acp-21-8557-2021, 2021
Short summary
Short summary
We analyzed high-resolution trace gas measurements collected from a tower in Alaska during a very active fire season to improve our understanding of trace gas emissions from boreal forest fires. Our results suggest previous studies may have underestimated emissions from smoldering combustion in boreal forest fires.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Sébastien Roche, Kimberly Strong, Debra Wunch, Joseph Mendonca, Colm Sweeney, Bianca Baier, Sébastien C. Biraud, Joshua L. Laughner, Geoffrey C. Toon, and Brian J. Connor
Atmos. Meas. Tech., 14, 3087–3118, https://doi.org/10.5194/amt-14-3087-2021, https://doi.org/10.5194/amt-14-3087-2021, 2021
Short summary
Short summary
We evaluate CO2 profile retrievals from ground-based near-infrared solar absorption spectra after implementing several improvements to the GFIT2 retrieval algorithm. Realistic errors in the a priori temperature profile (~ 2 °C in the lower troposphere) are found to be the leading source of differences between the retrieved and true CO2 profiles, differences that are larger than typical CO2 variability. A temperature retrieval or correction is critical to improve CO2 profile retrieval results.
Chelsea E. Stockwell, Matthew M. Coggon, Georgios I. Gkatzelis, John Ortega, Brian C. McDonald, Jeff Peischl, Kenneth Aikin, Jessica B. Gilman, Michael Trainer, and Carsten Warneke
Atmos. Chem. Phys., 21, 6005–6022, https://doi.org/10.5194/acp-21-6005-2021, https://doi.org/10.5194/acp-21-6005-2021, 2021
Short summary
Short summary
Volatile chemical products are emerging as a large source of petrochemical organics in urban environments. We identify markers for the coatings category by linking ambient observations to laboratory measurements, investigating volatile organic compound (VOC) composition, and quantifying key VOC emissions via controlled evaporation experiments. Ingredients and sales surveys are used to confirm the prevalence and usage trends to support the assignment of water and solvent-borne coating tracers.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Junjie Liu, Latha Baskaran, Kevin Bowman, David Schimel, A. Anthony Bloom, Nicholas C. Parazoo, Tomohiro Oda, Dustin Carroll, Dimitris Menemenlis, Joanna Joiner, Roisin Commane, Bruce Daube, Lucianna V. Gatti, Kathryn McKain, John Miller, Britton B. Stephens, Colm Sweeney, and Steven Wofsy
Earth Syst. Sci. Data, 13, 299–330, https://doi.org/10.5194/essd-13-299-2021, https://doi.org/10.5194/essd-13-299-2021, 2021
Short summary
Short summary
On average, the terrestrial biosphere carbon sink is equivalent to ~ 20 % of fossil fuel emissions. Understanding where and why the terrestrial biosphere absorbs carbon from the atmosphere is pivotal to any mitigation policy. Here we present a regionally resolved satellite-constrained net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. The dataset provides a unique perspective on monitoring regional contributions to the CO2 growth rate.
Shamil Maksyutov, Tomohiro Oda, Makoto Saito, Rajesh Janardanan, Dmitry Belikov, Johannes W. Kaiser, Ruslan Zhuravlev, Alexander Ganshin, Vinu K. Valsala, Arlyn Andrews, Lukasz Chmura, Edward Dlugokencky, László Haszpra, Ray L. Langenfelds, Toshinobu Machida, Takakiyo Nakazawa, Michel Ramonet, Colm Sweeney, and Douglas Worthy
Atmos. Chem. Phys., 21, 1245–1266, https://doi.org/10.5194/acp-21-1245-2021, https://doi.org/10.5194/acp-21-1245-2021, 2021
Short summary
Short summary
In order to improve the top-down estimation of the anthropogenic greenhouse gas emissions, a high-resolution inverse modelling technique was developed for applications to global transport modelling of carbon dioxide and other greenhouse gases. A coupled Eulerian–Lagrangian transport model and its adjoint are combined with surface fluxes at 0.1° resolution to provide high-resolution forward simulation and inverse modelling of surface fluxes accounting for signals from emission hot spots.
Susan S. Kulawik, John R. Worden, Vivienne H. Payne, Dejian Fu, Steven C. Wofsy, Kathryn McKain, Colm Sweeney, Bruce C. Daube Jr., Alan Lipton, Igor Polonsky, Yuguang He, Karen E. Cady-Pereira, Edward J. Dlugokencky, Daniel J. Jacob, and Yi Yin
Atmos. Meas. Tech., 14, 335–354, https://doi.org/10.5194/amt-14-335-2021, https://doi.org/10.5194/amt-14-335-2021, 2021
Short summary
Short summary
This paper shows comparisons of a new single-footprint methane product from the AIRS satellite to aircraft-based observations. We show that this AIRS methane product provides useful information to study seasonal and global methane trends of this important greenhouse gas.
Megan S. Claflin, Demetrios Pagonis, Zachary Finewax, Anne V. Handschy, Douglas A. Day, Wyatt L. Brown, John T. Jayne, Douglas R. Worsnop, Jose L. Jimenez, Paul J. Ziemann, Joost de Gouw, and Brian M. Lerner
Atmos. Meas. Tech., 14, 133–152, https://doi.org/10.5194/amt-14-133-2021, https://doi.org/10.5194/amt-14-133-2021, 2021
Short summary
Short summary
We have developed a field-deployable gas chromatograph with thermal desorption preconcentration and detector switching between two high-resolution mass spectrometers for in situ measurements of volatile organic compounds (VOCs). This system combines chromatography with both proton transfer and electron ionization to offer fast time response and continuous molecular speciation. This technique was applied during the 2018 ATHLETIC campaign to characterize VOC emissions in an indoor environment.
Petter Weibring, Dirk Richter, James G. Walega, Alan Fried, Joshua DiGangi, Hannah Halliday, Yonghoon Choi, Bianca Baier, Colm Sweeney, Ben Miller, Kenneth J. Davis, Zachary Barkley, and Michael D. Obland
Atmos. Meas. Tech., 13, 6095–6112, https://doi.org/10.5194/amt-13-6095-2020, https://doi.org/10.5194/amt-13-6095-2020, 2020
Short summary
Short summary
The present study describes an autonomously operated instrument for high-precision (20–40 parts per trillion in 1 s) measurements of ethane during actual airborne operations on a small aircraft platform (NASA's King Air B200). This paper discusses the dynamic nature of airborne performance due to various aircraft-induced perturbations, methods devised to identify such events, and solutions we have enacted to circumvent these perturbations.
Melodie Lao, Leigh R. Crilley, Leyla Salehpoor, Teles C. Furlani, Ilann Bourgeois, J. Andrew Neuman, Andrew W. Rollins, Patrick R. Veres, Rebecca A. Washenfelder, Caroline C. Womack, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 13, 5873–5890, https://doi.org/10.5194/amt-13-5873-2020, https://doi.org/10.5194/amt-13-5873-2020, 2020
Short summary
Short summary
Nitrous acid (HONO) is a key intermediate in the generation of oxidants and fate of nitrogen oxides in the atmosphere. High-purity calibration sources that produce stable atmospherically relevant levels under field conditions have not been made to date, reducing measurement accuracy. In this study a simple salt-coated tube humidified with water vapor is demonstrated to produce pure stable low levels of HONO, with modifications allowing the generation of higher amounts.
Aikaterini Bougiatioti, Athanasios Nenes, Jack J. Lin, Charles A. Brock, Joost A. de Gouw, Jin Liao, Ann M. Middlebrook, and André Welti
Atmos. Chem. Phys., 20, 12163–12176, https://doi.org/10.5194/acp-20-12163-2020, https://doi.org/10.5194/acp-20-12163-2020, 2020
Short summary
Short summary
The number concentration of droplets in clouds in the summertime in the southeastern United States is influenced by aerosol variations but limited by the strong competition for supersaturated water vapor. Concurrent variations in vertical velocity magnify the response of cloud droplet number to aerosol increases by up to a factor of 5. Omitting the covariance of vertical velocity with aerosol number may therefore bias estimates of the cloud albedo effect from aerosols.
Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Kenneth C. Aikin, Teresa Campos, Hannah Clark, Róisín Commane, Bruce Daube, Glenn W. Diskin, James W. Elkins, Ru-Shan Gao, Audrey Gaudel, Eric J. Hintsa, Bryan J. Johnson, Rigel Kivi, Kathryn McKain, Fred L. Moore, David D. Parrish, Richard Querel, Eric Ray, Ricardo Sánchez, Colm Sweeney, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Jacquelyn C. Witte, Steve C. Wofsy, and Thomas B. Ryerson
Atmos. Chem. Phys., 20, 10611–10635, https://doi.org/10.5194/acp-20-10611-2020, https://doi.org/10.5194/acp-20-10611-2020, 2020
Johannes C. Laube, Emma C. Leedham Elvidge, Karina E. Adcock, Bianca Baier, Carl A. M. Brenninkmeijer, Huilin Chen, Elise S. Droste, Jens-Uwe Grooß, Pauli Heikkinen, Andrew J. Hind, Rigel Kivi, Alexander Lojko, Stephen A. Montzka, David E. Oram, Steve Randall, Thomas Röckmann, William T. Sturges, Colm Sweeney, Max Thomas, Elinor Tuffnell, and Felix Ploeger
Atmos. Chem. Phys., 20, 9771–9782, https://doi.org/10.5194/acp-20-9771-2020, https://doi.org/10.5194/acp-20-9771-2020, 2020
Short summary
Short summary
We demonstrate that AirCore technology, which is based on small low-cost balloons, can provide access to trace gas measurements such as CFCs at ultra-low abundances. This is a new way to quantify ozone-depleting, and related, substances in the stratosphere, which is largely inaccessible to aircraft. We show two potential uses: (a) tracking the stratospheric circulation, which is predicted to change, and (b) assessing three common meteorological reanalyses driving a global stratospheric model.
James M. Roberts, Chelsea E. Stockwell, Robert J. Yokelson, Joost de Gouw, Yong Liu, Vanessa Selimovic, Abigail R. Koss, Kanako Sekimoto, Matthew M. Coggon, Bin Yuan, Kyle J. Zarzana, Steven S. Brown, Cristina Santin, Stefan H. Doerr, and Carsten Warneke
Atmos. Chem. Phys., 20, 8807–8826, https://doi.org/10.5194/acp-20-8807-2020, https://doi.org/10.5194/acp-20-8807-2020, 2020
Short summary
Short summary
We measured total reactive nitrogen, Nr, in lab fires from western North American fuels, along with measurements of individual nitrogen compounds. We measured the amount of N that gets converted to inactive compounds (avg. 70 %), and the amount that is accounted for by individual species (85 % of remaining N). We provide guidelines for how the reactive nitrogen is distributed among individual compounds such as NOx and ammonia. This will help estimates and predictions of wildfire emissions.
Christopher D. Cappa, Christopher Y. Lim, David H. Hagan, Matthew Coggon, Abigail Koss, Kanako Sekimoto, Joost de Gouw, Timothy B. Onasch, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 20, 8511–8532, https://doi.org/10.5194/acp-20-8511-2020, https://doi.org/10.5194/acp-20-8511-2020, 2020
Short summary
Short summary
Smoke from combustion of a wide range of biomass fuels (e.g., leaves, twigs, logs, peat, and dung) was photochemically aged in a small chamber for up to 8 d of equivalent atmospheric aging. Upon aging, the particle chemical composition and ability to absorb sunlight changed owing to reactions in both the gas and particulate phases. We developed a model to explain the observations and used this to derive insights into the aging of smoke in the atmosphere.
Yi Ji, L. Gregory Huey, David J. Tanner, Young Ro Lee, Patrick R. Veres, J. Andrew Neuman, Yuhang Wang, and Xinming Wang
Atmos. Meas. Tech., 13, 3683–3696, https://doi.org/10.5194/amt-13-3683-2020, https://doi.org/10.5194/amt-13-3683-2020, 2020
Short summary
Short summary
A common way of measuring trace gases in the atmosphere is chemical ionization mass spectrometry. One large drawback of these instruments is that they require radioactive ion sources. In this work we demonstrate a simple ion source that uses a small krypton lamp that can be used to replace a radioactive source.
Alexander B. Thames, William H. Brune, David O. Miller, Hannah M. Allen, Eric C. Apel, Donald R. Blake, T. Paul Bui, Roisin Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, Joshua P. DiGangi, James W. Elkins, Samuel R. Hall, Thomas F. Hanisco, Reem A. Hannun, Eric Hintsa, Rebecca S. Hornbrook, Michelle J. Kim, Kathryn McKain, Fred L. Moore, Julie M. Nicely, Jeffrey Peischl, Thomas B. Ryerson, Jason M. St. Clair, Colm Sweeney, Alex Teng, Chelsea R. Thompson, Kirk Ullmann, Paul O. Wennberg, and Glenn M. Wolfe
Atmos. Chem. Phys., 20, 4013–4029, https://doi.org/10.5194/acp-20-4013-2020, https://doi.org/10.5194/acp-20-4013-2020, 2020
Short summary
Short summary
Oceans and the atmosphere exchange volatile gases that react with the hydroxyl radical (OH). During a NASA airborne study, measurements of the total frequency of OH reactions, called the OH reactivity, were made in the marine boundary layer of the Atlantic and Pacific oceans. The measured OH reactivity often exceeded the OH reactivity calculated from measured chemical species. This missing OH reactivity appears to be from unmeasured volatile organic compounds coming out of the ocean.
Rachel Edie, Anna M. Robertson, Robert A. Field, Jeffrey Soltis, Dustin A. Snare, Daniel Zimmerle, Clay S. Bell, Timothy L. Vaughn, and Shane M. Murphy
Atmos. Meas. Tech., 13, 341–353, https://doi.org/10.5194/amt-13-341-2020, https://doi.org/10.5194/amt-13-341-2020, 2020
Short summary
Short summary
Ground-based measurements of emissions from oil and natural gas production are important for understanding emission distributions and improving emission inventories. Here, measurement technique Other Test Method 33A (OTM 33A) is validated through several test releases staged at the Methane Emissions Technology Evaluation Center. These tests suggest OTM 33A has no inherent bias and that a group of OTM measurements is within 5 % of the known mean emission rate.
Lauren T. Fleming, Peng Lin, James M. Roberts, Vanessa Selimovic, Robert Yokelson, Julia Laskin, Alexander Laskin, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 20, 1105–1129, https://doi.org/10.5194/acp-20-1105-2020, https://doi.org/10.5194/acp-20-1105-2020, 2020
Short summary
Short summary
We have explored the nature and stability of molecules that give biomass burning smoke its faint brown color. Different types of biomass fuels were burned and the resulting smoke was collected for a detailed chemical analysis. We found that brown molecules in smoke become less colored when they are irradiated by sunlight, but this photobleaching process is very slow. This means that biomass burning smoke will remain brown-colored for a long time and efficiently warm up the atmosphere.
Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Kanako Sekimoto, Bin Yuan, Jessica B. Gilman, David H. Hagan, Vanessa Selimovic, Kyle J. Zarzana, Steven S. Brown, James M. Roberts, Markus Müller, Robert Yokelson, Armin Wisthaler, Jordan E. Krechmer, Jose L. Jimenez, Christopher Cappa, Jesse H. Kroll, Joost de Gouw, and Carsten Warneke
Atmos. Chem. Phys., 19, 14875–14899, https://doi.org/10.5194/acp-19-14875-2019, https://doi.org/10.5194/acp-19-14875-2019, 2019
Short summary
Short summary
Wildfire emissions significantly contribute to adverse air quality; however, the chemical processes that lead to hazardous pollutants, such as ozone, are not fully understood. In this study, we describe laboratory experiments where we simulate the atmospheric chemistry of smoke emitted from a range of biomass fuels. We show that certain understudied compounds, such as furans and phenolic compounds, are significant contributors to pollutants formed as a result of typical atmospheric oxidation.
Jiajue Chai, David J. Miller, Eric Scheuer, Jack Dibb, Vanessa Selimovic, Robert Yokelson, Kyle J. Zarzana, Steven S. Brown, Abigail R. Koss, Carsten Warneke, and Meredith Hastings
Atmos. Meas. Tech., 12, 6303–6317, https://doi.org/10.5194/amt-12-6303-2019, https://doi.org/10.5194/amt-12-6303-2019, 2019
Short summary
Short summary
Isotopic analysis offers a potential tool to distinguish between sources and interpret transformation pathways of atmospheric species. We applied recently developed techniques in our lab to characterize the isotopic composition of reactive nitrogen species (NOx, HONO, HNO3, pNO3-) in fresh biomass burning emissions. Intercomparison with other techniques confirms the suitability of our methods, allowing for future applications of our techniques in a variety of environments.
Elizabeth Asher, Rebecca S. Hornbrook, Britton B. Stephens, Doug Kinnison, Eric J. Morgan, Ralph F. Keeling, Elliot L. Atlas, Sue M. Schauffler, Simone Tilmes, Eric A. Kort, Martin S. Hoecker-Martínez, Matt C. Long, Jean-François Lamarque, Alfonso Saiz-Lopez, Kathryn McKain, Colm Sweeney, Alan J. Hills, and Eric C. Apel
Atmos. Chem. Phys., 19, 14071–14090, https://doi.org/10.5194/acp-19-14071-2019, https://doi.org/10.5194/acp-19-14071-2019, 2019
Short summary
Short summary
Halogenated organic trace gases, which are a source of reactive halogens to the atmosphere, exert a disproportionately large influence on atmospheric chemistry and climate. This paper reports novel aircraft observations of halogenated compounds over the Southern Ocean in summer and evaluates hypothesized regional sources and emissions of these trace gases through their relationships to additional aircraft observations.
Joël Thanwerdas, Marielle Saunois, Antoine Berchet, Isabelle Pison, Didier Hauglustaine, Michel Ramonet, Cyril Crevoisier, Bianca Baier, Colm Sweeney, and Philippe Bousquet
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-925, https://doi.org/10.5194/acp-2019-925, 2019
Revised manuscript not accepted
Short summary
Short summary
Oxidation by the hydroxyl radical (OH) is the dominant atmospheric sink for methane, contributing to approximately 90 % of the total methane loss. Chemical losses by reaction with atomic oxygen (O1D) and chlorine radicals (Cl) in the stratosphere are other sinks, contributing about 3 % to the total methane destruction. We assess here the impact of atomic Cl on atmospheric methane mixing ratios, methane atmospheric loss and atmospheric isotopic δ13C-CH4 values.
Susan S. Kulawik, Sean Crowell, David Baker, Junjie Liu, Kathryn McKain, Colm Sweeney, Sebastien C. Biraud, Steve Wofsy, Christopher W. O'Dell, Paul O. Wennberg, Debra Wunch, Coleen M. Roehl, Nicholas M. Deutscher, Matthäus Kiel, David W. T. Griffith, Voltaire A. Velazco, Justus Notholt, Thorsten Warneke, Christof Petri, Martine De Mazière, Mahesh K. Sha, Ralf Sussmann, Markus Rettinger, Dave F. Pollard, Isamu Morino, Osamu Uchino, Frank Hase, Dietrich G. Feist, Sébastien Roche, Kimberly Strong, Rigel Kivi, Laura Iraci, Kei Shiomi, Manvendra K. Dubey, Eliezer Sepulveda, Omaira Elena Garcia Rodriguez, Yao Té, Pascal Jeseck, Pauli Heikkinen, Edward J. Dlugokencky, Michael R. Gunson, Annmarie Eldering, David Crisp, Brendan Fisher, and Gregory B. Osterman
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-257, https://doi.org/10.5194/amt-2019-257, 2019
Publication in AMT not foreseen
Short summary
Short summary
This paper provides a benchmark of OCO-2 v8 and ACOS-GOSAT v7.3 XCO2 and lowermost tropospheric (LMT) errors. The paper focuses on the systematic errors and subtracts out validation, co-location, and random errors, looks at the correlation scale-length (spatially and temporally) of systematic errors, finding that the scale lengths are similar to bias correction scale-lengths. The assimilates of the bias correction term is used to place an error on fluxes estimates.
Jacob K. Hedelius, Tai-Long He, Dylan B. A. Jones, Bianca C. Baier, Rebecca R. Buchholz, Martine De Mazière, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Laura T. Iraci, Pascal Jeseck, Matthäus Kiel, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Sébastien Roche, Coleen M. Roehl, Matthias Schneider, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Colm Sweeney, Yao Té, Osamu Uchino, Voltaire A. Velazco, Wei Wang, Thorsten Warneke, Paul O. Wennberg, Helen M. Worden, and Debra Wunch
Atmos. Meas. Tech., 12, 5547–5572, https://doi.org/10.5194/amt-12-5547-2019, https://doi.org/10.5194/amt-12-5547-2019, 2019
Short summary
Short summary
We seek ways to improve the accuracy of column measurements of carbon monoxide (CO) – an important tracer of pollution – made from the MOPITT satellite instrument. We devise a filtering scheme which reduces the scatter and also eliminates bias among the MOPITT detectors. Compared to ground-based observations, MOPITT measurements are about 6 %–8 % higher. When MOPITT data are implemented in a global assimilation model, they tend to reduce the model mismatch with aircraft measurements.
Christopher Y. Lim, David H. Hagan, Matthew M. Coggon, Abigail R. Koss, Kanako Sekimoto, Joost de Gouw, Carsten Warneke, Christopher D. Cappa, and Jesse H. Kroll
Atmos. Chem. Phys., 19, 12797–12809, https://doi.org/10.5194/acp-19-12797-2019, https://doi.org/10.5194/acp-19-12797-2019, 2019
Short summary
Short summary
Wildfires are a large source of gases and particles to the atmosphere, both of which impact human health and climate. The amount and composition of particles from wildfires can change with time in the atmosphere; however, the impact of aging is not well understood. In a series of controlled laboratory experiments, we show that the particles are oxidized and a significant fraction of the gas-phase carbon (24 %–56 %) is converted to particle mass over the course of several days in the atmosphere.
Alex K. Y. Lee, Max G. Adam, John Liggio, Shao-Meng Li, Kun Li, Megan D. Willis, Jonathan P. D. Abbatt, Travis W. Tokarek, Charles A. Odame-Ankrah, Hans D. Osthoff, Kevin Strawbridge, and Jeffery R. Brook
Atmos. Chem. Phys., 19, 12209–12219, https://doi.org/10.5194/acp-19-12209-2019, https://doi.org/10.5194/acp-19-12209-2019, 2019
Short summary
Short summary
This work provides the first direct field evidence that anthropogenic organo-nitrate contributed up to half of secondary organic aerosol (SOA) mass that was freshly produced within the emission plumes of oil sands facilities in Alberta, Canada. The findings illustrate the central role of organo-nitrate in SOA production from the oil and gas industry, with relevance for other urban and industrial regions with significant intermediate-volatility organic compounds (IVOCs) and NOx emissions.
Sean Crowell, David Baker, Andrew Schuh, Sourish Basu, Andrew R. Jacobson, Frederic Chevallier, Junjie Liu, Feng Deng, Liang Feng, Kathryn McKain, Abhishek Chatterjee, John B. Miller, Britton B. Stephens, Annmarie Eldering, David Crisp, David Schimel, Ray Nassar, Christopher W. O'Dell, Tomohiro Oda, Colm Sweeney, Paul I. Palmer, and Dylan B. A. Jones
Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, https://doi.org/10.5194/acp-19-9797-2019, 2019
Short summary
Short summary
Space-based retrievals of carbon dioxide offer the potential to provide dense data in regions that are sparsely observed by the surface network. We find that flux estimates that are informed by the Orbiting Carbon Observatory-2 (OCO-2) show different character from that inferred using surface measurements in tropical land regions, particularly in Africa, with a much larger total emission and larger amplitude seasonal cycle.
Kun Li, John Liggio, Patrick Lee, Chong Han, Qifan Liu, and Shao-Meng Li
Atmos. Chem. Phys., 19, 9715–9731, https://doi.org/10.5194/acp-19-9715-2019, https://doi.org/10.5194/acp-19-9715-2019, 2019
Short summary
Short summary
A new oxidation flow reactor was developed and applied to study the secondary organic aerosol (SOA) formation from precursors associated with oil-sands (OS) operations. The results reveal that the SOA yields from OS precursors are related to the volatilities of precursors and that open-pit mining is the main source of SOA formed from oil sands. In addition, cyclic alkanes are found to play an important role in SOA formation from oil-sands precursors.
Xin Chen, Dylan B. Millet, Hanwant B. Singh, Armin Wisthaler, Eric C. Apel, Elliot L. Atlas, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, John D. Crounse, Joost A. de Gouw, Frank M. Flocke, Alan Fried, Brian G. Heikes, Rebecca S. Hornbrook, Tomas Mikoviny, Kyung-Eun Min, Markus Müller, J. Andrew Neuman, Daniel W. O'Sullivan, Jeff Peischl, Gabriele G. Pfister, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Stephen R. Shertz, Chelsea R. Thompson, Victoria Treadaway, Patrick R. Veres, James Walega, Carsten Warneke, Rebecca A. Washenfelder, Petter Weibring, and Bin Yuan
Atmos. Chem. Phys., 19, 9097–9123, https://doi.org/10.5194/acp-19-9097-2019, https://doi.org/10.5194/acp-19-9097-2019, 2019
Short summary
Short summary
Volatile organic compounds (VOCs) affect air quality and modify the lifetimes of other pollutants. We combine a high-resolution 3-D atmospheric model with an ensemble of aircraft observations to perform an integrated analysis of the VOC budget over North America. We find that biogenic emissions provide the main source of VOC reactivity even in most major cities. Our findings point to key gaps in current models related to oxygenated VOCs and to the distribution of VOCs in the free troposphere.
Isaac J. Vimont, Jocelyn C. Turnbull, Vasilii V. Petrenko, Philip F. Place, Colm Sweeney, Natasha Miles, Scott Richardson, Bruce H. Vaughn, and James W. C. White
Atmos. Chem. Phys., 19, 8547–8562, https://doi.org/10.5194/acp-19-8547-2019, https://doi.org/10.5194/acp-19-8547-2019, 2019
Short summary
Short summary
Stable isotopes of Carbon Monoxide (CO) and radiocarbon carbon dioxide were measured over three summers at Indianapolis, Indiana, US, and for 1 year at a site thought to be strongly influenced by CO from oxidized volatile organic compounds (VOCs) in South Carolina, US. The Indianapolis results were used to provide an estimate of the carbon and oxygen isotopic signatures of CO produced from oxidized VOCs. This updated estimate agrees well with the data from South Carolina during the summer.
Benjamin L. Deming, Demetrios Pagonis, Xiaoxi Liu, Douglas A. Day, Ranajit Talukdar, Jordan E. Krechmer, Joost A. de Gouw, Jose L. Jimenez, and Paul J. Ziemann
Atmos. Meas. Tech., 12, 3453–3461, https://doi.org/10.5194/amt-12-3453-2019, https://doi.org/10.5194/amt-12-3453-2019, 2019
Short summary
Short summary
Losses or measurement delays of gas-phase compounds sampled through tubing are important to atmospheric science. Here we characterize 14 tubing materials by measuring the effects on step changes in organic compound concentration. We find that polymeric tubings exhibit absorptive partitioning behaviour while glass and metal tubings show adsorptive partitioning. Adsorptive materials impart complex humidity, concentration, and VOC–VOC interaction dependencies that absorptive tubings do not.
Xiaoxi Liu, Benjamin Deming, Demetrios Pagonis, Douglas A. Day, Brett B. Palm, Ranajit Talukdar, James M. Roberts, Patrick R. Veres, Jordan E. Krechmer, Joel A. Thornton, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
Atmos. Meas. Tech., 12, 3137–3149, https://doi.org/10.5194/amt-12-3137-2019, https://doi.org/10.5194/amt-12-3137-2019, 2019
Short summary
Short summary
Delays or losses of gases in sampling tubing and instrumental surfaces due to surface interactions can lead to inaccurate quantification. By sampling with several chemical ionization mass spectrometers and six tubing materials, we quantify delays of semivolatile organic compounds and small polar gases. Delay times generally increase with decreasing volatility or increasing polarity and also depend on materials. The method and results will inform inlet material selection and instrumental design.
James M. Roberts and Yong Liu
Atmos. Chem. Phys., 19, 4419–4437, https://doi.org/10.5194/acp-19-4419-2019, https://doi.org/10.5194/acp-19-4419-2019, 2019
Short summary
Short summary
Condensed-phase reactions are important removal processes for reduced nitrogen species, isocyanic acid (HNCO), methyl isocyanate (CH3NCO), and cyanogen halides (XCN, X = Cl, Br, I). This chemistry is not well understood, so we measured aqueous-phase solubilities and reaction rates under a range of temperatures and conditions and in n-octanol, a proxy for non-polar media and biological membranes. The results were used to estimate atmospheric removal rates and fates of these nitrogen compounds.
Julian Kostinek, Anke Roiger, Kenneth J. Davis, Colm Sweeney, Joshua P. DiGangi, Yonghoon Choi, Bianca Baier, Frank Hase, Jochen Groß, Maximilian Eckl, Theresa Klausner, and André Butz
Atmos. Meas. Tech., 12, 1767–1783, https://doi.org/10.5194/amt-12-1767-2019, https://doi.org/10.5194/amt-12-1767-2019, 2019
Short summary
Short summary
We demonstrate the successful adaption of a laser-based spectrometer for airborne in situ trace gas measurements. The modified instrument allows for precise and simultaneous airborne observation of five climatologically relevant gases. We further report on instrument performance during a first field deployment over the eastern and central USA.
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019, https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Short summary
Organic aerosol (OA) intimately links natural and anthropogenic emissions with air quality and climate. Direct OA measurements from space are currently not possible. This paper describes a new method to estimate OA by combining satellite HCHO and in situ OA and HCHO. The OA estimate is validated with the ground network. This new method has a potential for mapping observation-based global OA estimate.
Anna Karion, Thomas Lauvaux, Israel Lopez Coto, Colm Sweeney, Kimberly Mueller, Sharon Gourdji, Wayne Angevine, Zachary Barkley, Aijun Deng, Arlyn Andrews, Ariel Stein, and James Whetstone
Atmos. Chem. Phys., 19, 2561–2576, https://doi.org/10.5194/acp-19-2561-2019, https://doi.org/10.5194/acp-19-2561-2019, 2019
Short summary
Short summary
In this study, we use atmospheric methane concentration observations collected during an airborne campaign to compare different model-based emissions estimates from the Barnett Shale oil and natural gas production basin in Texas, USA. We find that the tracer dispersion model has a significant impact on the results because the models differ in their simulation of vertical dispersion. Additional work is needed to evaluate and improve vertical mixing in the tracer dispersion models.
Shino Toma, Steve Bertman, Christopher Groff, Fulizi Xiong, Paul B. Shepson, Paul Romer, Kaitlin Duffey, Paul Wooldridge, Ronald Cohen, Karsten Baumann, Eric Edgerton, Abigail R. Koss, Joost de Gouw, Allen Goldstein, Weiwei Hu, and Jose L. Jimenez
Atmos. Chem. Phys., 19, 1867–1880, https://doi.org/10.5194/acp-19-1867-2019, https://doi.org/10.5194/acp-19-1867-2019, 2019
Short summary
Short summary
Acyl peroxy nitrates (APN) were measured near the ground in Alabama using GC in summer 2013 to study biosphere–atmosphere interactions. APN were lower than measured in the SE USA over the past 2 decades. Historical data showed APN in 2013 was limited by NOx and production was dominated by biogenic precursors more than in the past. Isoprene-derived MPAN correlated with isoprene hydroxynitrates as NOx-dependent products. MPAN varied with aerosol growth, but not with N-containing particles.
Travis W. Tokarek, Charles A. Odame-Ankrah, Jennifer A. Huo, Robert McLaren, Alex K. Y. Lee, Max G. Adam, Megan D. Willis, Jonathan P. D. Abbatt, Cristian Mihele, Andrea Darlington, Richard L. Mittermeier, Kevin Strawbridge, Katherine L. Hayden, Jason S. Olfert, Elijah G. Schnitzler, Duncan K. Brownsey, Faisal V. Assad, Gregory R. Wentworth, Alex G. Tevlin, Douglas E. J. Worthy, Shao-Meng Li, John Liggio, Jeffrey R. Brook, and Hans D. Osthoff
Atmos. Chem. Phys., 18, 17819–17841, https://doi.org/10.5194/acp-18-17819-2018, https://doi.org/10.5194/acp-18-17819-2018, 2018
Short summary
Short summary
Measurements of air pollutants at a ground site near Fort McKay in the Athabasca oil sands region in the summer of 2013 are presented. A large number of intermediate-volatility organic compounds (IVOCs) were observed; these molecules were shown previously to generate atmospheric particles downwind of the region. A principal component analysis was performed to identify major pollution source types, including which source(s) is(are) associated with IVOC emissions (e.g., freshly mined bitumen).
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Bruce Anderson, Andreas J. Beyersdorf, Donald R. Blake, William H. Brune, Yonghoon Choi, Chelsea A. Corr, Joost A. de Gouw, Jack Dibb, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, L. Gregory Huey, Michelle J. Kim, Christoph J. Knote, Kara D. Lamb, Taehyoung Lee, Taehyun Park, Sally E. Pusede, Eric Scheuer, Kenneth L. Thornhill, Jung-Hun Woo, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 17769–17800, https://doi.org/10.5194/acp-18-17769-2018, https://doi.org/10.5194/acp-18-17769-2018, 2018
Short summary
Short summary
Aerosol impacts visibility and human health in large cities. Sources of aerosols are still highly uncertain, especially for cities surrounded by numerous other cities. We use observations collected during the Korea–United States Air Quality study to determine sources of organic aerosol (OA). We find that secondary OA (SOA) is rapidly produced over Seoul, South Korea, and that the sources of the SOA originate from short-lived hydrocarbons, which originate from local emissions.
Christine D. Groot Zwaaftink, Stephan Henne, Rona L. Thompson, Edward J. Dlugokencky, Toshinobu Machida, Jean-Daniel Paris, Motoki Sasakawa, Arjo Segers, Colm Sweeney, and Andreas Stohl
Geosci. Model Dev., 11, 4469–4487, https://doi.org/10.5194/gmd-11-4469-2018, https://doi.org/10.5194/gmd-11-4469-2018, 2018
Short summary
Short summary
A Lagrangian particle dispersion model is used to simulate global fields of methane, constrained by observations through nudging. We show that this rather simple and computationally inexpensive method can give results similar to or as good as a computationally expensive Eulerian chemistry transport model with a data assimilation scheme. The three-dimensional methane fields are of interest to applications such as inverse modelling and satellite retrievals.
Kyle J. Zarzana, Vanessa Selimovic, Abigail R. Koss, Kanako Sekimoto, Matthew M. Coggon, Bin Yuan, William P. Dubé, Robert J. Yokelson, Carsten Warneke, Joost A. de Gouw, James M. Roberts, and Steven S. Brown
Atmos. Chem. Phys., 18, 15451–15470, https://doi.org/10.5194/acp-18-15451-2018, https://doi.org/10.5194/acp-18-15451-2018, 2018
Short summary
Short summary
Emissions of glyoxal and methylglyoxal from fuels common to the western United States were measured using cavity-enhanced spectroscopy, which provides a more selective measurement of those compounds than was previously available. Primary emissions of glyoxal were lower than previously reported and showed variability between the different fuel groups. However, emissions of glyoxal relative to formaldehyde were constant across almost all the fuel groups at 6 %–7 %.
Mark Gordon, Paul A. Makar, Ralf M. Staebler, Junhua Zhang, Ayodeji Akingunola, Wanmin Gong, and Shao-Meng Li
Atmos. Chem. Phys., 18, 14695–14714, https://doi.org/10.5194/acp-18-14695-2018, https://doi.org/10.5194/acp-18-14695-2018, 2018
Short summary
Short summary
This work uses aircraft-based measurements of smokestack plumes carried out in northern Alberta in 2013. These measurements are used to test equations used to predict how high in the air smokestack plumes rise. It is important to predict plume rise height accurately as it tells us how far downwind pollutants are carried and what air quality can be expected at the surface. We found that the equations that are typically used significantly underestimate the plume rise at this location.
Craig A. Stroud, Paul A. Makar, Junhua Zhang, Michael D. Moran, Ayodeji Akingunola, Shao-Meng Li, Amy Leithead, Katherine Hayden, and May Siu
Atmos. Chem. Phys., 18, 13531–13545, https://doi.org/10.5194/acp-18-13531-2018, https://doi.org/10.5194/acp-18-13531-2018, 2018
Short summary
Short summary
It is shown that using measurement-derived volatile organic compound (VOC) and organic aerosol (OA) emissions in the GEM-MACH air quality model provides better overall predictions compared to using bottom-up emission inventories. This work was done to better constrain the fugitive organic emissions from the Athabasca oil sands region, which are a challenge to estimate with bottom-up emission approaches. We use observations from the 2013 Joint Oil Sands Monitoring study.
Wei He, Ivar R. van der Velde, Arlyn E. Andrews, Colm Sweeney, John Miller, Pieter Tans, Ingrid T. van der Laan-Luijkx, Thomas Nehrkorn, Marikate Mountain, Weimin Ju, Wouter Peters, and Huilin Chen
Geosci. Model Dev., 11, 3515–3536, https://doi.org/10.5194/gmd-11-3515-2018, https://doi.org/10.5194/gmd-11-3515-2018, 2018
Short summary
Short summary
We have implemented a regional, high-resolution, and computationally attractive carbon dioxide data assimilation system. This system, named CTDAS-Lagrange, is capable of simultaneously optimizing terrestrial biosphere fluxes and the lateral boundary conditions. The CTDAS-Lagrange system can be easily extended to assimilate an additional tracer, e.g., carbonyl sulfide (COS or OCS), for regional estimates of both net and gross carbon fluxes.
Juliane L. Fry, Steven S. Brown, Ann M. Middlebrook, Peter M. Edwards, Pedro Campuzano-Jost, Douglas A. Day, José L. Jimenez, Hannah M. Allen, Thomas B. Ryerson, Ilana Pollack, Martin Graus, Carsten Warneke, Joost A. de Gouw, Charles A. Brock, Jessica Gilman, Brian M. Lerner, William P. Dubé, Jin Liao, and André Welti
Atmos. Chem. Phys., 18, 11663–11682, https://doi.org/10.5194/acp-18-11663-2018, https://doi.org/10.5194/acp-18-11663-2018, 2018
Short summary
Short summary
This paper uses measurements made during research aircraft flights through power plant smokestack emissions plumes as a natural laboratory in the field experiment. We investigated a specific source of airborne particulate matter from the combination of human-produced NOx pollutant emissions (the smokestack plumes) with isoprene emitted by naturally by trees in the southeastern United States. These field-based yields appear to be higher than those typically measured in chamber studies.
Junhua Zhang, Michael D. Moran, Qiong Zheng, Paul A. Makar, Pegah Baratzadeh, George Marson, Peter Liu, and Shao-Meng Li
Atmos. Chem. Phys., 18, 10459–10481, https://doi.org/10.5194/acp-18-10459-2018, https://doi.org/10.5194/acp-18-10459-2018, 2018
Short summary
Short summary
This paper discusses the development of new synthesized emissions inventories and the generation of air quality model-ready emissions files for the Athabasca Oil Sands Region of Alberta, Canada, using multiple emissions inventories, continuous emissions monitoring data, and inferred emission rates based on aircraft measurements. Novel facility-specific gridded spatial surrogate fields were generated to allocate emissions spatially within each huge mining facility.
Paul A. Makar, Ayodeji Akingunola, Julian Aherne, Amanda S. Cole, Yayne-abeba Aklilu, Junhua Zhang, Isaac Wong, Katherine Hayden, Shao-Meng Li, Jane Kirk, Ken Scott, Michael D. Moran, Alain Robichaud, Hazel Cathcart, Pegah Baratzedah, Balbir Pabla, Philip Cheung, Qiong Zheng, and Dean S. Jeffries
Atmos. Chem. Phys., 18, 9897–9927, https://doi.org/10.5194/acp-18-9897-2018, https://doi.org/10.5194/acp-18-9897-2018, 2018
Short summary
Short summary
Complex computer model output was compared to and fused with observation data, to estimate potential damage due to acidifying precipitation for ecosystems in the Canadian provinces of Alberta and Saskatchewan. Estimated deposition was compared to the maximum no-damage ecosystem capacity for sulfur and/or nitrogen uptake; these critical loads were exceeded, for areas between 10 000 and 330 000 square kilometres, depending on ecosystem type: ecosystem damage will occur at 2013 emission levels.
Kanako Sekimoto, Abigail R. Koss, Jessica B. Gilman, Vanessa Selimovic, Matthew M. Coggon, Kyle J. Zarzana, Bin Yuan, Brian M. Lerner, Steven S. Brown, Carsten Warneke, Robert J. Yokelson, James M. Roberts, and Joost de Gouw
Atmos. Chem. Phys., 18, 9263–9281, https://doi.org/10.5194/acp-18-9263-2018, https://doi.org/10.5194/acp-18-9263-2018, 2018
Short summary
Short summary
We found that on average 85 % of the VOC emissions from biomass burning across various fuels representative of the western US (including various coniferous and chaparral fuels) can be explained using only two emission profiles: (i) a high-temperature pyrolysis profile and (ii) a low-temperature pyrolysis profile. The high-temperature profile is quantitatively similar between different fuel types (r2 > 0.84), and likewise for the low-temperature profile.
Monika Aggarwal, James Whiteway, Jeffrey Seabrook, Lawrence Gray, Kevin Strawbridge, Peter Liu, Jason O'Brien, Shao-Meng Li, and Robert McLaren
Atmos. Meas. Tech., 11, 3829–3849, https://doi.org/10.5194/amt-11-3829-2018, https://doi.org/10.5194/amt-11-3829-2018, 2018
Short summary
Short summary
Aircraft-based laser remote sensing measurements of atmospheric aerosol and ozone were conducted to study air pollution from the oil sands extraction industry in northern Alberta. The ozone mixing ratio measured in the polluted boundary layer air was equal to or less than the background ozone mixing ratio. The lidar measurements detected a layer of forest fire smoke above the surface boundary layer in which the measured ozone mixing ratio was substantially greater than the background amount.
Amanda R. Fay, Nicole S. Lovenduski, Galen A. McKinley, David R. Munro, Colm Sweeney, Alison R. Gray, Peter Landschützer, Britton B. Stephens, Taro Takahashi, and Nancy Williams
Biogeosciences, 15, 3841–3855, https://doi.org/10.5194/bg-15-3841-2018, https://doi.org/10.5194/bg-15-3841-2018, 2018
Short summary
Short summary
The Southern Ocean is highly under-sampled and since this region dominates the ocean sink for CO2, understanding change is critical. Here we utilize available observations to evaluate how the seasonal cycle, variability, and trends in surface ocean carbon in the well-sampled Drake Passage region compare to that of the broader subpolar Southern Ocean. Results indicate that the Drake Passage is representative of the broader region; however, additional winter observations would improve comparisons.
Ayodeji Akingunola, Paul A. Makar, Junhua Zhang, Andrea Darlington, Shao-Meng Li, Mark Gordon, Michael D. Moran, and Qiong Zheng
Atmos. Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, https://doi.org/10.5194/acp-18-8667-2018, 2018
Short summary
Short summary
We examine the manner in which air-quality models simulate lofting of buoyant plumes of emissions from stacks (plume rise) and the impact of the level of detail in algorithms simulating particles' variation in size (particle size distribution). The most commonly used plume rise algorithm underestimates the height of plumes compared to observations, while a revised algorithm has much better performance. A 12-bin size distribution reduced the forecast 2-bin size distribution bias error by 32 %.
Si-Wan Kim, Vijay Natraj, Seoyoung Lee, Hyeong-Ahn Kwon, Rokjin Park, Joost de Gouw, Gregory Frost, Jhoon Kim, Jochen Stutz, Michael Trainer, Catalina Tsai, and Carsten Warneke
Atmos. Chem. Phys., 18, 7639–7655, https://doi.org/10.5194/acp-18-7639-2018, https://doi.org/10.5194/acp-18-7639-2018, 2018
Short summary
Short summary
Formaldehyde (HCHO) is a hazardous air pollutant and is associated with tropospheric ozone production. HCHO has been monitored from space. In this study, to acquire high-quality satellite-based HCHO observations, we utilize fine-resolution atmospheric chemistry model results as an input to the computer code for satellite retrievals over the Los Angeles Basin. Our study indicates that the use of fine-resolution profile shapes helps to identify HCHO plumes from space.
Sabour Baray, Andrea Darlington, Mark Gordon, Katherine L. Hayden, Amy Leithead, Shao-Meng Li, Peter S. K. Liu, Richard L. Mittermeier, Samar G. Moussa, Jason O'Brien, Ralph Staebler, Mengistu Wolde, Doug Worthy, and Robert McLaren
Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, https://doi.org/10.5194/acp-18-7361-2018, 2018
Short summary
Short summary
Methane emissions from major oil sands facilities in the Athabasca Oil Sands Region (AOSR) of Alberta were measured in the summer of 2013 using two related aircraft mass-balance approaches. Tailings ponds and fugitive emissions of methane from open pit mines were found to be the major sources of methane in the region. Total methane emissions in the AOSR were measured to be ~ 20 tonnes of CH4 per hour, which is 48 % higher than the Canadian Greenhouse Gas Reporting Program Emissions Inventory.
Chelsea E. Stockwell, Agnieszka Kupc, Bartłomiej Witkowski, Ranajit K. Talukdar, Yong Liu, Vanessa Selimovic, Kyle J. Zarzana, Kanako Sekimoto, Carsten Warneke, Rebecca A. Washenfelder, Robert J. Yokelson, Ann M. Middlebrook, and James M. Roberts
Atmos. Meas. Tech., 11, 2749–2768, https://doi.org/10.5194/amt-11-2749-2018, https://doi.org/10.5194/amt-11-2749-2018, 2018
Short summary
Short summary
This work investigates the total conversion of particle-bound nitrogen and organic carbon across platinum and molybdenum catalysts followed by NO–O3 chemiluminescence and nondispersive infrared CO2 detection. We show the instrument is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation through comparisons with a calibrated particle-into-liquid sampler coupled to an electrospray ionization source of a mass spectrometer.
Caroline B. Alden, Subhomoy Ghosh, Sean Coburn, Colm Sweeney, Anna Karion, Robert Wright, Ian Coddington, Gregory B. Rieker, and Kuldeep Prasad
Atmos. Meas. Tech., 11, 1565–1582, https://doi.org/10.5194/amt-11-1565-2018, https://doi.org/10.5194/amt-11-1565-2018, 2018
Short summary
Short summary
The location and sizing leaks of methane from natural gas operations poses a real challenge for greenhouse gas emission mitigation efforts and for accurate quantification of emissions inventories. We demonstrate, with synthetic and field tests, a new statistical method for the location and sizing of small trace gas point sources dispersed over large areas, based on measurements of ambient atmospheric conditions made with long-range, open-path laser-based atmospheric observations.
Abigail R. Koss, Kanako Sekimoto, Jessica B. Gilman, Vanessa Selimovic, Matthew M. Coggon, Kyle J. Zarzana, Bin Yuan, Brian M. Lerner, Steven S. Brown, Jose L. Jimenez, Jordan Krechmer, James M. Roberts, Carsten Warneke, Robert J. Yokelson, and Joost de Gouw
Atmos. Chem. Phys., 18, 3299–3319, https://doi.org/10.5194/acp-18-3299-2018, https://doi.org/10.5194/acp-18-3299-2018, 2018
Short summary
Short summary
Non-methane organic gases (NMOGs) were detected by proton-transfer-reaction mass spectrometry (PTR-ToF) during an extensive laboratory characterization of wildfire emissions. Identifications for PTR-ToF ion masses are proposed and supported by a combination of techniques. Overall excellent agreement with other instrumentation is shown. Scalable emission factors and ratios are reported for many newly reported reactive species. An analysis of chemical characteristics is presented.
Natasha L. Miles, Douglas K. Martins, Scott J. Richardson, Christopher W. Rella, Caleb Arata, Thomas Lauvaux, Kenneth J. Davis, Zachary R. Barkley, Kathryn McKain, and Colm Sweeney
Atmos. Meas. Tech., 11, 1273–1295, https://doi.org/10.5194/amt-11-1273-2018, https://doi.org/10.5194/amt-11-1273-2018, 2018
Short summary
Short summary
Analyzers measuring methane and methane isotopic ratio were deployed at four towers in the Marcellus Shale natural gas extraction region of Pennsylvania. The methane isotopic ratio is helpful for differentiating emissions from natural gas activities from other sources (e.g., landfills). We describe the analyzer calibration. The signals observed in the study region were generally small, but the instrumental performance demonstrated here could be used in regions with stronger enhancements.
Vanessa Selimovic, Robert J. Yokelson, Carsten Warneke, James M. Roberts, Joost de Gouw, James Reardon, and David W. T. Griffith
Atmos. Chem. Phys., 18, 2929–2948, https://doi.org/10.5194/acp-18-2929-2018, https://doi.org/10.5194/acp-18-2929-2018, 2018
Short summary
Short summary
We burned fuels representing western US wildfires in large-scale laboratory simulations to generate relevant emissions as confirmed by lab–field comparison. We report emission factors (EFs) for light scattering and absorption and BC along with SSA at 870 and 401 nm and AAE. We report EF for 22 trace gases that are major inorganic and organic emissions from flaming and smoldering. We report trace gas EF for species rarely (NH3) or not yet measured (e.g., HONO, acetic acid) for real US wildfires.
Yuan Cheng, Shao-Meng Li, Mark Gordon, and Peter Liu
Atmos. Chem. Phys., 18, 2653–2667, https://doi.org/10.5194/acp-18-2653-2018, https://doi.org/10.5194/acp-18-2653-2018, 2018
Short summary
Short summary
An aircraft campaign was conducted over the Athabasca oil sands (OS) region to characterize refractory black carbon (rBC) particles as they were emitted from the sources and as they were transported downwind; rBC size distributions were consistent at different downwind distances from the source area whereas coating thicknesses on the rBC cores increased considerably as the OS plumes were transported downwind. These results provide insights into the evolution of BC aerosol in the real atmosphere.
Jingqiu Mao, Annmarie Carlton, Ronald C. Cohen, William H. Brune, Steven S. Brown, Glenn M. Wolfe, Jose L. Jimenez, Havala O. T. Pye, Nga Lee Ng, Lu Xu, V. Faye McNeill, Kostas Tsigaridis, Brian C. McDonald, Carsten Warneke, Alex Guenther, Matthew J. Alvarado, Joost de Gouw, Loretta J. Mickley, Eric M. Leibensperger, Rohit Mathur, Christopher G. Nolte, Robert W. Portmann, Nadine Unger, Mika Tosca, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2615–2651, https://doi.org/10.5194/acp-18-2615-2018, https://doi.org/10.5194/acp-18-2615-2018, 2018
Short summary
Short summary
This paper is aimed at discussing progress in evaluating, diagnosing, and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models.
Paul S. Romer, Kaitlin C. Duffey, Paul J. Wooldridge, Eric Edgerton, Karsten Baumann, Philip A. Feiner, David O. Miller, William H. Brune, Abigail R. Koss, Joost A. de Gouw, Pawel K. Misztal, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 18, 2601–2614, https://doi.org/10.5194/acp-18-2601-2018, https://doi.org/10.5194/acp-18-2601-2018, 2018
Short summary
Short summary
Observations of increased ozone on hotter days are widely reported, but the mechanisms driving this relationship remain uncertain. We use measurements from the rural southeastern United States to study how temperature affects ozone production. We find that changing NOx emissions, most likely from soil microbes, can be a major driver of increased ozone with temperature in the continental background. These findings suggest that ozone will increase with temperature under a wide range of conditions.
Jingyi Li, Jingqiu Mao, Arlene M. Fiore, Ronald C. Cohen, John D. Crounse, Alex P. Teng, Paul O. Wennberg, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Jeff Peischl, Ilana B. Pollack, Thomas B. Ryerson, Patrick Veres, James M. Roberts, J. Andrew Neuman, John B. Nowak, Glenn M. Wolfe, Thomas F. Hanisco, Alan Fried, Hanwant B. Singh, Jack Dibb, Fabien Paulot, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2341–2361, https://doi.org/10.5194/acp-18-2341-2018, https://doi.org/10.5194/acp-18-2341-2018, 2018
Short summary
Short summary
We present the first comprehensive model evaluation of summertime reactive oxidized nitrogen using a high-resolution chemistry–climate model with up-to-date isoprene oxidation chemistry, along with a series of observations from aircraft campaigns and ground measurement networks from 2004 to 2013 over the Southeast US. We investigate the impact of NOx emission reductions on changes in reactive nitrogen speciation and export efficiency as well as ozone in the past and future decade.
Catalina Tsai, Max Spolaor, Santo Fedele Colosimo, Olga Pikelnaya, Ross Cheung, Eric Williams, Jessica B. Gilman, Brian M. Lerner, Robert J. Zamora, Carsten Warneke, James M. Roberts, Ravan Ahmadov, Joost de Gouw, Timothy Bates, Patricia K. Quinn, and Jochen Stutz
Atmos. Chem. Phys., 18, 1977–1996, https://doi.org/10.5194/acp-18-1977-2018, https://doi.org/10.5194/acp-18-1977-2018, 2018
Short summary
Short summary
Nitrous acid (HONO) photolysis is an important source of hydroxyl radicals (OH). Vertical HONO fluxes, observed in the snow-free, wintertime Uintah Basin, Utah, USA, show that chemical formation of HONO on the ground closes the HONO budget. Under high NOx conditions, HONO formation is most likely due to photo-enhanced conversion of NO2 on the ground. Under moderate to low NO2 conditions, photolysis of HNO3 on the ground seems to be the most likely source of HONO.
Sean Hartery, Róisín Commane, Jakob Lindaas, Colm Sweeney, John Henderson, Marikate Mountain, Nicholas Steiner, Kyle McDonald, Steven J. Dinardo, Charles E. Miller, Steven C. Wofsy, and Rachel Y.-W. Chang
Atmos. Chem. Phys., 18, 185–202, https://doi.org/10.5194/acp-18-185-2018, https://doi.org/10.5194/acp-18-185-2018, 2018
Short summary
Short summary
Methane is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. This study uses aircraft measurements of methane from Alaska to estimate surface emissions. We found that methane emission rates depend on the soil temperature at depths where its production was taking place, and that total emissions were similar between tundra and boreal regions. These results provide a simple way to predict methane emissions in this region.
Xin Lan, Pieter Tans, Colm Sweeney, Arlyn Andrews, Andrew Jacobson, Molly Crotwell, Edward Dlugokencky, Jonathan Kofler, Patricia Lang, Kirk Thoning, and Sonja Wolter
Atmos. Chem. Phys., 17, 15151–15165, https://doi.org/10.5194/acp-17-15151-2017, https://doi.org/10.5194/acp-17-15151-2017, 2017
Short summary
Short summary
We analyze spatial patterns of column CO2 over North America using well-calibrated aircraft and tall tower measurements. We find that the long-term averaged spatial gradients of column CO2 across North America show a smooth pattern that mainly reflects the large-scale circulation. Our results can serve as a good reference for evaluating current and future column CO2 retrievals from both ground and satellite platforms.
Demetrios Pagonis, Jordan E. Krechmer, Joost de Gouw, Jose L. Jimenez, and Paul J. Ziemann
Atmos. Meas. Tech., 10, 4687–4696, https://doi.org/10.5194/amt-10-4687-2017, https://doi.org/10.5194/amt-10-4687-2017, 2017
Short summary
Short summary
Laboratory studies were conducted to investigate gas-wall partitioning of atmospheric organic compounds in Teflon tubing and inside an instrument used to monitor concentrations. Rapid partitioning caused time delays in instrument response that vary with tubing length and diameter, flow rate, and compound volatility. Tubing delay times of seconds to hours were described using a model that also included effects of instrument surfaces. The results can enable better design of air sampling systems.
Zachary R. Barkley, Thomas Lauvaux, Kenneth J. Davis, Aijun Deng, Natasha L. Miles, Scott J. Richardson, Yanni Cao, Colm Sweeney, Anna Karion, MacKenzie Smith, Eric A. Kort, Stefan Schwietzke, Thomas Murphy, Guido Cervone, Douglas Martins, and Joannes D. Maasakkers
Atmos. Chem. Phys., 17, 13941–13966, https://doi.org/10.5194/acp-17-13941-2017, https://doi.org/10.5194/acp-17-13941-2017, 2017
Short summary
Short summary
This study quantifies methane emissions from natural gas production in north-eastern Pennsylvania. Methane observations from 10 flights in spring 2015 are compared to model-projected values, and methane emissions from natural gas are adjusted within the model to create the best match between the two data sets. This study find methane emissions from natural gas production to be low and may be indicative of characteristics of the basin that make sources from north-eastern Pennsylvania unique.
Robert C. Rhew, Malte Julian Deventer, Andrew A. Turnipseed, Carsten Warneke, John Ortega, Steve Shen, Luis Martinez, Abigail Koss, Brian M. Lerner, Jessica B. Gilman, James N. Smith, Alex B. Guenther, and Joost A. de Gouw
Atmos. Chem. Phys., 17, 13417–13438, https://doi.org/10.5194/acp-17-13417-2017, https://doi.org/10.5194/acp-17-13417-2017, 2017
Short summary
Short summary
Alkenes emanate from both natural and anthropogenic sources and can contribute to atmospheric ozone production. This study measured
lightalkene (ethene, propene and butene) fluxes from a ponderosa pine forest using a novel relaxed eddy accumulation method, revealing much larger emissions than previously estimated and accounting for a significant fraction of OH reactivity. Emissions have a diurnal cycle related to sunlight and temperature, and the forest canopy appears to be the source.
Andrew K. Thorpe, Christian Frankenberg, David R. Thompson, Riley M. Duren, Andrew D. Aubrey, Brian D. Bue, Robert O. Green, Konstantin Gerilowski, Thomas Krings, Jakob Borchardt, Eric A. Kort, Colm Sweeney, Stephen Conley, Dar A. Roberts, and Philip E. Dennison
Atmos. Meas. Tech., 10, 3833–3850, https://doi.org/10.5194/amt-10-3833-2017, https://doi.org/10.5194/amt-10-3833-2017, 2017
Short summary
Short summary
At local scales emissions of methane (CH4) and carbon dioxide (CO2) are highly uncertain. The AVIRIS-NG imaging spectrometer maps large regions and generates high-spatial-resolution CH4 and CO2 concentration maps from anthropogenic and natural sources. Examples include CH4 from a processing plant, tank, pipeline leak, seep, mine vent shafts, and CO2 from power plants. This demonstrates a greenhouse gas monitoring capability that targets the two dominant anthropogenic climate-forcing agents.
Stephen Conley, Ian Faloona, Shobhit Mehrotra, Maxime Suard, Donald H. Lenschow, Colm Sweeney, Scott Herndon, Stefan Schwietzke, Gabrielle Pétron, Justin Pifer, Eric A. Kort, and Russell Schnell
Atmos. Meas. Tech., 10, 3345–3358, https://doi.org/10.5194/amt-10-3345-2017, https://doi.org/10.5194/amt-10-3345-2017, 2017
Short summary
Short summary
This paper describes a new method of quantifying surface trace gas emissions (e.g. methane) from small aircraft (e.g. Mooney, Cessna) in about 30 min. This technique greatly enhances our ability to rapidly respond in the event of catastrophic failures such as Aliso Canyon and Deep Water Horizon.
Abigail Koss, Bin Yuan, Carsten Warneke, Jessica B. Gilman, Brian M. Lerner, Patrick R. Veres, Jeff Peischl, Scott Eilerman, Rob Wild, Steven S. Brown, Chelsea R. Thompson, Thomas Ryerson, Thomas Hanisco, Glenn M. Wolfe, Jason M. St. Clair, Mitchell Thayer, Frank N. Keutsch, Shane Murphy, and Joost de Gouw
Atmos. Meas. Tech., 10, 2941–2968, https://doi.org/10.5194/amt-10-2941-2017, https://doi.org/10.5194/amt-10-2941-2017, 2017
Short summary
Short summary
Oil and gas extraction activity can cause air quality issues through emission of reactive chemicals. VOCs related to extraction operations in the United States were measured by PTR-ToF-MS from aircraft during the SONGNEX campaign in March–April 2015. The detailed analysis in this work provides a guide to interpreting PTR-ToF measurements in oil- and gas-producing regions, and it includes fundamental observations of VOC speciation and mixing ratios.
Shantanu H. Jathar, Christopher Heppding, Michael F. Link, Delphine K. Farmer, Ali Akherati, Michael J. Kleeman, Joost A. de Gouw, Patrick R. Veres, and James M. Roberts
Atmos. Chem. Phys., 17, 8959–8970, https://doi.org/10.5194/acp-17-8959-2017, https://doi.org/10.5194/acp-17-8959-2017, 2017
Short summary
Short summary
Our work makes novel emissions measurements of isocyanic acid, a toxic gas, from a modern-day diesel engine and finds that diesel engines emit isocyanic acid but the emissions control devices do not enhance or destroy the isocyanic acid. Air quality model calculations suggest that diesel engines are possibly important sources of isocyanic acid in urban environments although the isocyanic acid levels are ten times lower than levels linked to adverse human health effects.
Stephan Keßel, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri, John N. Crowley, Andrea Pozzer, Christof Stönner, Luc Vereecken, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 17, 8789–8804, https://doi.org/10.5194/acp-17-8789-2017, https://doi.org/10.5194/acp-17-8789-2017, 2017
Short summary
Short summary
In this study we identify an often overlooked stable oxide of carbon, namely carbon suboxide (C3O2), in ambient air. We have made C3O2 and in the laboratory determined its absorption cross section data and the rate of reaction with two important atmospheric oxidants, OH and O3. By incorporating known sources and sinks in a global model we have generated a first global picture of the distribution of this species in the atmosphere.
Merritt N. Deeter, David P. Edwards, Gene L. Francis, John C. Gille, Sara Martínez-Alonso, Helen M. Worden, and Colm Sweeney
Atmos. Meas. Tech., 10, 2533–2555, https://doi.org/10.5194/amt-10-2533-2017, https://doi.org/10.5194/amt-10-2533-2017, 2017
Short summary
Short summary
This manuscript describes the methods used for deriving the latest version 7 product for atmospheric carbon monoxide (CO) from measurements made by the MOPITT (Measurements of Pollution in the Troposphere) satellite instrument. Comparisons of MOPITT-retrieved CO vertical profiles with in situ data measured from aircraft are also presented, and they demonstrate clear improvements relative to earlier MOPITT products. The new CO product is appropriate for a wide variety of applications.
John Liggio, Samar G. Moussa, Jeremy Wentzell, Andrea Darlington, Peter Liu, Amy Leithead, Katherine Hayden, Jason O'Brien, Richard L. Mittermeier, Ralf Staebler, Mengistu Wolde, and Shao-Meng Li
Atmos. Chem. Phys., 17, 8411–8427, https://doi.org/10.5194/acp-17-8411-2017, https://doi.org/10.5194/acp-17-8411-2017, 2017
Short summary
Short summary
The emission and formation of gaseous organic acids from the oil sands industry in Canada is explored through aircraft measurements directly over and downwind wind of industrial facilities. Results demonstrated that the formation of organic acids through atmospheric chemical reactions dominated over the direct emissions from mining activities but could not be explicitly modeled. The results highlight the need for improved understanding of photochemical mechanisms leading to these species.
Olivier Membrive, Cyril Crevoisier, Colm Sweeney, François Danis, Albert Hertzog, Andreas Engel, Harald Bönisch, and Laurence Picon
Atmos. Meas. Tech., 10, 2163–2181, https://doi.org/10.5194/amt-10-2163-2017, https://doi.org/10.5194/amt-10-2163-2017, 2017
Short summary
Short summary
A new high-resolution AirCore system is presented. This system flown with stratospheric balloons allows us to sample atmospheric air during the descent. The analysis of trace gases (CO2 and CH4 in this case) in the collected air sample provides information on the vertical distribution along the atmospheric column. The continuous vertical profiles retrieved may contribute to several research topics concerning the observation of greenhouse gases and, more generally, carbon cycle studies.
Caroline C. Womack, J. Andrew Neuman, Patrick R. Veres, Scott J. Eilerman, Charles A. Brock, Zachary C. J. Decker, Kyle J. Zarzana, William P. Dube, Robert J. Wild, Paul J. Wooldridge, Ronald C. Cohen, and Steven S. Brown
Atmos. Meas. Tech., 10, 1911–1926, https://doi.org/10.5194/amt-10-1911-2017, https://doi.org/10.5194/amt-10-1911-2017, 2017
Short summary
Short summary
The accurate detection of reactive nitrogen species (NOy) is key to understanding tropospheric ozone production. Typically, NOy is detected by thermal conversion to NO2, followed by NO2 detection. Here, we assess the conversion efficiency of several NOy species to NO2 in a thermal dissociation cavity ring-down spectrometer and discuss how this conversion efficiency is affected by certain experimental conditions, such as oven residence time, and interferences from non-NOy species.
Hongyu Guo, Jiumeng Liu, Karl D. Froyd, James M. Roberts, Patrick R. Veres, Patrick L. Hayes, Jose L. Jimenez, Athanasios Nenes, and Rodney J. Weber
Atmos. Chem. Phys., 17, 5703–5719, https://doi.org/10.5194/acp-17-5703-2017, https://doi.org/10.5194/acp-17-5703-2017, 2017
Short summary
Short summary
Fine particle pH is linked to many environmental impacts by affecting particle concentration and composition. Predicted Pasadena, CA (CalNex campaign), PM1 pH is 1.9 and PM2.5 pH 2.7, the latter higher due to sea salts. The model predicted gas–particle partitionings of HNO3–NO3−, NH3–NH4+, and HCl–Cl− are in good agreement, verifying the model predictions. A summary of contrasting locations in the US and eastern Mediterranean shows fine particles are generally highly acidic, with pH below 3.
Susan S. Kulawik, Chris O'Dell, Vivienne H. Payne, Le Kuai, Helen M. Worden, Sebastien C. Biraud, Colm Sweeney, Britton Stephens, Laura T. Iraci, Emma L. Yates, and Tomoaki Tanaka
Atmos. Chem. Phys., 17, 5407–5438, https://doi.org/10.5194/acp-17-5407-2017, https://doi.org/10.5194/acp-17-5407-2017, 2017
Short summary
Short summary
We introduce new vertically resolved GOSAT products that better separate locally and remotely influenced CO2. Current GOSAT column results for CO2 (XCO2) are sensitive to fluxes on continental scales, whereas flux estimates from surface and tower measurements are affected by sampling bias and model transport uncertainty. These new GOSAT measurements of boundary layer CO2 are validated against aircraft and surface observations of CO2 and are compared to vertically resolved MOPITT CO.
Bin Yuan, Matthew M. Coggon, Abigail R. Koss, Carsten Warneke, Scott Eilerman, Jeff Peischl, Kenneth C. Aikin, Thomas B. Ryerson, and Joost A. de Gouw
Atmos. Chem. Phys., 17, 4945–4956, https://doi.org/10.5194/acp-17-4945-2017, https://doi.org/10.5194/acp-17-4945-2017, 2017
Short summary
Short summary
In this study, we measured emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs) using both mobile laboratory and aircraft measurements. We will use this data set to investigate chemical compositions of VOC emissions and sources apportionment for these VOC emissions in different facilities.
Lindsay E. Hatch, Robert J. Yokelson, Chelsea E. Stockwell, Patrick R. Veres, Isobel J. Simpson, Donald R. Blake, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 17, 1471–1489, https://doi.org/10.5194/acp-17-1471-2017, https://doi.org/10.5194/acp-17-1471-2017, 2017
Short summary
Short summary
The most comprehensive database of gaseous biomass burning emissions to date was compiled. Four complementary instruments were deployed together during laboratory fires. The results generally compared within experimental uncertainty and highlighted that a range of measurement approaches are required for adequate characterization of smoke composition. Observed compounds were binned based on volatility, and priority recommendations were made to improve secondary organic aerosol predictions.
Anusha P. S. Hettiyadura, Thilina Jayarathne, Karsten Baumann, Allen H. Goldstein, Joost A. de Gouw, Abigail Koss, Frank N. Keutsch, Kate Skog, and Elizabeth A. Stone
Atmos. Chem. Phys., 17, 1343–1359, https://doi.org/10.5194/acp-17-1343-2017, https://doi.org/10.5194/acp-17-1343-2017, 2017
Short summary
Short summary
Organosulfates are components of secondary organic aerosol (SOA) formed in the presence of sulfate. Herein, their abundance, identity, and potential to form as sampling artifacts were studied in Centreville, AL, USA. The 10 most abundant signals accounted for 58–78 % of the total, with at least 20–200 other species accounting for the remainder. These major species were largely associated with biogenic gases, like isoprene and monoterpenes, and are proposed targets for future standard development.
Brian M. Lerner, Jessica B. Gilman, Kenneth C. Aikin, Elliot L. Atlas, Paul D. Goldan, Martin Graus, Roger Hendershot, Gabriel A. Isaacman-VanWertz, Abigail Koss, William C. Kuster, Richard A. Lueb, Richard J. McLaughlin, Jeff Peischl, Donna Sueper, Thomas B. Ryerson, Travis W. Tokarek, Carsten Warneke, Bin Yuan, and Joost A. de Gouw
Atmos. Meas. Tech., 10, 291–313, https://doi.org/10.5194/amt-10-291-2017, https://doi.org/10.5194/amt-10-291-2017, 2017
Short summary
Short summary
Whole air sampling followed by analysis by gas chromatography is a common technique for characterization of trace volatile organic compounds in the atmosphere. We describe a new automated gas chromatograph–mass spectrograph which uses a Stirling cooler for sample preconcentration at −165 °C without the need for a cryogen such as liquid nitrogen. We also discuss potential sources of artifacts from our electropolished stainless steel sampling system and present results from two field campaigns.
Yuemei Han, Craig A. Stroud, John Liggio, and Shao-Meng Li
Atmos. Chem. Phys., 16, 13929–13944, https://doi.org/10.5194/acp-16-13929-2016, https://doi.org/10.5194/acp-16-13929-2016, 2016
Short summary
Short summary
This study investigates the acidity effect on the yield and chemical composition of α-pinene secondary organic aerosol based on a series of laboratory experiments performed using a photochemical reaction chamber under high- and low-NOx conditions. We have found that the acidity effect largely depends on NOx level and the inorganic acidity has a significant role to play in determining various organic aerosol chemical properties such as mass yields, oxidation state, and organic nitrate content.
Richard J. Pope, Nigel A. D. Richards, Martyn P. Chipperfield, David P. Moore, Sarah A. Monks, Stephen R. Arnold, Norbert Glatthor, Michael Kiefer, Tom J. Breider, Jeremy J. Harrison, John J. Remedios, Carsten Warneke, James M. Roberts, Glenn S. Diskin, Lewis G. Huey, Armin Wisthaler, Eric C. Apel, Peter F. Bernath, and Wuhu Feng
Atmos. Chem. Phys., 16, 13541–13559, https://doi.org/10.5194/acp-16-13541-2016, https://doi.org/10.5194/acp-16-13541-2016, 2016
Zeli Tan, Qianlai Zhuang, Daven K. Henze, Christian Frankenberg, Ed Dlugokencky, Colm Sweeney, Alexander J. Turner, Motoki Sasakawa, and Toshinobu Machida
Atmos. Chem. Phys., 16, 12649–12666, https://doi.org/10.5194/acp-16-12649-2016, https://doi.org/10.5194/acp-16-12649-2016, 2016
Short summary
Short summary
Methane emissions from the pan-Arctic could be important in understanding the global carbon cycle but are still poorly constrained to date. This study demonstrated that satellite retrievals can be used to reduce the uncertainty of the estimates of these emissions. We also provided additional evidence for the existence of large methane emissions from pan-Arctic lakes in the Siberian yedoma permafrost region. We found that biogeochemical models should be improved for better estimates.
Weiwei Hu, Brett B. Palm, Douglas A. Day, Pedro Campuzano-Jost, Jordan E. Krechmer, Zhe Peng, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Karsten Baumann, Lina Hacker, Astrid Kiendler-Scharr, Abigail R. Koss, Joost A. de Gouw, Allen H. Goldstein, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Francesco Canonaco, André S. H. Prévôt, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 11563–11580, https://doi.org/10.5194/acp-16-11563-2016, https://doi.org/10.5194/acp-16-11563-2016, 2016
Short summary
Short summary
IEPOX-SOA is biogenically derived secondary organic aerosol under anthropogenic influence, which has been shown to comprise a substantial fraction of OA globally. We investigated the lifetime of ambient IEPOX-SOA in the SE US and Amazonia, with an oxidation flow reactor and thermodenuder coupled with MS-based instrumentation. The low volatility and long lifetime of IEPOX-SOA against OH radicals' oxidation (> 2 weeks) was observed, which can help to constrain OA impact on air quality and climate.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Xiyan Xu, William J. Riley, Charles D. Koven, Dave P. Billesbach, Rachel Y.-W. Chang, Róisín Commane, Eugénie S. Euskirchen, Sean Hartery, Yoshinobu Harazono, Hiroki Iwata, Kyle C. McDonald, Charles E. Miller, Walter C. Oechel, Benjamin Poulter, Naama Raz-Yaseef, Colm Sweeney, Margaret Torn, Steven C. Wofsy, Zhen Zhang, and Donatella Zona
Biogeosciences, 13, 5043–5056, https://doi.org/10.5194/bg-13-5043-2016, https://doi.org/10.5194/bg-13-5043-2016, 2016
Short summary
Short summary
Wetlands are the largest global natural methane source. Peat-rich bogs and fens lying between 50°N and 70°N contribute 10–30% to this source. The predictive capability of the seasonal methane cycle can directly affect the estimation of global methane budget. We present multiscale methane seasonal emission by observations and modeling and find that the uncertainties in predicting the seasonal methane emissions are from the wetland extent, cold-season CH4 production and CH4 transport processes.
Makoto Inoue, Isamu Morino, Osamu Uchino, Takahiro Nakatsuru, Yukio Yoshida, Tatsuya Yokota, Debra Wunch, Paul O. Wennberg, Coleen M. Roehl, David W. T. Griffith, Voltaire A. Velazco, Nicholas M. Deutscher, Thorsten Warneke, Justus Notholt, John Robinson, Vanessa Sherlock, Frank Hase, Thomas Blumenstock, Markus Rettinger, Ralf Sussmann, Esko Kyrö, Rigel Kivi, Kei Shiomi, Shuji Kawakami, Martine De Mazière, Sabrina G. Arnold, Dietrich G. Feist, Erica A. Barrow, James Barney, Manvendra Dubey, Matthias Schneider, Laura T. Iraci, James R. Podolske, Patrick W. Hillyard, Toshinobu Machida, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda, Colm Sweeney, Pieter P. Tans, Arlyn E. Andrews, Sebastien C. Biraud, Yukio Fukuyama, Jasna V. Pittman, Eric A. Kort, and Tomoaki Tanaka
Atmos. Meas. Tech., 9, 3491–3512, https://doi.org/10.5194/amt-9-3491-2016, https://doi.org/10.5194/amt-9-3491-2016, 2016
Short summary
Short summary
In this study, we correct the biases of GOSAT XCO2 and XCH4 using TCCON data. To evaluate the effectiveness of our correction method, uncorrected/corrected GOSAT data are compared to independent XCO2 and XCH4 data derived from aircraft measurements. Consequently, we suggest that this method is effective for reducing the biases of the GOSAT data. We consider that our work provides GOSAT data users with valuable information and contributes to the further development of studies on greenhouse gases.
Jan Zörner, Marloes Penning de Vries, Steffen Beirle, Holger Sihler, Patrick R. Veres, Jonathan Williams, and Thomas Wagner
Atmos. Chem. Phys., 16, 9457–9487, https://doi.org/10.5194/acp-16-9457-2016, https://doi.org/10.5194/acp-16-9457-2016, 2016
Short summary
Short summary
We present a top-down approach to infer and quantify rain-induced emission pulses of nitrogen oxides from soils using satellite-borne measurements of NO2. We found strong enhancements of NO2 induced by the first intense precipitation after prolonged droughts in many semi-arid regions of the world, in particular in the Sahel. Apart from the clear first-day peak, NO2 VCDs are moderately enhanced compared to background over the following 2 weeks suggesting potential further emissions.
J. Kaiser, K. M. Skog, K. Baumann, S. B. Bertman, S. B. Brown, W. H. Brune, J. D. Crounse, J. A. de Gouw, E. S. Edgerton, P. A. Feiner, A. H. Goldstein, A. Koss, P. K. Misztal, T. B. Nguyen, K. F. Olson, J. M. St. Clair, A. P. Teng, S. Toma, P. O. Wennberg, R. J. Wild, L. Zhang, and F. N. Keutsch
Atmos. Chem. Phys., 16, 9349–9359, https://doi.org/10.5194/acp-16-9349-2016, https://doi.org/10.5194/acp-16-9349-2016, 2016
Short summary
Short summary
OH reactivity can be used to assess the amount of reactive carbon in an air mass. “Missing” reactivity is commonly found in forested environments and is attributed to either direct emissions of unmeasured volatile organic compounds or to unmeasured/underpredicted oxidation products. Using a box model and measurements from the 2013 SOAS campaign, we find only small discrepancies in measured and calculated reactivity. Our results suggest the discrepancies stem from unmeasured direct emissions.
Carsten Warneke, Michael Trainer, Joost A. de Gouw, David D. Parrish, David W. Fahey, A. R. Ravishankara, Ann M. Middlebrook, Charles A. Brock, James M. Roberts, Steven S. Brown, Jonathan A. Neuman, Brian M. Lerner, Daniel Lack, Daniel Law, Gerhard Hübler, Iliana Pollack, Steven Sjostedt, Thomas B. Ryerson, Jessica B. Gilman, Jin Liao, John Holloway, Jeff Peischl, John B. Nowak, Kenneth C. Aikin, Kyung-Eun Min, Rebecca A. Washenfelder, Martin G. Graus, Mathew Richardson, Milos Z. Markovic, Nick L. Wagner, André Welti, Patrick R. Veres, Peter Edwards, Joshua P. Schwarz, Timothy Gordon, William P. Dube, Stuart A. McKeen, Jerome Brioude, Ravan Ahmadov, Aikaterini Bougiatioti, Jack J. Lin, Athanasios Nenes, Glenn M. Wolfe, Thomas F. Hanisco, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Frank N. Keutsch, Jennifer Kaiser, Jingqiu Mao, and Courtney D. Hatch
Atmos. Meas. Tech., 9, 3063–3093, https://doi.org/10.5194/amt-9-3063-2016, https://doi.org/10.5194/amt-9-3063-2016, 2016
Short summary
Short summary
In this paper we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign, which was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants.
During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction.
Vitali E. Fioletov, Chris A. McLinden, Alexander Cede, Jonathan Davies, Cristian Mihele, Stoyka Netcheva, Shao-Meng Li, and Jason O'Brien
Atmos. Meas. Tech., 9, 2961–2976, https://doi.org/10.5194/amt-9-2961-2016, https://doi.org/10.5194/amt-9-2961-2016, 2016
Abigail R. Koss, Carsten Warneke, Bin Yuan, Matthew M. Coggon, Patrick R. Veres, and Joost A. de Gouw
Atmos. Meas. Tech., 9, 2909–2925, https://doi.org/10.5194/amt-9-2909-2016, https://doi.org/10.5194/amt-9-2909-2016, 2016
Short summary
Short summary
Using laboratory and field experiments, we have explored how the technique of NO+ chemical ionization mass spectrometry can be used to measure volatile organic compounds (VOCs) in the troposphere. Results include the design and operation of the instrument, an evaluation of the technique’s utility for atmospheric measurement, and a guide for data interpretation. Use of this technique will improve our understanding of VOC chemistry.
Bin Yuan, Abigail Koss, Carsten Warneke, Jessica B. Gilman, Brian M. Lerner, Harald Stark, and Joost A. de Gouw
Atmos. Meas. Tech., 9, 2735–2752, https://doi.org/10.5194/amt-9-2735-2016, https://doi.org/10.5194/amt-9-2735-2016, 2016
Short summary
Short summary
We present the development of a hydronium (H3O+) time of flight chemical ionization mass spectrometer (H3O+ ToF-CIMS). We characterize the humidity dependence of the reagent ions and VOC signals in details. The low mass cutoff issue of RF-only quadrupole leads to unusual humidity dependence of reagent ions. The new H3O+ ToF-CIMS was successfully deployed on the NOAA WP-3D research aircraft for the SONGNEX campaign in 2015 and some initial results from the SONGNEX campaign are presented.
Paul S. Romer, Kaitlin C. Duffey, Paul J. Wooldridge, Hannah M. Allen, Benjamin R. Ayres, Steven S. Brown, William H. Brune, John D. Crounse, Joost de Gouw, Danielle C. Draper, Philip A. Feiner, Juliane L. Fry, Allen H. Goldstein, Abigail Koss, Pawel K. Misztal, Tran B. Nguyen, Kevin Olson, Alex P. Teng, Paul O. Wennberg, Robert J. Wild, Li Zhang, and Ronald C. Cohen
Atmos. Chem. Phys., 16, 7623–7637, https://doi.org/10.5194/acp-16-7623-2016, https://doi.org/10.5194/acp-16-7623-2016, 2016
Short summary
Short summary
The lifetime of nitrogen oxides (NOx) is evaluated by analysis of field measurements from the southeastern United States. At warm temperatures in the daytime boundary layer, NOx interconverts rapidly with both PAN and alkyl and multifunctional nitrates (RONO2), and the relevant lifetime is the combined lifetime of these three classes. We find that the production of RONO2, followed by hydrolysis to produce nitric acid, is the dominant pathway for NOx removal in an isoprene dominated forest.
Amber M. Ortega, Patrick L. Hayes, Zhe Peng, Brett B. Palm, Weiwei Hu, Douglas A. Day, Rui Li, Michael J. Cubison, William H. Brune, Martin Graus, Carsten Warneke, Jessica B. Gilman, William C. Kuster, Joost de Gouw, Cándido Gutiérrez-Montes, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 7411–7433, https://doi.org/10.5194/acp-16-7411-2016, https://doi.org/10.5194/acp-16-7411-2016, 2016
Short summary
Short summary
An oxidation flow reactor (OFR) was deployed to study secondary organic aerosol (SOA) formation and aging of urban emissions at a wide range of OH exposures during the CalNex campaign in Pasadena, CA, in 2010. Results include linking SOA formation to short-lived reactive compounds, similar elemental composition of reactor-aged emissions to atmospheric aging, changes in OA mass due to condensation of oxidized gas-phase species and heterogeneous oxidation of particle-phase species.
Alex K. Y. Lee, Jonathan P. D. Abbatt, W. Richard Leaitch, Shao-Meng Li, Steve J. Sjostedt, Jeremy J. B. Wentzell, John Liggio, and Anne Marie Macdonald
Atmos. Chem. Phys., 16, 6721–6733, https://doi.org/10.5194/acp-16-6721-2016, https://doi.org/10.5194/acp-16-6721-2016, 2016
Short summary
Short summary
Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment. In particular, our observations provide insights into the relative importance of different oxidation mechanisms between day and night.
Chun Zhao, Maoyi Huang, Jerome D. Fast, Larry K. Berg, Yun Qian, Alex Guenther, Dasa Gu, Manish Shrivastava, Ying Liu, Stacy Walters, Gabriele Pfister, Jiming Jin, John E. Shilling, and Carsten Warneke
Geosci. Model Dev., 9, 1959–1976, https://doi.org/10.5194/gmd-9-1959-2016, https://doi.org/10.5194/gmd-9-1959-2016, 2016
Short summary
Short summary
In this study, the latest version of MEGAN is coupled within CLM4 in WRF-Chem. In this implementation, MEGAN shares a consistent vegetation map with CLM4. This improved modeling framework is used to investigate the impact of two land surface schemes on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models.
Anna Karion, Colm Sweeney, John B. Miller, Arlyn E. Andrews, Roisin Commane, Steven Dinardo, John M. Henderson, Jacob Lindaas, John C. Lin, Kristina A. Luus, Tim Newberger, Pieter Tans, Steven C. Wofsy, Sonja Wolter, and Charles E. Miller
Atmos. Chem. Phys., 16, 5383–5398, https://doi.org/10.5194/acp-16-5383-2016, https://doi.org/10.5194/acp-16-5383-2016, 2016
Short summary
Short summary
Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Here we use carbon dioxide and methane measurements from a tower near Fairbanks AK to investigate regional Alaskan fluxes of CO2 and CH4 for 2012–2014.
Scot M. Miller, Roisin Commane, Joe R. Melton, Arlyn E. Andrews, Joshua Benmergui, Edward J. Dlugokencky, Greet Janssens-Maenhout, Anna M. Michalak, Colm Sweeney, and Doug E. J. Worthy
Biogeosciences, 13, 1329–1339, https://doi.org/10.5194/bg-13-1329-2016, https://doi.org/10.5194/bg-13-1329-2016, 2016
Short summary
Short summary
We use atmospheric data from the US and Canada to examine seven wetland methane flux estimates. Relative to existing estimates, we find a methane source that is smaller in magnitude with a broader seasonal cycle. Furthermore, we estimate the largest fluxes over the Hudson Bay Lowlands, a spatial distribution that differs from commonly used remote sensing estimates of wetland location.
G. M. Wolfe, J. Kaiser, T. F. Hanisco, F. N. Keutsch, J. A. de Gouw, J. B. Gilman, M. Graus, C. D. Hatch, J. Holloway, L. W. Horowitz, B. H. Lee, B. M. Lerner, F. Lopez-Hilifiker, J. Mao, M. R. Marvin, J. Peischl, I. B. Pollack, J. M. Roberts, T. B. Ryerson, J. A. Thornton, P. R. Veres, and C. Warneke
Atmos. Chem. Phys., 16, 2597–2610, https://doi.org/10.5194/acp-16-2597-2016, https://doi.org/10.5194/acp-16-2597-2016, 2016
Short summary
Short summary
This study uses airborne trace gas observations acquired over the southeast US to examine how both natural (isoprene) and anthropogenic (NOx) emissions influence the production of formaldehyde (HCHO). We find a 3-fold increase in HCHO yield between rural and polluted environments. State-of-the-science chemical mechanisms are generally able to reproduce this behavior. These results add confidence to global hydrocarbon emission inventories constrained by spaceborne HCHO observations.
Bin Yuan, John Liggio, Jeremy Wentzell, Shao-Meng Li, Harald Stark, James M. Roberts, Jessica Gilman, Brian Lerner, Carsten Warneke, Rui Li, Amy Leithead, Hans D. Osthoff, Robert Wild, Steven S. Brown, and Joost A. de Gouw
Atmos. Chem. Phys., 16, 2139–2153, https://doi.org/10.5194/acp-16-2139-2016, https://doi.org/10.5194/acp-16-2139-2016, 2016
Short summary
Short summary
We describe high-resolution measurements of nitrated phenols using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS). Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Box model simulations were able to reproduce the measured nitrated phenols.
R. J. Wild, P. M. Edwards, T. S. Bates, R. C. Cohen, J. A. de Gouw, W. P. Dubé, J. B. Gilman, J. Holloway, J. Kercher, A. R. Koss, L. Lee, B. M. Lerner, R. McLaren, P. K. Quinn, J. M. Roberts, J. Stutz, J. A. Thornton, P. R. Veres, C. Warneke, E. Williams, C. J. Young, B. Yuan, K. J. Zarzana, and S. S. Brown
Atmos. Chem. Phys., 16, 573–583, https://doi.org/10.5194/acp-16-573-2016, https://doi.org/10.5194/acp-16-573-2016, 2016
Short summary
Short summary
High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation, and we find that nighttime chemistry has a large effect on its partitioning. Much of the oxidation of reactive nitrogen during a high-ozone year occurred via heterogeneous uptake onto aerosol at night, keeping NOx at concentrations comparable to a low-ozone year.
J. B. Gilman, B. M. Lerner, W. C. Kuster, P. D. Goldan, C. Warneke, P. R. Veres, J. M. Roberts, J. A. de Gouw, I. R. Burling, and R. J. Yokelson
Atmos. Chem. Phys., 15, 13915–13938, https://doi.org/10.5194/acp-15-13915-2015, https://doi.org/10.5194/acp-15-13915-2015, 2015
Short summary
Short summary
A comprehensive suite of instruments was used to quantify the emissions of over 200 organic and inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern United States. Emission ratios relative to carbon monoxide (CO) are used to characterize the composition of gases emitted by mass; OH reactivity; and potential secondary organic aerosol (SOA) precursors for the three different U.S. fuel regions presented here.
M. W. Shephard, C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, P. Lehr, J. Zhang, D. K. Henze, D. B. Millet, J. O. Bash, L. Zhu, K. C. Wells, S. L. Capps, S. Chaliyakunnel, M. Gordon, K. Hayden, J. R. Brook, M. Wolde, and S.-M. Li
Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, https://doi.org/10.5194/amt-8-5189-2015, 2015
Short summary
Short summary
This study provides direct validations of Tropospheric Emission Spectrometer (TES) satellite retrieved profiles against coincident aircraft profiles of carbon monoxide, ammonia, methanol, and formic acid, all of which are of interest for air quality. The comparisons are performed over the Canadian oil sands region during an intensive field campaign in support of the Joint Canada-Alberta Implementation Plan for the Oil Sands Monitoring (JOSM). Initial model evaluations are also provided.
Y. Liu, J. Liggio, R. Staebler, and S.-M. Li
Atmos. Chem. Phys., 15, 13569–13584, https://doi.org/10.5194/acp-15-13569-2015, https://doi.org/10.5194/acp-15-13569-2015, 2015
Short summary
Short summary
This work for the first time demonstrated that organonitrogen compounds (NOC) can be formed efficiently via the uptake of ammonia by newly formed secondary organic aerosol using a smog chamber equipped with a HR-ToF-AMS. Based on the measured kinetics, this study suggests that light absorption by NOC in atmospheric particles may be important in regions where the BC contribution is minimal and NOC from ammonia should be considered with respect to overall deposition of nitrogen to ecosystems.
B. R. Ayres, H. M. Allen, D. C. Draper, S. S. Brown, R. J. Wild, J. L. Jimenez, D. A. Day, P. Campuzano-Jost, W. Hu, J. de Gouw, A. Koss, R. C. Cohen, K. C. Duffey, P. Romer, K. Baumann, E. Edgerton, S. Takahama, J. A. Thornton, B. H. Lee, F. D. Lopez-Hilfiker, C. Mohr, P. O. Wennberg, T. B. Nguyen, A. Teng, A. H. Goldstein, K. Olson, and J. L. Fry
Atmos. Chem. Phys., 15, 13377–13392, https://doi.org/10.5194/acp-15-13377-2015, https://doi.org/10.5194/acp-15-13377-2015, 2015
Short summary
Short summary
This paper reports atmospheric gas- and aerosol-phase field measurements from the southeastern United States in summer 2013 to demonstrate that the oxidation of biogenic volatile organic compounds by nitrate radical produces a substantial amount of secondary organic aerosol in this region. This process, driven largely by monoterpenes, results in a comparable aerosol nitrate production rate to inorganic nitrate formation by heterogeneous uptake of HNO3 onto dust particles.
F. Xiong, K. M. McAvey, K. A. Pratt, C. J. Groff, M. A. Hostetler, M. A. Lipton, T. K. Starn, J. V. Seeley, S. B. Bertman, A. P. Teng, J. D. Crounse, T. B. Nguyen, P. O. Wennberg, P. K. Misztal, A. H. Goldstein, A. B. Guenther, A. R. Koss, K. F. Olson, J. A. de Gouw, K. Baumann, E. S. Edgerton, P. A. Feiner, L. Zhang, D. O. Miller, W. H. Brune, and P. B. Shepson
Atmos. Chem. Phys., 15, 11257–11272, https://doi.org/10.5194/acp-15-11257-2015, https://doi.org/10.5194/acp-15-11257-2015, 2015
Short summary
Short summary
Hydroxynitrates from isoprene oxidation were quantified both in the laboratory and through field studies. The yield of hydroxynitrates 9(+4/-3)% derived from chamber experiments was applied in a zero-dimensional model to simulate the production and loss of isoprene hydroxynitrates in an ambient environment during the 2013 Southern Oxidant and Aerosol Study (SOAS). NOx was determined to be the limiting factor for the formation of isoprene hydroxynitrates during SOAS.
C. Huang, H. L. Wang, L. Li, Q. Wang, Q. Lu, J. A. de Gouw, M. Zhou, S. A. Jing, J. Lu, and C. H. Chen
Atmos. Chem. Phys., 15, 11081–11096, https://doi.org/10.5194/acp-15-11081-2015, https://doi.org/10.5194/acp-15-11081-2015, 2015
Short summary
Short summary
SOA formations from vehicle exhausts and gas evaporation contribute 40% and 60% of total organic aerosols observed in summer and winter in urban Shanghai. Diesel vehicles, which accounted for less than 20% of vehicle kilometers of travel, contribute the most to vehicular POA emissions and SOA production in urban Shanghai. Intermediate-volatile organic compounds (IVOCs) in vehicle exhausts contribute greatly to SOA formation in the urban atmosphere of China.
M. Gordon, S.-M. Li, R. Staebler, A. Darlington, K. Hayden, J. O'Brien, and M. Wolde
Atmos. Meas. Tech., 8, 3745–3765, https://doi.org/10.5194/amt-8-3745-2015, https://doi.org/10.5194/amt-8-3745-2015, 2015
Short summary
Short summary
Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made during a summer intensive field campaign in 2013. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples. Uncertainty of the emission rates estimated with TERRA is estimated as less than 30%, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.
L. Lee, P. J. Wooldridge, J. deGouw, S. S. Brown, T. S. Bates, P. K. Quinn, and R. C. Cohen
Atmos. Chem. Phys., 15, 9313–9325, https://doi.org/10.5194/acp-15-9313-2015, https://doi.org/10.5194/acp-15-9313-2015, 2015
Short summary
Short summary
Secondary organic aerosol affects both the environment and human health. We characterized the aerosol composition in Uintah Basin by measuring the concentration of nitrooxy group moiety which is produced through chemical interaction of volatile organic compounds and NOx emitted largely from local human activity. We found nitrooxy compounds to be a persistent, if not dominant, portion of fine aerosol mass. Similar results may be expected from emissions due to traffic in cities.
P. R. Veres, J. M. Roberts, R. J. Wild, P. M. Edwards, S. S. Brown, T. S. Bates, P. K. Quinn, J. E. Johnson, R. J. Zamora, and J. de Gouw
Atmos. Chem. Phys., 15, 8101–8114, https://doi.org/10.5194/acp-15-8101-2015, https://doi.org/10.5194/acp-15-8101-2015, 2015
Short summary
Short summary
In this paper laboratory work is documented establishing iodide ion chemical ionization mass spectrometry (I- CIMS) as a sensitive method for the unambiguous detection of peroxynitric acid (HO2NO2; PNA). A dynamic calibration source for HO2NO2, HO2, and HONO was developed and calibrated using a novel total NOy detector (NOy CaRDS). The ambient observations of HO2NO2 using I- CIMS made during the 2013 and 2014 Uintah Basin Wintertime Ozone Study (UBWOS) are presented.
J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch
Atmos. Chem. Phys., 15, 7571–7583, https://doi.org/10.5194/acp-15-7571-2015, https://doi.org/10.5194/acp-15-7571-2015, 2015
A. J. Turner, D. J. Jacob, K. J. Wecht, J. D. Maasakkers, E. Lundgren, A. E. Andrews, S. C. Biraud, H. Boesch, K. W. Bowman, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V. H. Payne, R. Sussmann, C. Sweeney, V. A. Velazco, T. Warneke, P. O. Wennberg, and D. Wunch
Atmos. Chem. Phys., 15, 7049–7069, https://doi.org/10.5194/acp-15-7049-2015, https://doi.org/10.5194/acp-15-7049-2015, 2015
N. L. Wagner, C. A. Brock, W. M. Angevine, A. Beyersdorf, P. Campuzano-Jost, D. Day, J. A. de Gouw, G. S. Diskin, T. D. Gordon, M. G. Graus, J. S. Holloway, G. Huey, J. L. Jimenez, D. A. Lack, J. Liao, X. Liu, M. Z. Markovic, A. M. Middlebrook, T. Mikoviny, J. Peischl, A. E. Perring, M. S. Richardson, T. B. Ryerson, J. P. Schwarz, C. Warneke, A. Welti, A. Wisthaler, L. D. Ziemba, and D. M. Murphy
Atmos. Chem. Phys., 15, 7085–7102, https://doi.org/10.5194/acp-15-7085-2015, https://doi.org/10.5194/acp-15-7085-2015, 2015
Short summary
Short summary
This paper investigates the summertime vertical profile of aerosol over the southeastern US using in situ measurements collected from aircraft. We use a vertical mixing model and measurements of CO to predict the vertical profile of aerosol that we would expect from vertical mixing alone and compare with the observed aerosol profile. We found a modest enhancement of aerosol in the cloudy transition layer during shallow cumulus convection and attribute the enhancement to local aerosol formation.
L. K. Emmons, S. R. Arnold, S. A. Monks, V. Huijnen, S. Tilmes, K. S. Law, J. L. Thomas, J.-C. Raut, I. Bouarar, S. Turquety, Y. Long, B. Duncan, S. Steenrod, S. Strode, J. Flemming, J. Mao, J. Langner, A. M. Thompson, D. Tarasick, E. C. Apel, D. R. Blake, R. C. Cohen, J. Dibb, G. S. Diskin, A. Fried, S. R. Hall, L. G. Huey, A. J. Weinheimer, A. Wisthaler, T. Mikoviny, J. Nowak, J. Peischl, J. M. Roberts, T. Ryerson, C. Warneke, and D. Helmig
Atmos. Chem. Phys., 15, 6721–6744, https://doi.org/10.5194/acp-15-6721-2015, https://doi.org/10.5194/acp-15-6721-2015, 2015
Short summary
Short summary
Eleven 3-D tropospheric chemistry models have been compared and evaluated with observations in the Arctic during the International Polar Year (IPY 2008). Large differences are seen among the models, particularly related to the model chemistry of volatile organic compounds (VOCs) and reactive nitrogen (NOx, PAN, HNO3) partitioning. Consistency among the models in the underestimation of CO, ethane and propane indicates the emission inventory is too low for these compounds.
D. B. Millet, M. Baasandorj, D. K. Farmer, J. A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J. A. de Gouw, M. Graus, L. Hu, A. Koss, B. H. Lee, F. D. Lopez-Hilfiker, J. A. Neuman, F. Paulot, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, B. J. Williams, and J. Xu
Atmos. Chem. Phys., 15, 6283–6304, https://doi.org/10.5194/acp-15-6283-2015, https://doi.org/10.5194/acp-15-6283-2015, 2015
Short summary
Short summary
Formic acid (HCOOH) is an abundant atmospheric acid that affects precipitation chemistry and acidity. HCOOH measurements over the USA are 2-3× larger than can be explained by known sources and sinks, revealing a key gap in current understanding. Observations indicate a large biogenic source plus chemical production across a range of precursors. Model simulations cannot capture the HCOOH diurnal amplitude or nocturnal profile, implying a deposition bias and possibly even larger missing source.
P. R. Veres and J. M. Roberts
Atmos. Meas. Tech., 8, 2225–2231, https://doi.org/10.5194/amt-8-2225-2015, https://doi.org/10.5194/amt-8-2225-2015, 2015
Short summary
Short summary
A dynamic system for the calibration of acyl peroxynitrate compounds has been developed to reduce the difficulty, required time, and stability of laboratory standards. We present a photochemical source for the generation of acetyl peroxynitrate (PAN), propionyl peroxynitrate (PPN), acryloyl peroxynitrate (APAN), methacryloyl peroxynitrate (MPAN), and crotonyl peroxynitrate (CPAN). Validation of the APN products was performed using iodide ion chemical ionization mass spectroscopy (I- CIMS).
P. L. Hayes, A. G. Carlton, K. R. Baker, R. Ahmadov, R. A. Washenfelder, S. Alvarez, B. Rappenglück, J. B. Gilman, W. C. Kuster, J. A. de Gouw, P. Zotter, A. S. H. Prévôt, S. Szidat, T. E. Kleindienst, J. H. Offenberg, P. K. Ma, and J. L. Jimenez
Atmos. Chem. Phys., 15, 5773–5801, https://doi.org/10.5194/acp-15-5773-2015, https://doi.org/10.5194/acp-15-5773-2015, 2015
Short summary
Short summary
(1) Four different parameterizations for the formation and chemical evolution of secondary organic aerosol (SOA) are evaluated using a box model representing the Los Angeles region during the CalNex campaign.
(2) The SOA formed only from the oxidation of VOCs is insufficient to explain the observed SOA concentrations.
(3) The amount of SOA mass formed from diesel vehicle emissions is estimated to be 16-27%.
(4) Modeled SOA depends strongly on the P-S/IVOC volatility distribution.
A. R. Koss, J. de Gouw, C. Warneke, J. B. Gilman, B. M. Lerner, M. Graus, B. Yuan, P. Edwards, S. S. Brown, R. Wild, J. M. Roberts, T. S. Bates, and P. K. Quinn
Atmos. Chem. Phys., 15, 5727–5741, https://doi.org/10.5194/acp-15-5727-2015, https://doi.org/10.5194/acp-15-5727-2015, 2015
Short summary
Short summary
Extraction of natural gas and oil is associated with a range of possible atmospheric environmental issues. Here we present an analysis of gas-phase hydrocarbon measurements taken in an oil and natural gas extraction area in Utah during a period of high wintertime ozone. We are able to constrain important chemical parameters related to emission sources and rates, hydrocarbon photochemistry, and VOC composition.
K. R. Baker, A. G. Carlton, T. E. Kleindienst, J. H. Offenberg, M. R. Beaver, D. R. Gentner, A. H. Goldstein, P. L. Hayes, J. L. Jimenez, J. B. Gilman, J. A. de Gouw, M. C. Woody, H. O. T. Pye, J. T. Kelly, M. Lewandowski, M. Jaoui, P. S. Stevens, W. H. Brune, Y.-H. Lin, C. L. Rubitschun, and J. D. Surratt
Atmos. Chem. Phys., 15, 5243–5258, https://doi.org/10.5194/acp-15-5243-2015, https://doi.org/10.5194/acp-15-5243-2015, 2015
Short summary
Short summary
This work details the evaluation of PM2.5 carbon, VOC precursors, and OH estimated by the CMAQ photochemical transport model using routine and special measurements from the 2010 CalNex field study. Here, CMAQ and most recent emissions inventory (2011 NEI) are used to generate model PM2.5 OC estimates that are examined in novel ways including primary vs. secondary formation, fossil vs. contemporary carbon, OH and HO2 evaluation, and the relationship between key VOC precursors and SOC tracers.
J. M. Henderson, J. Eluszkiewicz, M. E. Mountain, T. Nehrkorn, R. Y.-W. Chang, A. Karion, J. B. Miller, C. Sweeney, N. Steiner, S. C. Wofsy, and C. E. Miller
Atmos. Chem. Phys., 15, 4093–4116, https://doi.org/10.5194/acp-15-4093-2015, https://doi.org/10.5194/acp-15-4093-2015, 2015
Short summary
Short summary
This paper describes the atmospheric modeling that underlies the science analysis for the NASA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE). Summary statistics of the WRF meteorological model performance on a 3.3 km grid indicate good overall agreement with surface and radiosonde observations. The high quality of the WRF meteorological fields inspires confidence in their use to drive the STILT transport model for the purpose of computing surface influence fields (“footprints”).
R. A. Field, J. Soltis, M. C. McCarthy, S. Murphy, and D. C. Montague
Atmos. Chem. Phys., 15, 3527–3542, https://doi.org/10.5194/acp-15-3527-2015, https://doi.org/10.5194/acp-15-3527-2015, 2015
Short summary
Short summary
Emissions from oil and natural gas development in the Upper Green River basin of Wyoming are known to drive wintertime ozone production. Fugitive emissions of natural gas and condensate provide sufficient non-methane hydrocarbons (NMHC) to promote episodic ozone formation. A water treatment and recycling facility was identified as a significant source of NMHC, including toluene and m+p-xylene. Emissions from this facility have a strong influence upon peak ozone measured at downwind sites.
B. Yuan, P. R. Veres, C. Warneke, J. M. Roberts, J. B. Gilman, A. Koss, P. M. Edwards, M. Graus, W. C. Kuster, S.-M. Li, R. J. Wild, S. S. Brown, W. P. Dubé, B. M. Lerner, E. J. Williams, J. E. Johnson, P. K. Quinn, T. S. Bates, B. Lefer, P. L. Hayes, J. L. Jimenez, R. J. Weber, R. Zamora, B. Ervens, D. B. Millet, B. Rappenglück, and J. A. de Gouw
Atmos. Chem. Phys., 15, 1975–1993, https://doi.org/10.5194/acp-15-1975-2015, https://doi.org/10.5194/acp-15-1975-2015, 2015
Short summary
Short summary
In this work, secondary formation of formic acid at an urban site and a site in an oil and gas production region is studied. We investigated various gas phase formation pathways of formic acid, including those recently proposed, using a box model. The contributions from aerosol-related processes, fog events and air-snow exchange to formic acid are also quantified.
C. Warneke, P. Veres, S. M. Murphy, J. Soltis, R. A. Field, M. G. Graus, A. Koss, S.-M. Li, R. Li, B. Yuan, J. M. Roberts, and J. A. de Gouw
Atmos. Meas. Tech., 8, 411–420, https://doi.org/10.5194/amt-8-411-2015, https://doi.org/10.5194/amt-8-411-2015, 2015
C. E. Stockwell, P. R. Veres, J. Williams, and R. J. Yokelson
Atmos. Chem. Phys., 15, 845–865, https://doi.org/10.5194/acp-15-845-2015, https://doi.org/10.5194/acp-15-845-2015, 2015
Short summary
Short summary
We used a high-resolution proton-transfer-reaction time-of-flight mass spectrometer to measure emissions from peat, crop residue, cooking fires, etc. We assigned > 80% of the mass of gas-phase organic compounds and much of it was secondary organic aerosol precursors. The open cooking emissions were much larger than from advanced cookstoves. Little-studied N-containing organic compounds accounted for 0.1-8.7% of the fuel N and may influence new particle formation.
I. Nuaaman, S.-M. Li, K. L. Hayden, T. B. Onasch, P. Massoli, D. Sueper, D. R. Worsnop, T. S. Bates, P. K. Quinn, and R. McLaren
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-2085-2015, https://doi.org/10.5194/acpd-15-2085-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
In this paper, we focus on the measurement and reporting of mass concentrations of particulate chloride and sea salt in a marine area off the coast of California using a High Resolution Aerosol Mass Spectrometer. We outline a method of deconvolving the total aerosol chloride mass into refractory and non-refractory components, previously not reported in the literature. This can be important in regions where refractory sea salt aerosols can contribute to the aerosol chloride signal measured with t
R. Ahmadov, S. McKeen, M. Trainer, R. Banta, A. Brewer, S. Brown, P. M. Edwards, J. A. de Gouw, G. J. Frost, J. Gilman, D. Helmig, B. Johnson, A. Karion, A. Koss, A. Langford, B. Lerner, J. Olson, S. Oltmans, J. Peischl, G. Pétron, Y. Pichugina, J. M. Roberts, T. Ryerson, R. Schnell, C. Senff, C. Sweeney, C. Thompson, P. R. Veres, C. Warneke, R. Wild, E. J. Williams, B. Yuan, and R. Zamora
Atmos. Chem. Phys., 15, 411–429, https://doi.org/10.5194/acp-15-411-2015, https://doi.org/10.5194/acp-15-411-2015, 2015
Short summary
Short summary
High 2013 wintertime O3 pollution events associated with oil/gas production within the Uinta Basin are studied using a 3D model. It's able quantitatively to reproduce these events using emission estimates of O3 precursors based on ambient measurements (top-down approach), but unable to reproduce them using a recent bottom-up emission inventory for the oil/gas industry. The role of various physical and meteorological processes, chemical species and pathways contributing to high O3 are quantified.
M. Alexe, P. Bergamaschi, A. Segers, R. Detmers, A. Butz, O. Hasekamp, S. Guerlet, R. Parker, H. Boesch, C. Frankenberg, R. A. Scheepmaker, E. Dlugokencky, C. Sweeney, S. C. Wofsy, and E. A. Kort
Atmos. Chem. Phys., 15, 113–133, https://doi.org/10.5194/acp-15-113-2015, https://doi.org/10.5194/acp-15-113-2015, 2015
L. Lee, P. J. Wooldridge, J. B. Gilman, C. Warneke, J. de Gouw, and R. C. Cohen
Atmos. Chem. Phys., 14, 12441–12454, https://doi.org/10.5194/acp-14-12441-2014, https://doi.org/10.5194/acp-14-12441-2014, 2014
Short summary
Short summary
Alkyl nitrate formation is known to be an important sink of NOx in a wide range of environments. In a study in the Uintah basin in 2012, we find that formation of these compounds represents a more rapid NOx (NO + NO2) sink than does nitric acid formation. This rapid formation is in large part due to the low mean temperature (~0°C) during the study and is consistent with laboratory observations.
B. H. Samset, G. Myhre, A. Herber, Y. Kondo, S.-M. Li, N. Moteki, M. Koike, N. Oshima, J. P. Schwarz, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, M. Chin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, M. Schulz, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, and K. Zhang
Atmos. Chem. Phys., 14, 12465–12477, https://doi.org/10.5194/acp-14-12465-2014, https://doi.org/10.5194/acp-14-12465-2014, 2014
Short summary
Short summary
Far from black carbon (BC) emission sources, present climate models are unable to reproduce flight measurements. By comparing recent models with data, we find that the atmospheric lifetime of BC may be overestimated in models. By adjusting modeled BC concentrations to measurements in remote regions - over oceans and at high altitudes - we arrive at a reduced estimate for BC radiative forcing over the industrial era.
Y. You, V. P. Kanawade, J. A. de Gouw, A. B. Guenther, S. Madronich, M. R. Sierra-Hernández, M. Lawler, J. N. Smith, S. Takahama, G. Ruggeri, A. Koss, K. Olson, K. Baumann, R. J. Weber, A. Nenes, H. Guo, E. S. Edgerton, L. Porcelli, W. H. Brune, A. H. Goldstein, and S.-H. Lee
Atmos. Chem. Phys., 14, 12181–12194, https://doi.org/10.5194/acp-14-12181-2014, https://doi.org/10.5194/acp-14-12181-2014, 2014
Short summary
Short summary
Amiens play important roles in atmospheric secondary aerosol formation and human health, but the fast response measurements of amines are lacking. Here we show measurements in a southeastern US forest and a moderately polluted midwestern site. Our results show that gas to particle conversion is an important process that controls ambient amine concentrations and that biomass burning is an important source of amines.
Y. Liu, L. Huang, S.-M. Li, T. Harner, and J. Liggio
Atmos. Chem. Phys., 14, 12195–12207, https://doi.org/10.5194/acp-14-12195-2014, https://doi.org/10.5194/acp-14-12195-2014, 2014
M. N. Deeter, S. Martínez-Alonso, D. P. Edwards, L. K. Emmons, J. C. Gille, H. M. Worden, C. Sweeney, J. V. Pittman, B. C. Daube, and S. C. Wofsy
Atmos. Meas. Tech., 7, 3623–3632, https://doi.org/10.5194/amt-7-3623-2014, https://doi.org/10.5194/amt-7-3623-2014, 2014
Short summary
Short summary
The MOPITT Version 6 product for carbon monoxide (CO) incorporates several enhancements. First, a geolocation bias has been eliminated. Second, the new variable a priori for CO concentrations is based on simulations performed with the CAM-Chem chemical transport model for the years 2000-2009. Third, required meteorological fields are extracted from the MERRA reanalysis. Finally, a retrieval bias in the upper troposphere was substantially reduced. Validation results are presented.
C. Warneke, F. Geiger, P. M. Edwards, W. Dube, G. Pétron, J. Kofler, A. Zahn, S. S. Brown, M. Graus, J. B. Gilman, B. M. Lerner, J. Peischl, T. B. Ryerson, J. A. de Gouw, and J. M. Roberts
Atmos. Chem. Phys., 14, 10977–10988, https://doi.org/10.5194/acp-14-10977-2014, https://doi.org/10.5194/acp-14-10977-2014, 2014
T. Behrendt, P. R. Veres, F. Ashuri, G. Song, M. Flanz, B. Mamtimin, M. Bruse, J. Williams, and F. X. Meixner
Biogeosciences, 11, 5463–5492, https://doi.org/10.5194/bg-11-5463-2014, https://doi.org/10.5194/bg-11-5463-2014, 2014
W. Ait-Helal, A. Borbon, S. Sauvage, J. A. de Gouw, A. Colomb, V. Gros, F. Freutel, M. Crippa, C. Afif, U. Baltensperger, M. Beekmann, J.-F. Doussin, R. Durand-Jolibois, I. Fronval, N. Grand, T. Leonardis, M. Lopez, V. Michoud, K. Miet, S. Perrier, A. S. H. Prévôt, J. Schneider, G. Siour, P. Zapf, and N. Locoge
Atmos. Chem. Phys., 14, 10439–10464, https://doi.org/10.5194/acp-14-10439-2014, https://doi.org/10.5194/acp-14-10439-2014, 2014
M. Inoue, I. Morino, O. Uchino, Y. Miyamoto, T. Saeki, Y. Yoshida, T. Yokota, C. Sweeney, P. P. Tans, S. C. Biraud, T. Machida, J. V. Pittman, E. A. Kort, T. Tanaka, S. Kawakami, Y. Sawa, K. Tsuboi, and H. Matsueda
Atmos. Meas. Tech., 7, 2987–3005, https://doi.org/10.5194/amt-7-2987-2014, https://doi.org/10.5194/amt-7-2987-2014, 2014
Y. Liu, S.-M. Li, and J. Liggio
Atmos. Chem. Phys., 14, 9201–9211, https://doi.org/10.5194/acp-14-9201-2014, https://doi.org/10.5194/acp-14-9201-2014, 2014
M. Gordon, A. Vlasenko, R. M. Staebler, C. Stroud, P. A. Makar, J. Liggio, S.-M. Li, and S. Brown
Atmos. Chem. Phys., 14, 9087–9097, https://doi.org/10.5194/acp-14-9087-2014, https://doi.org/10.5194/acp-14-9087-2014, 2014
M. O. L. Cambaliza, P. B. Shepson, D. R. Caulton, B. Stirm, D. Samarov, K. R. Gurney, J. Turnbull, K. J. Davis, A. Possolo, A. Karion, C. Sweeney, B. Moser, A. Hendricks, T. Lauvaux, K. Mays, J. Whetstone, J. Huang, I. Razlivanov, N. L. Miles, and S. J. Richardson
Atmos. Chem. Phys., 14, 9029–9050, https://doi.org/10.5194/acp-14-9029-2014, https://doi.org/10.5194/acp-14-9029-2014, 2014
L. Bruhwiler, E. Dlugokencky, K. Masarie, M. Ishizawa, A. Andrews, J. Miller, C. Sweeney, P. Tans, and D. Worthy
Atmos. Chem. Phys., 14, 8269–8293, https://doi.org/10.5194/acp-14-8269-2014, https://doi.org/10.5194/acp-14-8269-2014, 2014
P. R. Veres, T. Behrendt, A. Klapthor, F. X. Meixner, and J. Williams
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-12009-2014, https://doi.org/10.5194/bgd-11-12009-2014, 2014
Revised manuscript not accepted
S. J. Oltmans, A. Karion, R. C. Schnell, G. Pétron, C. Sweeney, S. Wolter, D. Neff, S. A. Montzka, B. R. Miller, D. Helmig, B. J. Johnson, and J. Hueber
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-20117-2014, https://doi.org/10.5194/acpd-14-20117-2014, 2014
Revised manuscript not accepted
L. Hörtnagl, I. Bamberger, M. Graus, T. M. Ruuskanen, R. Schnitzhofer, M. Walser, A. Unterberger, A. Hansel, and G. Wohlfahrt
Atmos. Chem. Phys., 14, 5369–5391, https://doi.org/10.5194/acp-14-5369-2014, https://doi.org/10.5194/acp-14-5369-2014, 2014
G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy
Atmos. Meas. Tech., 7, 1509–1526, https://doi.org/10.5194/amt-7-1509-2014, https://doi.org/10.5194/amt-7-1509-2014, 2014
D. R. Gentner, T. B. Ford, A. Guha, K. Boulanger, J. Brioude, W. M. Angevine, J. A. de Gouw, C. Warneke, J. B. Gilman, T. B. Ryerson, J. Peischl, S. Meinardi, D. R. Blake, E. Atlas, W. A. Lonneman, T. E. Kleindienst, M. R. Beaver, J. M. St. Clair, P. O. Wennberg, T. C. VandenBoer, M. Z. Markovic, J. G. Murphy, R. A. Harley, and A. H. Goldstein
Atmos. Chem. Phys., 14, 4955–4978, https://doi.org/10.5194/acp-14-4955-2014, https://doi.org/10.5194/acp-14-4955-2014, 2014
B. Rappenglück, L. Ackermann, S. Alvarez, J. Golovko, M. Buhr, R. A. Field, J. Soltis, D. C. Montague, B. Hauze, S. Adamson, D. Risch, G. Wilkerson, D. Bush, T. Stoeckenius, and C. Keslar
Atmos. Chem. Phys., 14, 4909–4934, https://doi.org/10.5194/acp-14-4909-2014, https://doi.org/10.5194/acp-14-4909-2014, 2014
G. M. Wolfe, C. Cantrell, S. Kim, R. L. Mauldin III, T. Karl, P. Harley, A. Turnipseed, W. Zheng, F. Flocke, E. C. Apel, R. S. Hornbrook, S. R. Hall, K. Ullmann, S. B. Henry, J. P. DiGangi, E. S. Boyle, L. Kaser, R. Schnitzhofer, A. Hansel, M. Graus, Y. Nakashima, Y. Kajii, A. Guenther, and F. N. Keutsch
Atmos. Chem. Phys., 14, 4715–4732, https://doi.org/10.5194/acp-14-4715-2014, https://doi.org/10.5194/acp-14-4715-2014, 2014
R. L. Thompson, P. K. Patra, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, C. Wilson, P. Bergamaschi, E. Dlugokencky, C. Sweeney, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, M. Saunois, M. Chipperfield, and P. Bousquet
Atmos. Chem. Phys., 14, 4349–4368, https://doi.org/10.5194/acp-14-4349-2014, https://doi.org/10.5194/acp-14-4349-2014, 2014
T. P. Riedel, G. M. Wolfe, K. T. Danas, J. B. Gilman, W. C. Kuster, D. M. Bon, A. Vlasenko, S.-M. Li, E. J. Williams, B. M. Lerner, P. R. Veres, J. M. Roberts, J. S. Holloway, B. Lefer, S. S. Brown, and J. A. Thornton
Atmos. Chem. Phys., 14, 3789–3800, https://doi.org/10.5194/acp-14-3789-2014, https://doi.org/10.5194/acp-14-3789-2014, 2014
C. J. Young, R. A. Washenfelder, P. M. Edwards, D. D. Parrish, J. B. Gilman, W. C. Kuster, L. H. Mielke, H. D. Osthoff, C. Tsai, O. Pikelnaya, J. Stutz, P. R. Veres, J. M. Roberts, S. Griffith, S. Dusanter, P. S. Stevens, J. Flynn, N. Grossberg, B. Lefer, J. S. Holloway, J. Peischl, T. B. Ryerson, E. L. Atlas, D. R. Blake, and S. S. Brown
Atmos. Chem. Phys., 14, 3427–3440, https://doi.org/10.5194/acp-14-3427-2014, https://doi.org/10.5194/acp-14-3427-2014, 2014
M. Tjernström, C. Leck, C. E. Birch, J. W. Bottenheim, B. J. Brooks, I. M. Brooks, L. Bäcklin, R. Y.-W. Chang, G. de Leeuw, L. Di Liberto, S. de la Rosa, E. Granath, M. Graus, A. Hansel, J. Heintzenberg, A. Held, A. Hind, P. Johnston, J. Knulst, M. Martin, P. A. Matrai, T. Mauritsen, M. Müller, S. J. Norris, M. V. Orellana, D. A. Orsini, J. Paatero, P. O. G. Persson, Q. Gao, C. Rauschenberg, Z. Ristovski, J. Sedlar, M. D. Shupe, B. Sierau, A. Sirevaag, S. Sjogren, O. Stetzer, E. Swietlicki, M. Szczodrak, P. Vaattovaara, N. Wahlberg, M. Westberg, and C. R. Wheeler
Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, https://doi.org/10.5194/acp-14-2823-2014, 2014
K. C. Wells, D. B. Millet, K. E. Cady-Pereira, M. W. Shephard, D. K. Henze, N. Bousserez, E. C. Apel, J. de Gouw, C. Warneke, and H. B. Singh
Atmos. Chem. Phys., 14, 2555–2570, https://doi.org/10.5194/acp-14-2555-2014, https://doi.org/10.5194/acp-14-2555-2014, 2014
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
J. J. Ensberg, P. L. Hayes, J. L. Jimenez, J. B. Gilman, W. C. Kuster, J. A. de Gouw, J. S. Holloway, T. D. Gordon, S. Jathar, A. L. Robinson, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 2383–2397, https://doi.org/10.5194/acp-14-2383-2014, https://doi.org/10.5194/acp-14-2383-2014, 2014
G. M. Buffaloe, D. A. Lack, E. J. Williams, D. Coffman, K. L. Hayden, B. M. Lerner, S.-M. Li, I. Nuaaman, P. Massoli, T. B. Onasch, P. K. Quinn, and C. D. Cappa
Atmos. Chem. Phys., 14, 1881–1896, https://doi.org/10.5194/acp-14-1881-2014, https://doi.org/10.5194/acp-14-1881-2014, 2014
S. Zhou, L. Gonzalez, A. Leithead, Z. Finewax, R. Thalman, A. Vlasenko, S. Vagle, L.A. Miller, S.-M. Li, S. Bureekul, H. Furutani, M. Uematsu, R. Volkamer, and J. Abbatt
Atmos. Chem. Phys., 14, 1371–1384, https://doi.org/10.5194/acp-14-1371-2014, https://doi.org/10.5194/acp-14-1371-2014, 2014
C. D. Cappa, E. J. Williams, D. A. Lack, G. M. Buffaloe, D. Coffman, K. L. Hayden, S. C. Herndon, B. M. Lerner, S.-M. Li, P. Massoli, R. McLaren, I. Nuaaman, T. B. Onasch, and P. K. Quinn
Atmos. Chem. Phys., 14, 1337–1352, https://doi.org/10.5194/acp-14-1337-2014, https://doi.org/10.5194/acp-14-1337-2014, 2014
C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. VandenBoer, J. M. Roberts, S. S. Brown, and A. P. Yalin
Atmos. Meas. Tech., 7, 345–357, https://doi.org/10.5194/amt-7-345-2014, https://doi.org/10.5194/amt-7-345-2014, 2014
P. Kupiszewski, C. Leck, M. Tjernström, S. Sjogren, J. Sedlar, M. Graus, M. Müller, B. Brooks, E. Swietlicki, S. Norris, and A. Hansel
Atmos. Chem. Phys., 13, 12405–12431, https://doi.org/10.5194/acp-13-12405-2013, https://doi.org/10.5194/acp-13-12405-2013, 2013
L. Kaser, T. Karl, A. Guenther, M. Graus, R. Schnitzhofer, A. Turnipseed, L. Fischer, P. Harley, M. Madronich, D. Gochis, F. N. Keutsch, and A. Hansel
Atmos. Chem. Phys., 13, 11935–11947, https://doi.org/10.5194/acp-13-11935-2013, https://doi.org/10.5194/acp-13-11935-2013, 2013
A. M. Ortega, D. A. Day, M. J. Cubison, W. H. Brune, D. Bon, J. A. de Gouw, and J. L. Jimenez
Atmos. Chem. Phys., 13, 11551–11571, https://doi.org/10.5194/acp-13-11551-2013, https://doi.org/10.5194/acp-13-11551-2013, 2013
S. S. Brown, W. P. Dubé, R. Bahreini, A. M. Middlebrook, C. A. Brock, C. Warneke, J. A. de Gouw, R. A. Washenfelder, E. Atlas, J. Peischl, T. B. Ryerson, J. S. Holloway, J. P. Schwarz, R. Spackman, M. Trainer, D. D. Parrish, F. C. Fehshenfeld, and A. R. Ravishankara
Atmos. Chem. Phys., 13, 11317–11337, https://doi.org/10.5194/acp-13-11317-2013, https://doi.org/10.5194/acp-13-11317-2013, 2013
B. W. LaFranchi, G. Pétron, J. B. Miller, S. J. Lehman, A. E. Andrews, E. J. Dlugokencky, B. Hall, B. R. Miller, S. A. Montzka, W. Neff, P. C. Novelli, C. Sweeney, J. C. Turnbull, D. E. Wolfe, P. P. Tans, K. R. Gurney, and T. P. Guilderson
Atmos. Chem. Phys., 13, 11101–11120, https://doi.org/10.5194/acp-13-11101-2013, https://doi.org/10.5194/acp-13-11101-2013, 2013
M. Inoue, I. Morino, O. Uchino, Y. Miyamoto, Y. Yoshida, T. Yokota, T. Machida, Y. Sawa, H. Matsueda, C. Sweeney, P. P. Tans, A. E. Andrews, S. C. Biraud, T. Tanaka, S. Kawakami, and P. K. Patra
Atmos. Chem. Phys., 13, 9771–9788, https://doi.org/10.5194/acp-13-9771-2013, https://doi.org/10.5194/acp-13-9771-2013, 2013
P. M. Edwards, C. J. Young, K. Aikin, J. deGouw, W. P. Dubé, F. Geiger, J. Gilman, D. Helmig, J. S. Holloway, J. Kercher, B. Lerner, R. Martin, R. McLaren, D. D. Parrish, J. Peischl, J. M. Roberts, T. B. Ryerson, J. Thornton, C. Warneke, E. J. Williams, and S. S. Brown
Atmos. Chem. Phys., 13, 8955–8971, https://doi.org/10.5194/acp-13-8955-2013, https://doi.org/10.5194/acp-13-8955-2013, 2013
A. Petzold, J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, C. Wehrli, A. Wiedensohler, and X.-Y. Zhang
Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, https://doi.org/10.5194/acp-13-8365-2013, 2013
A. Lenton, B. Tilbrook, R. M. Law, D. Bakker, S. C. Doney, N. Gruber, M. Ishii, M. Hoppema, N. S. Lovenduski, R. J. Matear, B. I. McNeil, N. Metzl, S. E. Mikaloff Fletcher, P. M. S. Monteiro, C. Rödenbeck, C. Sweeney, and T. Takahashi
Biogeosciences, 10, 4037–4054, https://doi.org/10.5194/bg-10-4037-2013, https://doi.org/10.5194/bg-10-4037-2013, 2013
Y. Miyamoto, M. Inoue, I. Morino, O. Uchino, T. Yokota, T. Machida, Y. Sawa, H. Matsueda, C. Sweeney, P. P. Tans, A. E. Andrews, and P. K. Patra
Atmos. Chem. Phys., 13, 5265–5275, https://doi.org/10.5194/acp-13-5265-2013, https://doi.org/10.5194/acp-13-5265-2013, 2013
H. Chen, A. Karion, C. W. Rella, J. Winderlich, C. Gerbig, A. Filges, T. Newberger, C. Sweeney, and P. P. Tans
Atmos. Meas. Tech., 6, 1031–1040, https://doi.org/10.5194/amt-6-1031-2013, https://doi.org/10.5194/amt-6-1031-2013, 2013
J. Brioude, W. M. Angevine, R. Ahmadov, S.-W. Kim, S. Evan, S. A. McKeen, E.-Y. Hsie, G. J. Frost, J. A. Neuman, I. B. Pollack, J. Peischl, T. B. Ryerson, J. Holloway, S. S. Brown, J. B. Nowak, J. M. Roberts, S. C. Wofsy, G. W. Santoni, T. Oda, and M. Trainer
Atmos. Chem. Phys., 13, 3661–3677, https://doi.org/10.5194/acp-13-3661-2013, https://doi.org/10.5194/acp-13-3661-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
S. C. Biraud, M. S. Torn, J. R. Smith, C. Sweeney, W. J. Riley, and P. P. Tans
Atmos. Meas. Tech., 6, 751–763, https://doi.org/10.5194/amt-6-751-2013, https://doi.org/10.5194/amt-6-751-2013, 2013
J. Liggio and S.-M. Li
Atmos. Chem. Phys., 13, 2989–3002, https://doi.org/10.5194/acp-13-2989-2013, https://doi.org/10.5194/acp-13-2989-2013, 2013
L. Kaser, T. Karl, R. Schnitzhofer, M. Graus, I. S. Herdlinger-Blatt, J. P. DiGangi, B. Sive, A. Turnipseed, R. S. Hornbrook, W. Zheng, F. M. Flocke, A. Guenther, F. N. Keutsch, E. Apel, and A. Hansel
Atmos. Chem. Phys., 13, 2893–2906, https://doi.org/10.5194/acp-13-2893-2013, https://doi.org/10.5194/acp-13-2893-2013, 2013
A. Karion, C. Sweeney, S. Wolter, T. Newberger, H. Chen, A. Andrews, J. Kofler, D. Neff, and P. Tans
Atmos. Meas. Tech., 6, 511–526, https://doi.org/10.5194/amt-6-511-2013, https://doi.org/10.5194/amt-6-511-2013, 2013
R. J. Yokelson, I. R. Burling, J. B. Gilman, C. Warneke, C. E. Stockwell, J. de Gouw, S. K. Akagi, S. P. Urbanski, P. Veres, J. M. Roberts, W. C. Kuster, J. Reardon, D. W. T. Griffith, T. J. Johnson, S. Hosseini, J. W. Miller, D. R. Cocker III, H. Jung, and D. R. Weise
Atmos. Chem. Phys., 13, 89–116, https://doi.org/10.5194/acp-13-89-2013, https://doi.org/10.5194/acp-13-89-2013, 2013
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Eddy covariance with slow-response greenhouse gas analysers on tall towers: bridging atmospheric and ecosystem greenhouse gas networks
An overview of outdoor low-cost gas-phase air quality sensor deployments: current efforts, trends, and limitations
Multiphysical description of atmospheric pressure interface chemical ionisation in MION2 and Eisele type inlets
A portable nitrogen dioxide instrument using cavity-enhanced absorption spectroscopy
Development and deployment of a mid-cost CO2 sensor monitoring network to support atmospheric inverse modeling for quantifying urban CO2 emissions in Paris
UAV-based in situ measurements of CO2 and CH4 fluxes over complex natural ecosystems
A new aerial approach for quantifying and attributing methane emissions: implementation and validation
Drone CO2 measurements during the Tajogaite volcanic eruption
Multi-decadal atmospheric carbon dioxide measurements in Hungary, central Europe
Reliable water vapour isotopic composition measurements at low humidity using frequency-stabilised cavity ring-down spectroscopy
A measurement system for CO2 and CH4 emissions quantification of industrial sites using a new in situ concentration sensor operated on board uncrewed aircraft vehicles
Deployment and evaluation of an NH4+/H3O+ reagent-ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds
Using metal oxide gas sensors to estimate the emission rates and locations of methane leaks in an industrial site: assessment with controlled methane releases
The ASK-16 Motorized Glider: An Airborne Eddy Covariance Platform to measure Turbulence, Energy and Matter Fluxes
Toward on-demand measurements of greenhouse gas emissions using an uncrewed aircraft AirCore system
Long-term evaluation of commercial air quality sensors: an overview from the QUANT (Quantification of Utility of Atmospheric Network Technologies) study
In-flight characterization of a compact airborne quantum cascade laser absorption spectrometer
Full characterization and calibration of a transfer standard monitor for atmospheric radon measurements
Observing low-altitude features in ozone concentrations in a shoreline environment via uncrewed aerial systems
Development of a Peltier-based chilled-mirror hygrometer for tropospheric and lower stratospheric water vapor measurements
An integrated uncrewed aerial vehicle platform with sensing and sampling systems for the measurement of air pollutant concentrations
Design and evaluation of a low-cost sensor node for near-background methane measurement
Development of a Multichannel Organics In situ enviRonmental Analyzer (MOIRA) for mobile measurements of volatile organic compounds
An Economical Tunable-Diode Laser Spectrometer for Fast-Response Measurements of Water Vapor in the Atmospheric Boundary Layer
Evaluation of Aeris mid-infrared absorption (MIRA), Picarro CRDS (cavity ring-down spectroscopy) G2307, and dinitrophenylhydrazine (DNPH)-based sampling for long-term formaldehyde monitoring efforts
Performance characterization of a laminar gas inlet
Validation and field application of a low-cost device to measure CO2 and evapotranspiration (ET) fluxes
Identifying and correcting interferences to PTR-ToF-MS measurements of isoprene and other urban volatile organic compounds
Development of a continuous UAV-mounted air sampler and application to the quantification of CO2 and CH4 emissions from a major coking plant
Uptake behavior of polycyclic aromatic compounds during field calibrations of the XAD-based passive air sampler across seasons and locations
Effect of land–sea air mass transport on spatiotemporal distributions of atmospheric CO2 and CH4 mixing ratios over the southern Yellow Sea
HYPHOP: a tool for high-altitude, long-range monitoring of hydrogen peroxide and higher organic peroxides in the atmosphere
Portable, low-cost samplers for distributed sampling of atmospheric gases
SI-traceable validation of a laser spectrometer for balloon-borne measurements of water vapor in the upper atmosphere
Field evaluation of low-cost electrochemical air quality gas sensors under extreme temperature and relative humidity conditions
A novel, cost-effective analytical method for measuring high-resolution vertical profiles of stratospheric trace gases using a gas chromatograph coupled with an electron capture detector
Ethylene oxide monitor with part-per-trillion precision for in situ measurements
Development of an automated pump-efficiency measuring system for ozonesondes utilizing an airbag-type flowmeter
Short-term variability of atmospheric helium revealed through a cryo-enrichment method
Using tunable infrared laser direct absorption spectroscopy for ambient hydrogen chloride detection: HCl-TILDAS
New methods for the calibration of optical resonators: integrated calibration by means of optical modulation (ICOM) and narrow-band cavity ring-down (NB-CRD)
A modular field system for near-surface, vertical profiling of the atmospheric composition in harsh environments using cavity ring-down spectroscopy
Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods
Development of multi-channel whole-air sampling equipment onboard an unmanned aerial vehicle for investigating volatile organic compounds' vertical distribution in the planetary boundary layer
Electrochemical sensors on board a Zeppelin NT: in-flight evaluation of low-cost trace gas measurements
Evaluating the performance of a Picarro G2207-i analyser for high-precision atmospheric O2 measurements
Airborne flux measurements of ammonia over the southern Great Plains using chemical ionization mass spectrometry
Optical receiver characterizations and corrections for ground-based and airborne measurements of spectral actinic flux densities
Development and validation of a new in situ technique to measure total gaseous chlorine in air
True eddy accumulation – Part 1: Solutions to the problem of non-vanishing mean vertical wind velocity
Pedro Henrique Herig Coimbra, Benjamin Loubet, Olivier Laurent, Laura Bignotti, Mathis Lozano, and Michel Ramonet
Atmos. Meas. Tech., 17, 6625–6645, https://doi.org/10.5194/amt-17-6625-2024, https://doi.org/10.5194/amt-17-6625-2024, 2024
Short summary
Short summary
This study presents direct flux measurements in tall towers using existing slow-response analysers and adding 3D sonic anemometers. This way, we can significantly improve greenhouse gas monitoring with little extra instrumental effort. Slow-response analysers may be used here as the relevant frequency ranges depend on measuring height. Tall towers offer a large footprint, amplifying spatial coverage. The presented concept is a valuable bridge between atmospheric and ecosystem communities.
Kristen Okorn and Laura T. Iraci
Atmos. Meas. Tech., 17, 6425–6457, https://doi.org/10.5194/amt-17-6425-2024, https://doi.org/10.5194/amt-17-6425-2024, 2024
Short summary
Short summary
We reviewed 60 sensor networks and 17 related efforts (sensor review papers and data accessibility projects) to better understand the landscape of stationary low-cost gas-phase sensor networks deployed in outdoor environments worldwide. Gaps in monitoring efforts include the availability of gas-phase measurements compared to particulate matter (PM) and geographic coverage gaps (the Global South, rural areas). We conclude with a summary of cross-network unification and quality control efforts.
Henning Finkenzeller, Jyri Mikkilä, Cecilia Righi, Paxton Juuti, Mikko Sipilä, Matti Rissanen, Douglas Worsnop, Aleksei Shcherbinin, Nina Sarnela, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 5989–6001, https://doi.org/10.5194/amt-17-5989-2024, https://doi.org/10.5194/amt-17-5989-2024, 2024
Short summary
Short summary
Chemical ionisation mass spectrometry is used in the atmospheric sciences to measure trace gas concentrations. Neutral gases require charging in inlets before the mass-to-charge ratio of the resulting ions can be analysed. This study uses multiphysics modelling to investigate how the MION2 and Eisele type inlets work and shows the effect of tuning parameters and their current limitations. The findings are helpful for inlet users and are expected to aid in developing improved inlets.
Steven A. Bailey, Reem A. Hannun, Andrew K. Swanson, and Thomas F. Hanisco
Atmos. Meas. Tech., 17, 5903–5910, https://doi.org/10.5194/amt-17-5903-2024, https://doi.org/10.5194/amt-17-5903-2024, 2024
Short summary
Short summary
We have developed a portable, optically based instrument that measures NO2. It consumes less than 6 W of power, so it can easily run off a small battery. This instrument has made both balloon and UAV flights. NO2 measurement results compare favorably with other known NO2 instruments. We find this instrument to be stable with repeatable results compared with calibration sources. Material cost to build a single instrument is around USD 4000. This could be lowered with economies of scale.
Jinghui Lian, Olivier Laurent, Mali Chariot, Luc Lienhardt, Michel Ramonet, Hervé Utard, Thomas Lauvaux, François-Marie Bréon, Grégoire Broquet, Karina Cucchi, Laurent Millair, and Philippe Ciais
Atmos. Meas. Tech., 17, 5821–5839, https://doi.org/10.5194/amt-17-5821-2024, https://doi.org/10.5194/amt-17-5821-2024, 2024
Short summary
Short summary
We have designed and deployed a mid-cost medium-precision CO2 sensor monitoring network in Paris since July 2020. The data are automatically calibrated by a newly implemented data processing system. The accuracies of the mid-cost instruments vary from 1.0 to 2.4 ppm for hourly afternoon measurements. Our model–data analyses highlight prospects for integrating mid-cost instrument data with high-precision measurements to improve fine-scale CO2 emission quantification in urban areas.
Abdullah Bolek, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech., 17, 5619–5636, https://doi.org/10.5194/amt-17-5619-2024, https://doi.org/10.5194/amt-17-5619-2024, 2024
Short summary
Short summary
This study describes the development of a new UAV platform to measure atmospheric greenhouse gas (GHG) mole fractions, 2D wind speed, air temperature, humidity, and pressure. Understanding GHG flux processes and controls across various ecosystems is essential for estimating the current and future state of climate change. It was shown that using the UAV platform for such measurements is beneficial for improving our understanding of GHG processes over complex landscapes.
Jonathan F. Dooley, Kenneth Minschwaner, Manvendra K. Dubey, Sahar H. El Abbadi, Evan D. Sherwin, Aaron G. Meyer, Emily Follansbee, and James E. Lee
Atmos. Meas. Tech., 17, 5091–5111, https://doi.org/10.5194/amt-17-5091-2024, https://doi.org/10.5194/amt-17-5091-2024, 2024
Short summary
Short summary
Methane is a powerful greenhouse gas originating from both natural and human activities. We describe a new uncrewed aerial system (UAS) designed to measure methane emission rates over a wide range of scales. This system has been used for direct quantification of point sources and distributed emitters over scales of up to 1 km. The system uses simultaneous measurements of methane and ethane to distinguish between different kinds of natural and human-related emission sources.
John Ericksen, Tobias P. Fischer, G. Matthew Fricke, Scott Nowicki, Nemesio M. Pérez, Pedro Hernández Pérez, Eleazar Padrón González, and Melanie E. Moses
Atmos. Meas. Tech., 17, 4725–4736, https://doi.org/10.5194/amt-17-4725-2024, https://doi.org/10.5194/amt-17-4725-2024, 2024
Short summary
Short summary
Volcanic eruptions emit significant quantities of carbon dioxide (CO2) to the atmosphere. We present a new method for directly determining the CO2 emission from a volcanic eruption on the island of La Palma, Spain, using an unpiloted aerial vehicle (UAV). We also collected samples of the emitted CO2 and analyzed their isotopic composition. Together with the emission rate the isotopic data provide valuable information on the state of volcanic activity and the potential evolution of the eruption.
László Haszpra
Atmos. Meas. Tech., 17, 4629–4647, https://doi.org/10.5194/amt-17-4629-2024, https://doi.org/10.5194/amt-17-4629-2024, 2024
Short summary
Short summary
The paper evaluates a 30-year-long atmospheric CO2 data series from a mid-continental central European site, Hegyhátsál (HUN). It presents the site-specific features observed in the long-term evolution of the atmospheric CO2 concentration. Since the measurement data are widely used in atmospheric inverse models and budget calculations all around the world, the paper provides potentially valuable information for model tuning and interpretation of the model results.
Mathieu Casado, Amaelle Landais, Tim Stoltmann, Justin Chaillot, Mathieu Daëron, Fréderic Prié, Baptiste Bordet, and Samir Kassi
Atmos. Meas. Tech., 17, 4599–4612, https://doi.org/10.5194/amt-17-4599-2024, https://doi.org/10.5194/amt-17-4599-2024, 2024
Short summary
Short summary
Measuring water isotopic composition in Antarctica is difficult because of the extremely cold temperature in winter. Here, we designed a new infrared spectrometer able to measure the vapour isotopic composition during more than 95 % of the year in the coldest locations of Antarctica, whereas current commercial instruments are only able to measure during the warm summer months in the interior.
Jean-Louis Bonne, Ludovic Donnat, Grégory Albora, Jérémie Burgalat, Nicolas Chauvin, Delphine Combaz, Julien Cousin, Thomas Decarpenterie, Olivier Duclaux, Nicolas Dumelié, Nicolas Galas, Catherine Juery, Florian Parent, Florent Pineau, Abel Maunoury, Olivier Ventre, Marie-France Bénassy, and Lilian Joly
Atmos. Meas. Tech., 17, 4471–4491, https://doi.org/10.5194/amt-17-4471-2024, https://doi.org/10.5194/amt-17-4471-2024, 2024
Short summary
Short summary
We present a top-down approach to quantify CO2 and CH4 emissions at the scale of an industrial site, based on a mass balance model relying on atmospheric concentrations measurements from a new sensor embarked on board uncrewed aircraft vehicles (UAVs). We present a laboratory characterization of our sensor and a field validation of our quantification method, together with field application to the monitoring of two real-world offshore oil and gas platforms.
Cort L. Zang and Megan D. Willis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1738, https://doi.org/10.5194/egusphere-2024-1738, 2024
Short summary
Short summary
Atmospheric chemistry of the diverse pool of reactive organic carbon (ROC; all organic species excluding methane) controls air quality, both indoor and outdoors, and influences Earth's climate. However, many important ROC compounds in the atmosphere are difficult to measure. We demonstrate measurement of diverse ROC compounds in a single instrument at a forested site. This approach can improve our ability to measure a broad range of atmospheric ROC.
Rodrigo Rivera-Martinez, Pramod Kumar, Olivier Laurent, Gregoire Broquet, Christopher Caldow, Ford Cropley, Diego Santaren, Adil Shah, Cécile Mallet, Michel Ramonet, Leonard Rivier, Catherine Juery, Olivier Duclaux, Caroline Bouchet, Elisa Allegrini, Hervé Utard, and Philippe Ciais
Atmos. Meas. Tech., 17, 4257–4290, https://doi.org/10.5194/amt-17-4257-2024, https://doi.org/10.5194/amt-17-4257-2024, 2024
Short summary
Short summary
We explore the use of metal oxide semiconductors (MOSs) as a low-cost alternative for detecting and measuring CH4 emissions from industrial facilities. MOSs were exposed to several controlled releases to test their accuracy in detecting and quantifying emissions. Two reconstruction models were compared, and emission estimates were computed using a Gaussian dispersion model. Findings show that MOSs can provide accurate emission estimates with a 25 % emission rate error and a 9.5 m location error.
Inge Wiekenkamp, Anna Katharina Lehmann, Alexander Bütow, Jörg Hartmann, Stefan Metzger, Thomas Ruhtz, Christian Wille, Mathias Zöllner, and Torsten Sachs
EGUsphere, https://doi.org/10.5194/egusphere-2024-1586, https://doi.org/10.5194/egusphere-2024-1586, 2024
Short summary
Short summary
Airborne eddy covariance platforms are crucial, as they measure the three-dimension wind, and turbulent transport of matter and energy between the surface and the atmosphere at larger scales. In this study we introduce the new ASK-16 eddy covariance platform that is able to accurately measure turbulent fluxes and wind vectors. Data from this platform can help to build bridges between local tower measurements and regional remote sensing fluxes or inversion products.
Zihan Zhu, Javier González-Rocha, Yifan Ding, Isis Frausto-Vicencio, Sajjan Heerah, Akula Venkatram, Manvendra Dubey, Don Collins, and Francesca M. Hopkins
Atmos. Meas. Tech., 17, 3883–3895, https://doi.org/10.5194/amt-17-3883-2024, https://doi.org/10.5194/amt-17-3883-2024, 2024
Short summary
Short summary
Increases in agriculture, oil and gas, and waste management activities have contributed to the increase in atmospheric methane levels and resultant climate warming. In this paper, we explore the use of small uncrewed aircraft systems (sUASs) and AirCore technology to detect and quantify methane emissions. Results from field experiments demonstrate that sUASs and AirCore technology can be effective for detecting and quantifying methane emissions in near real time.
Sebastian Diez, Stuart Lacy, Hugh Coe, Josefina Urquiza, Max Priestman, Michael Flynn, Nicholas Marsden, Nicholas A. Martin, Stefan Gillott, Thomas Bannan, and Pete M. Edwards
Atmos. Meas. Tech., 17, 3809–3827, https://doi.org/10.5194/amt-17-3809-2024, https://doi.org/10.5194/amt-17-3809-2024, 2024
Short summary
Short summary
In this paper we present an overview of the QUANT project, which to our knowledge is one of the largest evaluations of commercial sensors to date. The objective was to evaluate the performance of a range of commercial products and also to nourish the different applications in which these technologies can offer relevant information.
Linda Ort, Lenard Lukas Röder, Uwe Parchatka, Rainer Königstedt, Daniel Crowley, Frank Kunz, Ralf Wittkowski, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 17, 3553–3565, https://doi.org/10.5194/amt-17-3553-2024, https://doi.org/10.5194/amt-17-3553-2024, 2024
Short summary
Short summary
Airborne in situ measurements are of great importance to collect valuable data to improve our knowledge of the atmosphere but also present challenges which demand specific designs. This study presents an IR spectrometer for airborne trace-gas measurements with high data efficiency and a simple, compact design. Its in-flight performance is characterized with the help of a test flight and a comparison with another spectrometer. Moreover, results from its first campaign highlight its benefits.
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024, https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Short summary
This paper presents a new user-friendly version of the Atmospheric Radon MONitor (ARMON). The efficiency of the instrument is of 0.0057 s-1, obtained using different techniques at Spanish and German chambers. The total calculated uncertainty of the ARMON for hourly radon concentrations above 5 Bq m-3 is lower than 10 % (k = 1). Results confirm that the ARMON is suitable to measure low-level radon activity concentrations and to be used as a transfer standard to calibrate in situ radon monitors.
Josie K. Radtke, Benjamin N. Kies, Whitney A. Mottishaw, Sydney M. Zeuli, Aidan T. H. Voon, Kelly L. Koerber, Grant W. Petty, Michael P. Vermeuel, Timothy H. Bertram, Ankur R. Desai, Joseph P. Hupy, R. Bradley Pierce, Timothy J. Wagner, and Patricia A. Cleary
Atmos. Meas. Tech., 17, 2833–2847, https://doi.org/10.5194/amt-17-2833-2024, https://doi.org/10.5194/amt-17-2833-2024, 2024
Short summary
Short summary
The use of uncrewed aircraft systems (UASs) to conduct a vertical profiling of ozone and meteorological variables was evaluated using comparisons between tower or ground observations and UAS-based measurements. Changes to the UAS profiler showed an improvement in performance. The profiler was used to see the impact of Chicago pollution plumes on a shoreline area near Lake Michigan.
Takuji Sugidachi, Masatomo Fujiwara, Kensaku Shimizu, Shin-Ya Ogino, Junko Suzuki, and Ruud J. Dirksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-635, https://doi.org/10.5194/egusphere-2024-635, 2024
Short summary
Short summary
A Peltier-based chilled-mirror hygrometer, SKYDEW, has been developed to measure tropospheric and stratospheric water vapor. Continuous accurate measurements of water vapor are essential for climate monitoring. More than 40 soundings with SKYDEW have been conducted since 2011 to evaluate the performance. The result of soundings at tropical and mid-latitudes demonstrated that SKYDEW is able to measure up to an altitude of 20–25 km for daytime soundings and above 25 km for nighttime soundings.
Chen-Wei Liang and Chang-Hung Shen
Atmos. Meas. Tech., 17, 2671–2686, https://doi.org/10.5194/amt-17-2671-2024, https://doi.org/10.5194/amt-17-2671-2024, 2024
Short summary
Short summary
In the present study, a UAV platform with sensing and sampling systems was developed for 3D air pollutant concentration measurements. The sensing system of this platform contains multiple microsensors and IoT technologies for obtaining the real-time 3D distributions of critical air pollutants. The sampling system contains gas sampling sets and a 1 L Tedlar bag instead of a canister for the 3D measurement of VOC concentrations in accordance with the TO-15 method of the US EPA.
Daniel Furuta, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 17, 2103–2121, https://doi.org/10.5194/amt-17-2103-2024, https://doi.org/10.5194/amt-17-2103-2024, 2024
Short summary
Short summary
Methane is an important driver of climate change and is challenging to inexpensively sense in low atmospheric concentrations. We developed a low-cost sensor to monitor methane and tested it in indoor and outdoor settings. Our device shows promise for monitoring low levels of methane. We characterize its limitations and suggest future research directions for further development.
Audrey J. Dang, Nathan M. Kreisberg, Tyler L. Cargill, Jhao-Hong Chen, Sydney Hornitschek, Remy Hutheesing, Jay R. Turner, and Brent J. Williams
Atmos. Meas. Tech., 17, 2067–2087, https://doi.org/10.5194/amt-17-2067-2024, https://doi.org/10.5194/amt-17-2067-2024, 2024
Short summary
Short summary
The Multichannel Organics In situ enviRonmental Analyzer (MOIRA) is a new instrument for measuring speciated volatile organic compounds (VOCs) in the air and has been developed for mapping concentrations from a hybrid car. MOIRA is characterized in the lab and pilot field studies of indoor air in a single-family residence and outdoor air during a mobile deployment. Future applications include indoor, outdoor, and lab measurements to grasp the impact of VOCs on air quality, health, and climate.
Emily Wein, Lars Kalnajs, and Darin Toohey
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-34, https://doi.org/10.5194/amt-2024-34, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
We describe a low cost and small research grade spectrometer for measurements of water vapor in the boundary layer. The instrument uses small Arduino microcontrollers and inexpensive laser diodes to reduce cost while maintaining high performance comparable to more expensive instruments. Performance was assessed with intercomparisons between commercially available instruments outdoors. The design's simplicity, performance and price point allow it to be accessible to a variety of users.
Asher P. Mouat, Zelda A. Siegel, and Jennifer Kaiser
Atmos. Meas. Tech., 17, 1979–1994, https://doi.org/10.5194/amt-17-1979-2024, https://doi.org/10.5194/amt-17-1979-2024, 2024
Short summary
Short summary
Three fast-measurement formaldehyde monitors were deployed at two field sites in Atlanta, GA, over 1 year. Four different zeroing methods were tested to develop an optimal field setup as well as procedures for instrument calibration. Observations agreed well after calibration but were much higher compared to the TO-11A monitoring method, which is the golden standard. Historical HCHO concentrations were compared with measurements in this work, showing a 22 % reduction in midday HCHO since 1999.
Da Yang, Margarita Reza, Roy Mauldin, Rainer Volkamer, and Suresh Dhaniyala
Atmos. Meas. Tech., 17, 1463–1474, https://doi.org/10.5194/amt-17-1463-2024, https://doi.org/10.5194/amt-17-1463-2024, 2024
Short summary
Short summary
This paper evaluates the performance of an aircraft gas inlet. Here, we use computational fluid dynamics (CFD) and experiments to demonstrate the role of turbulence in determining sampling performance of a gas inlet and identify ideal conditions for inlet operation to minimize gas loss. Experiments conducted in a high-speed wind tunnel under near-aircraft speeds validated numerical results. We believe that the results obtained from this work will greatly inform future gas inlet studies.
Reena Macagga, Michael Asante, Geoffroy Sossa, Danica Antonijević, Maren Dubbert, and Mathias Hoffmann
Atmos. Meas. Tech., 17, 1317–1332, https://doi.org/10.5194/amt-17-1317-2024, https://doi.org/10.5194/amt-17-1317-2024, 2024
Short summary
Short summary
Using only low-cost microcontrollers and sensors, we constructed a measurement device to accurately and precisely obtain atmospheric carbon dioxide and water fluxes. The device was tested against known concentration increases and high-cost, commercial sensors during a laboratory and field experiment. We additionally tested the device over a longer period in a field study in Ghana during which the net ecosystem carbon balance and water use efficiency of maize cultivation were studied.
Matthew M. Coggon, Chelsea E. Stockwell, Megan S. Claflin, Eva Y. Pfannerstill, Lu Xu, Jessica B. Gilman, Julia Marcantonio, Cong Cao, Kelvin Bates, Georgios I. Gkatzelis, Aaron Lamplugh, Erin F. Katz, Caleb Arata, Eric C. Apel, Rebecca S. Hornbrook, Felix Piel, Francesca Majluf, Donald R. Blake, Armin Wisthaler, Manjula Canagaratna, Brian M. Lerner, Allen H. Goldstein, John E. Mak, and Carsten Warneke
Atmos. Meas. Tech., 17, 801–825, https://doi.org/10.5194/amt-17-801-2024, https://doi.org/10.5194/amt-17-801-2024, 2024
Short summary
Short summary
Mass spectrometry is a tool commonly used to measure air pollutants. This study evaluates measurement artifacts produced in the proton-transfer-reaction mass spectrometer. We provide methods to correct these biases and better measure compounds that degrade air quality.
Tianran Han, Conghui Xie, Yayong Liu, Yanrong Yang, Yuheng Zhang, Yufei Huang, Xiangyu Gao, Xiaohua Zhang, Fangmin Bao, and Shao-Meng Li
Atmos. Meas. Tech., 17, 677–691, https://doi.org/10.5194/amt-17-677-2024, https://doi.org/10.5194/amt-17-677-2024, 2024
Short summary
Short summary
This study reported an integrated UAV measurement platform for GHG monitoring and its application for emission quantification from a coking plant. The key element of this system is a newly designed air sampler, consisting of a 150 m long tube with remote-controlled time stamping. When comparing the top-down results to those derived from the bottom-up inventory method, the present findings indicate that the use of IPCC emission factors for emission calculations can lead to overestimation.
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
Jiaxin Li, Kunpeng Zang, Yi Lin, Yuanyuan Chen, Shuo Liu, Shanshan Qiu, Kai Jiang, Xuemei Qing, Haoyu Xiong, Haixiang Hong, Shuangxi Fang, Honghui Xu, and Yujun Jiang
Atmos. Meas. Tech., 16, 4757–4768, https://doi.org/10.5194/amt-16-4757-2023, https://doi.org/10.5194/amt-16-4757-2023, 2023
Short summary
Short summary
Based on observed data of CO2 and CH4 and meteorological parameters over the Yellow Sea in November 2012 and June 2013, a data process and quality control method was optimized and established to filter the data influenced by multiple factors. Spatial and seasonal variations in CO2 and CH4 mixing ratios were mainly controlled by the East Asian Monsoon, while the influence of air–sea exchange was slight.
Zaneta Hamryszczak, Antonia Hartmann, Dirk Dienhart, Sascha Hafermann, Bettina Brendel, Rainer Königstedt, Uwe Parchatka, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 16, 4741–4756, https://doi.org/10.5194/amt-16-4741-2023, https://doi.org/10.5194/amt-16-4741-2023, 2023
Short summary
Short summary
Hydroperoxide measurements improve the understanding of atmospheric oxidation processes. We introduce an instrumental setup for airborne measurements. The aim of the work is the characterization of the measurement method with emphasis on interferences impacting instrumental uncertainty. Technical and physical challenges do not critically impact the instrumental performance. The instrument resolves dynamic processes, such as convective transport, as shown based on the CAFE-Brazil campaign.
James F. Hurley, Alejandra Caceres, Deborah F. McGlynn, Mary E. Tovillo, Suzanne Pinar, Roger Schürch, Ksenia Onufrieva, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 16, 4681–4692, https://doi.org/10.5194/amt-16-4681-2023, https://doi.org/10.5194/amt-16-4681-2023, 2023
Short summary
Short summary
Volatile organic compounds (VOCs) have a wide range of sources and impacts on environments and human health that make them spatially, temporally, and chemically varied. Current methods lack the ability to collect samples in ways that provide spatial and chemical resolution without complex, costly instrumentation. We describe and validate a low-cost, portable VOC sampler and demonstrate its utility in collecting distributed coordinated samples.
Simone Brunamonti, Manuel Graf, Tobias Bühlmann, Céline Pascale, Ivan Ilak, Lukas Emmenegger, and Béla Tuzson
Atmos. Meas. Tech., 16, 4391–4407, https://doi.org/10.5194/amt-16-4391-2023, https://doi.org/10.5194/amt-16-4391-2023, 2023
Short summary
Short summary
The abundance of water vapor (H2O) in the upper atmosphere has a significant impact on the rate of global warming. We developed a new lightweight spectrometer (ALBATROSS) for H2O measurements aboard meteorological balloons. Here, we assess the accuracy and precision of ALBATROSS using metrology-grade reference gases. The results demonstrate the exceptional potential of mid-infrared laser absorption spectroscopy as a new reference method for in situ measurements of H2O in the upper atmosphere.
Roubina Papaconstantinou, Marios Demosthenous, Spyros Bezantakos, Neoclis Hadjigeorgiou, Marinos Costi, Melina Stylianou, Elli Symeou, Chrysanthos Savvides, and George Biskos
Atmos. Meas. Tech., 16, 3313–3329, https://doi.org/10.5194/amt-16-3313-2023, https://doi.org/10.5194/amt-16-3313-2023, 2023
Short summary
Short summary
In this paper, we investigate the performance of low-cost electrochemical gas sensors. We carried out yearlong measurements at a traffic air quality monitoring station, where the low-cost sensors were collocated with reference instruments and exposed to highly variable environmental conditions with extremely high temperatures and low relative humidity (RH). Sensors provide measurements that exhibit increasing errors and decreasing correlations as temperature increases and RH decreases.
Jianghanyang Li, Bianca C. Baier, Fred Moore, Tim Newberger, Sonja Wolter, Jack Higgs, Geoff Dutton, Eric Hintsa, Bradley Hall, and Colm Sweeney
Atmos. Meas. Tech., 16, 2851–2863, https://doi.org/10.5194/amt-16-2851-2023, https://doi.org/10.5194/amt-16-2851-2023, 2023
Short summary
Short summary
Monitoring a suite of trace gases in the stratosphere will help us better understand the stratospheric circulation and its impact on the earth's radiation balance. However, such measurements are rare and usually expensive. We developed an instrument that can measure stratospheric trace gases using a low-cost sampling platform (AirCore). The results showed expected agreement with aircraft measurements, demonstrating this technique provides a low-cost and robust way to observe the stratosphere.
Tara I. Yacovitch, Christoph Dyroff, Joseph R. Roscioli, Conner Daube, J. Barry McManus, and Scott C. Herndon
Atmos. Meas. Tech., 16, 1915–1921, https://doi.org/10.5194/amt-16-1915-2023, https://doi.org/10.5194/amt-16-1915-2023, 2023
Short summary
Short summary
Ethylene oxide is a toxic, carcinogenic compound used in the medical and bulk sterilization industry. Here we describe a precise and fast laser-based ethylene oxide monitor. We report months-long concentrations at a Massachusetts site, and we show how they suggest a potential emission source 35 km away. This source, and another, is confirmed by driving the instrument downwind of the sites, where concentrations were tens to tens of thousands of times greater than background levels.
Tatsumi Nakano and Takashi Morofuji
Atmos. Meas. Tech., 16, 1583–1595, https://doi.org/10.5194/amt-16-1583-2023, https://doi.org/10.5194/amt-16-1583-2023, 2023
Short summary
Short summary
We have developed a system that can automatically measure the pump efficiency of the ECC-type ozonesonde. Operational measurement for 13 years by this system revealed that the efficiency fluctuates in each and slightly increases over time. Those can affect the estimation of total ozone amount by up to 4 %. This result indicates that it is necessary to understand the tendency of the pump correction factor of each ozonesonde in order to detect the actual atmospheric change with high accuracy.
Benjamin Birner, Eric Morgan, and Ralph F. Keeling
Atmos. Meas. Tech., 16, 1551–1561, https://doi.org/10.5194/amt-16-1551-2023, https://doi.org/10.5194/amt-16-1551-2023, 2023
Short summary
Short summary
Atmospheric variations of helium (He) and CO2 are strongly linked due to the co-release of both gases from natural-gas burning. This implies that atmospheric He measurements may be a potentially powerful tool for verifying reported anthropogenic natural-gas usage. Here, we present the development and initial results of a novel measurement system of atmospheric He that paves the way for establishing a global monitoring network in the future.
John W. Halfacre, Jordan Stewart, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Michael Flynn, Stephen J. Andrews, Steven S. Brown, Patrick R. Veres, and Pete M. Edwards
Atmos. Meas. Tech., 16, 1407–1429, https://doi.org/10.5194/amt-16-1407-2023, https://doi.org/10.5194/amt-16-1407-2023, 2023
Short summary
Short summary
This study details a new sampling method for the optical detection of hydrogen chloride (HCl). HCl is an important atmospheric reservoir for chlorine atoms, which can affect nitrogen oxide cycling and the lifetimes of volatile organic compounds and ozone. However, HCl has a high affinity for interacting with surfaces, thereby preventing fast, quantitative measurements. The sampling technique in this study minimizes these surface interactions and provides a high-quality measurement of HCl.
Henning Finkenzeller, Denis Pöhler, Martin Horbanski, Johannes Lampel, and Ulrich Platt
Atmos. Meas. Tech., 16, 1343–1356, https://doi.org/10.5194/amt-16-1343-2023, https://doi.org/10.5194/amt-16-1343-2023, 2023
Short summary
Short summary
Optical resonators enhance the light path in compact instruments, thereby improving their sensitivity. Determining the established path length in the instrument is a prerequisite for the accurate determination of trace gas concentrations but can be a significant complication in the use of such resonators. Here we show two calibration techniques which are relatively simple and free of consumables but still provide accurate calibrations. This facilitates the use of optical resonators.
Andrew W. Seidl, Harald Sodemann, and Hans Christian Steen-Larsen
Atmos. Meas. Tech., 16, 769–790, https://doi.org/10.5194/amt-16-769-2023, https://doi.org/10.5194/amt-16-769-2023, 2023
Short summary
Short summary
It is challenging to make field measurements of stable water isotopes in the Arctic. To this end, we present a modular stable-water-isotope analyzer profiling system. The system operated for a 2-week field campaign on Svalbard during the Arctic winter. We evaluate the system’s performance and analyze any potential impact that the field conditions might have had on the isotopic measurements and the system's ability to resolve isotope gradients in the lowermost layer of the atmosphere.
Daan Swart, Jun Zhang, Shelley van der Graaf, Susanna Rutledge-Jonker, Arjan Hensen, Stijn Berkhout, Pascal Wintjen, René van der Hoff, Marty Haaima, Arnoud Frumau, Pim van den Bulk, Ruben Schulte, Margreet van Zanten, and Thomas van Goethem
Atmos. Meas. Tech., 16, 529–546, https://doi.org/10.5194/amt-16-529-2023, https://doi.org/10.5194/amt-16-529-2023, 2023
Short summary
Short summary
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication and acidificationin natural areas.
Suding Yang, Xin Li, Limin Zeng, Xuena Yu, Ying Liu, Sihua Lu, Xiaofeng Huang, Dongmei Zhang, Haibin Xu, Shuchen Lin, Hefan Liu, Miao Feng, Danlin Song, Qinwen Tan, Jinhui Cui, Lifan Wang, Ying Chen, Wenjie Wang, Haijiong Sun, Mengdi Song, Liuwei Kong, Yi Liu, Linhui Wei, Xianwu Zhu, and Yuanhang Zhang
Atmos. Meas. Tech., 16, 501–512, https://doi.org/10.5194/amt-16-501-2023, https://doi.org/10.5194/amt-16-501-2023, 2023
Short summary
Short summary
Vertical observation of volatile organic compounds (VOCs) is essential to study the spatial distribution and evolution patterns of VOCs in the planetary boundary layer (PBL). This paper describes multi-channel whole-air sampling equipment onboard an unmanned aerial vehicle (UAV) for near-continuous VOC vertical observation. Vertical profiles of VOCs and trace gases during the evolution of the PBL in south-western China have been successfully obtained by deploying the newly developed UAV system.
Tobias Schuldt, Georgios I. Gkatzelis, Christian Wesolek, Franz Rohrer, Benjamin Winter, Thomas A. J. Kuhlbusch, Astrid Kiendler-Scharr, and Ralf Tillmann
Atmos. Meas. Tech., 16, 373–386, https://doi.org/10.5194/amt-16-373-2023, https://doi.org/10.5194/amt-16-373-2023, 2023
Short summary
Short summary
We report in situ measurements of air pollutant concentrations within the planetary boundary layer on board a Zeppelin NT in Germany. We highlight the in-flight evaluation of electrochemical sensors that were installed inside a hatch box located on the bottom of the Zeppelin. Results from this work emphasize the potential of these sensors for other in situ airborne applications, e.g., on board unmanned aerial vehicles (UAVs).
Leigh S. Fleming, Andrew C. Manning, Penelope A. Pickers, Grant L. Forster, and Alex J. Etchells
Atmos. Meas. Tech., 16, 387–401, https://doi.org/10.5194/amt-16-387-2023, https://doi.org/10.5194/amt-16-387-2023, 2023
Short summary
Short summary
Measurements of atmospheric O2 can help constrain the carbon cycle processes and quantify fossil fuel CO2 emissions; however, measurement of atmospheric O2 is very challenging, and existing analysers are complex systems to build and maintain. We have tested a new O2 analyser (Picarro Inc. G2207-i) in the laboratory and at Weybourne Atmospheric Observatory. We have found that the G2207-i does not perform as well as an existing O2 analyser from Sable Systems Inc.
Siegfried Schobesberger, Emma L. D'Ambro, Lejish Vettikkat, Ben H. Lee, Qiaoyun Peng, David M. Bell, John E. Shilling, Manish Shrivastava, Mikhail Pekour, Jerome Fast, and Joel A. Thornton
Atmos. Meas. Tech., 16, 247–271, https://doi.org/10.5194/amt-16-247-2023, https://doi.org/10.5194/amt-16-247-2023, 2023
Short summary
Short summary
We present a new, highly sensitive technique for measuring atmospheric ammonia, an important trace gas that is emitted mainly by agriculture. We deployed the instrument on an aircraft during research flights over rural Oklahoma. Due to its fast response, we could analyze correlations with turbulent winds and calculate ammonia emissions from nearby areas at 1 to 2 km resolution. We observed high spatial variability and point sources that are not resolved in the US National Emissions Inventory.
Birger Bohn and Insa Lohse
Atmos. Meas. Tech., 16, 209–233, https://doi.org/10.5194/amt-16-209-2023, https://doi.org/10.5194/amt-16-209-2023, 2023
Short summary
Short summary
Optical receivers for solar spectral actinic radiation are designed for angle-independent sensitivities within a hemisphere. Remaining imperfections can be compensated for by receiver-specific corrections based on laboratory characterizations and radiative transfer calculations of spectral radiance distributions. The corrections cover a wide range of realistic atmospheric conditions and were applied to ground-based and airborne measurements in a wavelength range 280–660 nm.
Teles C. Furlani, RenXi Ye, Jordan Stewart, Leigh R. Crilley, Peter M. Edwards, Tara F. Kahan, and Cora J. Young
Atmos. Meas. Tech., 16, 181–193, https://doi.org/10.5194/amt-16-181-2023, https://doi.org/10.5194/amt-16-181-2023, 2023
Short summary
Short summary
This study describes a new technique to measure total gaseous chlorine, which is the sum of gas-phase chlorine-containing chemicals. The method converts any chlorine-containing molecule to hydrogen chloride that can be detected in real time using a cavity ring-down spectrometer. The new method was validated through laboratory experiments, as well as by making measurements of ambient outdoor air and indoor air during cleaning with a chlorine-based cleaner.
Anas Emad and Lukas Siebicke
Atmos. Meas. Tech., 16, 29–40, https://doi.org/10.5194/amt-16-29-2023, https://doi.org/10.5194/amt-16-29-2023, 2023
Short summary
Short summary
The true eddy accumulation (TEA) method enables measuring atmospheric exchange with slow-response gas analyzers. TEA is formulated assuming ideal conditions with a zero mean vertical wind velocity during the averaging interval. This core assumption is rarely valid under field conditions. Here, we extend the TEA equation to accommodate nonideal conditions. The new equation allows constraining the systematic error term in the measured fluxes and the possibility to minimize or remove it.
Cited articles
Bandy, A. R., Tucker, B. J., and Maroulis, P. J.: Determination of part-per-trillion by volume levels of atmospheric carbon-disulfide by gas-chromatography mass-spectrometry, Anal. Chem., 57, 1310–1314, 1985.
Bates, T. S., Lamb, B. K., Guenther, A., Dignon, J., and Stoiber, R. E.: Sulfur emissions to the atmosphere from natural sources, J. Atmos. Chem., 14, 315–337, 1992.
Beauchamp, J., Frasnelli, J., Buettner, A., Scheibe, M., Hansel, A., and Hummel, T.: Characterization of an olfactometer by proton-transfer-reaction mass spectrometry, Meas. Sci. Technol., 21, 025801, https://doi.org/10.1088/0957-0233/21/2/025801, 2010.
Benner, R. L. and Stedman, D. H.: Universal sulfur detection by chemiluminescence, Anal. Chem., 61, 1268–1271, 1989.
Benner, R. L. and Stedman, D. H.: Field evaluation of the sulfur chemiluminescence detector, Environ. Sci. Technol., 24, 1592–1596, 1990.
Boggs, P. T., Byrd, R. H., and Schnabel, R. B.: A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM J. Sci. Stat. Comp., 8, 1052–1078, 1987.
Chen, H., Winderlich, J., Gerbig, C., Hoefer, A., Rella, C. W., Crosson, E. R., Van Pelt, A. D., Steinbach, J., Kolle, O., Beck, V., Daube, B. C., Gottlieb, E. W., Chow, V. Y., Santoni, G. W., and Wofsy, S. C.: High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique, Atmos. Meas. Tech., 3, 375–386, https://doi.org/10.5194/amt-3-375-2010, 2010.
Chou, S., Fay, M., Keith, S., Ingerman, L., and Chappell, L.: Toxicological Profile For Hydrogen Sulfide Services, U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 2006.
de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrom. Rev., 26, 223–257, 2007.
de Gouw, J., Warneke, C., Karl, T., Eerdekens, G., van der Veen, C., and Fall, R.: Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry, Int. J. Mass Spectrom., 223–224, 365–382, 2003a.
de Gouw, J. A., Goldan, P. D., Warneke, C., Kuster, W. C., Roberts, J. M., Marchewka, M., Bertman, S. B., Pszenny, A. A. P., and Keene, W. C.: Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002, J. Geophys. Res., 108, 4682, 2003b.
Dubyk, S., Mustafa, S., and Graham, A.: Trip Report: H2S Survey, 18–22 March, 2002.
Environmental Protection Agency, E., Office of Air Quality Planning Standards, and Office of Solid Waste Emergency Response: Report to Congress on Hydrogen Sulfide Air Emissions Associated with the Extraction of Oil and Natural Gas, 1993.
Feilberg, A., Liu, D., Adamsen, A. P. S., Hansen, M. J., and Jonassen, K. E. N.: Odorant Emissions from Intensive Pig Production Measured by Online Proton-Transfer-Reaction Mass Spectrometry, Environ. Sci. Technol., 44, 5894–5900, 2010.
Feilberg, A., Liu, D., and Hansen, M. J.: Measurement of H2S by PTR-MS: Experiences and Implications, Innsbruck, 98–101, 2013.
Graus, M., Müller, M., and Hansel, A.: High Resolution PTR-TOF: Quantification and Formula Confirmation of VOC in Real Time, J. Am. Soc. Mass Spectrom., 21, 1037–1044, 2010.
Heber, A. J., Casey, K. D., Caramanica, A. P., Mickey, K. J., and Cortus, E. L.: Emissions data from two sow barns and one swine farrowing room in Oklahoma Agency, National Air Emissions Monitoring Study, EPA website, 2010.
Hunter, E. P. L. and Lias, S. G.: Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 27, 413–656, 1998.
Inomata, S., Tanimoto, H., Kameyama, S., Tsunogai, U., Irie, H., Kanaya, Y., and Wang, Z.: Technical Note: Determination of formaldehyde mixing ratios in air with PTR-MS: laboratory experiments and field measurements, Atmos. Chem. Phys., 8, 273–284, https://doi.org/10.5194/acp-8-273-2008, 2008.
Karion, A., Sweeney, C., Petron, G., Frost, G., Hardesty, R. M., Kofler, J., Miller, B. R., Newberger, T., Wolter, S., Banta, R., Brewer, A., Dlugokencky, E., Lang, P., Montzka, S. A., Schnell, R., Tans, P., Trainer, M., Zamora, R., and Conley, S.: Methane emissions estimate from airborne measurements over a western United States natural gas field, Geophys. Res. Lett., 40, 4393–4397, 2013.
Kelly, T. J., Gaffney, J. S., Phillips, M. F., and Tanner, R. L.: Chemiluminescent detection of reduced sulfur compounds with ozone, Anal. Chem., 55, 135–138, 1983.
Khan, M. A. H., Whelan, M. E., and Rhew, R. C.: Analysis of low concentration reduced sulfur compounds (RSCs) in air: Storage issues and measurement by gas chromatography with sulfur chemiluminescence detection, Talanta, 88, 581–586, 2012.
Knighton, W. B., Fortner, E. C., Midey, A. J., Viggiano, A. A., Herndon, S. C., Wood, E. C., and Kolb, C. E.: HCN detection with a proton transfer reaction mass spectrometer, Int. J. Mass Spectrom., 283, 112–121, 2009.
Kourtidis, K., Kelesis, A., Maggana, M., and Petrakakis, M.: Substantial traffic emissions contribution to the global H2S budget, Geophys. Res. Lett., 31, L18107, https://doi.org/10.1029/2004GL020713, 2004.
Layfon, D. W. and Cederwall, R. T.: Predicting and Managing the Health Risks of Sour-Gas Wells, JAPCA, 37, 1185–1190, 1987.
Liu, D., Feilberg, A., Adamsen, A. P. S., and Jonassen, K. E. N.: The effect of slurry treatment including ozonation on odorant reduction measured by in-situ PTR-MS, Atmos. Environ., 45, 3786–3793, 2011.
Liu, D., Pedresen, C. L., Nielsen, L. P., and Feilberg, A.: PTR-MS application for biofiltration kinetics assessment of odour removal, 6th International Conference on Proton Transfer Reaction Mass Spectrometry and its Applications, 2013.
Liu, Z., Powers, W., Karcher, D., Angel, R., and Applegate, T. J.: Effect of amino acid formulation and supplementation on air emissions from tom turkeys, American Society of Agricultural and Biological Engineers, Transactions, 54, 617–628, 2011.
Martin, R., Moore, K., Mansfield, M., Hill, S., Harper, K., and Shorthill, H.: Final report: Uinta Basin winter ozone and air quality study December 2010–March 2011, Energy Dynamics Laboratory, EDL/11-039, 2011.
Möller, D.: Estimation of the global man-made sulphur emission, Atmos. Environ., 18, 19–27, 1984.
Müller, M., Mikoviny, T., Jud, W., D'Anna, B., and Wisthaler, A.: A new software tool for the analysis of high resolution PTR-TOF mass spectra, Chemometr. Intell. Lab., 127, 158–165, 2013.
Natural Gas.Org: http://naturalgas.org/naturalgas/processing-ng/ (last access: 10 Feburary 2014), 2011.
Office of Geological Survey, Department of Geological Survey: http://www.michigan.gov/deq/0,4561,7-135-3311_4111_4231-9162–,00.html (last access: 23 January 2014), 2013.
Press, W. H., Flannery, B., Teukolsky, S., and Vetterling, W.: Numerical recipes in C, 1988, Cambridge: Cambridge UniversityPress, 222 pp., 1991.
Saha, C. K., Feilberg, A., Zhang, G. Q., and Adamsen, A. P. S.: Effects of airflow on odorants' emissions in a model pig house – A laboratory study using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS), Sci. Total Environ., 410, 161–171, 2011.
Skrtic, L.: Hydrogen sulfide, oil & gas, and people's health, Master's of Science, Energy and Resources Group, University of California, Berkeley, 2006.
Spurlin, S. R. and Yeung, E. S.: On-line chemiluminescence detector for hydrogen sulfide and methyl mercaptan, Anal. Chem., 54, 318–320, 1982.
Steudler, P. A. and Kijowski, W.: Determination of reduced sulfur gases in air by solid adsorbent preconcentration and gas chromatography, Anal. Chem., 56, 1432–1436, 1984.
Tanaka, K., Mackay, G. I., and Bohme, D. K.: Rate and equilibrium constant measurements for gas-phase proton-transfer reactions involving H2O, H2S, HCN, and H2CO, Can. J. Chemistry, 56, 193–204, 1978.
Tarver, G. A. and Dasgupta, P. K.: Oil Field Hydrogen Sulfide in Texas: Emission Estimates and Fate, Environ. Sci. Technol., 31, 3669–3676, 1997.
Vlasenko, A., Macdonald, A .M., Sjostedt, S. J., and Abbatt, J. P. D.: Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS): correction for humidity effects, Atmos. Meas. Tech., 3, 1055–1062, https://doi.org/10.5194/amt-3-1055-2010, 2010.
Warneke, C., van der Veen, C., Luxembourg, S., de Gouw, J. A., and Kok, A.: Measurements of benzene and toluene in ambient air using proton-transfer-reaction mass spectrometry: calibration, humidity dependence, and field intercomparison, Int. J. Mass Spectrom., 207, 167–182, 2001.
Warneke, C., de Gouw, J. A., Kuster, W. C., Goldan, P. D., and Fall, R.: Validation of Atmospheric VOC Measurements by Proton-Transfer- Reaction Mass Spectrometry Using a Gas-Chromatographic Preseparation Method, Environ. Sci. Technol., 37, 2494–2501, 2003.
Warneke, C., Roberts, J. M., Veres, P., Gilman, J., Kuster, W. C., Burling, I., Yokelson, R., and de Gouw, J. A.: VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS, Int. J. Mass Spectrom., 303, 6–14, 2011a.
Warneke, C., Veres, P., Holloway, J. S., Stutz, J., Tsai, C., Alvarez, S., Rappenglueck, B., Fehsenfeld, F. C., Graus, M., Gilman, J. B., and de Gouw, J. A.: Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results, Atmos. Meas. Tech., 4, 2345–2358, https://doi.org/10.5194/amt-4-2345-2011, 2011b.
Warneke, C., Geiger, F., Edwards, P. M., Dube, W., Pétron, G., Kofler, J., Zahn, A., Brown, S. S., Graus, M., Gilman, J. B., Lerner, B. M., Peischl, J., Ryerson, T. B., de Gouw, J. A., and Roberts, J. M.: Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition, Atmos. Chem. Phys., 14, 10977–10988, https://doi.org/10.5194/acp-14-10977-2014, 2014.
Watts, S. F.: The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide – phytoplankton production in the surface ocean, Atmos. Environ., 34, 761–779, 2000.