Articles | Volume 8, issue 3
https://doi.org/10.5194/amt-8-1073-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-8-1073-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor
S. M. Spuler
CORRESPONDING AUTHOR
National Center for Atmospheric Research, Earth Observing Lab, Boulder, CO 80307, USA
K. S. Repasky
Montana State University, Electrical and Computer Engineering, Bozeman, MT 59717, USA
B. Morley
National Center for Atmospheric Research, Earth Observing Lab, Boulder, CO 80307, USA
D. Moen
Montana State University, Electrical and Computer Engineering, Bozeman, MT 59717, USA
M. Hayman
National Center for Atmospheric Research, Earth Observing Lab, Boulder, CO 80307, USA
A. R. Nehrir
NASA Langley Research Center, Hampton, VA 23681, USA
Related authors
Luke Colberg, Kevin S. Repasky, Matthew Hayman, Robert A. Stillwell, and Scott M. Spuler
Atmos. Meas. Tech., 18, 6069–6092, https://doi.org/10.5194/amt-18-6069-2025, https://doi.org/10.5194/amt-18-6069-2025, 2025
Short summary
Short summary
Two methods were developed to measure the mixed layer height, an important variable for weather forecasting and air quality studies. An aerosol-based method and a thermodynamic method were tested using a lidar system that can measure vertical profiles of aerosols, humidity, and temperature. Each method performed best under different conditions. Together, they provide a path toward more reliable mixed layer height monitoring with a single instrument.
Robert A. Stillwell, Adam Karboski, Matthew Hayman, and Scott M. Spuler
Atmos. Meas. Tech., 18, 4119–4130, https://doi.org/10.5194/amt-18-4119-2025, https://doi.org/10.5194/amt-18-4119-2025, 2025
Short summary
Short summary
A method is introduced to expand the observational capability of a diode-laser-based lidar system. This method allows the lidar transmitter to change the laser pulse characteristics from one shot to the next. We use this capability to lower the minimum altitude of observation and to observe clouds with higher range resolution.
Matthew Hayman, Robert A. Stillwell, Adam Karboski, and Scott M. Spuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3523, https://doi.org/10.5194/egusphere-2025-3523, 2025
Short summary
Short summary
A new processing method for lidar data obtained from rapidly changing laser pulse lengths enables measurement of atmospheric water vapor from the ground up to 6 km. The technique blends all captured data to reveal hidden water vapor structures, especially near the surface. This solution offers continuous, high-resolution insights, key for improving weather forecasts. It showcases how flexible laser technology can enhance atmospheric observation.
Scott M. Spuler, Matthew Hayman, Robert A. Stillwell, Joshua Carnes, Todd Bernatsky, and Kevin S. Repasky
Atmos. Meas. Tech., 14, 4593–4616, https://doi.org/10.5194/amt-14-4593-2021, https://doi.org/10.5194/amt-14-4593-2021, 2021
Short summary
Short summary
Continuous water vapor and temperature profiles are critically needed for improved understanding of the lower atmosphere and potential advances in weather forecasting skill. To address this observation need, an active remote sensing technology based on a diode-laser-based lidar architecture is being developed. We discuss the details of the lidar architecture and analyze how it addresses a national-scale profiling network's need to provide continuous thermodynamic observations.
Luke Colberg, Kevin S. Repasky, Matthew Hayman, Robert A. Stillwell, and Scott M. Spuler
Atmos. Meas. Tech., 18, 6069–6092, https://doi.org/10.5194/amt-18-6069-2025, https://doi.org/10.5194/amt-18-6069-2025, 2025
Short summary
Short summary
Two methods were developed to measure the mixed layer height, an important variable for weather forecasting and air quality studies. An aerosol-based method and a thermodynamic method were tested using a lidar system that can measure vertical profiles of aerosols, humidity, and temperature. Each method performed best under different conditions. Together, they provide a path toward more reliable mixed layer height monitoring with a single instrument.
Richard Ferrare, Johnathan Hair, Taylor Shingler, Chris Hostetler, Amin Nehrir, Marta Fenn, Amy Jo Scarino, Sharon Burton, Marian Clayton, James Collins, Laura Judd, James Crawford, Katherine Travis, Travis Toth, Pablo Saide, Jose Luis Jimenez, Pedro Campuzano-Jost, Guy Symonds, Richard Moore, Luke Ziemba, Michael Shook, Glenn Diskin, Joshua P. DiGangi, Ryan Bennett, Chia-hsiang Ho, Lim-seok Chang, Adisak Aiampisanuvong, and Ittipol Pawarmart
EGUsphere, https://doi.org/10.5194/egusphere-2025-4812, https://doi.org/10.5194/egusphere-2025-4812, 2025
Short summary
Short summary
We present a new method to retrieve atmospheric particulate matter concentrations using only airborne High Spectral Resolution Lidar measurements in machine learning algorithms. Retrieved concentrations agree well with surface measurements. These concentrations and our estimates of the particle mass extinction efficiency are also consistent with those retrieved from airborne in situ measurements. This methodology can also be applied to the Atmosphere Lidar on the EarthCARE satellite.
Robert A. Stillwell, Adam Karboski, Matthew Hayman, and Scott M. Spuler
Atmos. Meas. Tech., 18, 4119–4130, https://doi.org/10.5194/amt-18-4119-2025, https://doi.org/10.5194/amt-18-4119-2025, 2025
Short summary
Short summary
A method is introduced to expand the observational capability of a diode-laser-based lidar system. This method allows the lidar transmitter to change the laser pulse characteristics from one shot to the next. We use this capability to lower the minimum altitude of observation and to observe clouds with higher range resolution.
Matthew Hayman, Robert A. Stillwell, Adam Karboski, and Scott M. Spuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3523, https://doi.org/10.5194/egusphere-2025-3523, 2025
Short summary
Short summary
A new processing method for lidar data obtained from rapidly changing laser pulse lengths enables measurement of atmospheric water vapor from the ground up to 6 km. The technique blends all captured data to reveal hidden water vapor structures, especially near the surface. This solution offers continuous, high-resolution insights, key for improving weather forecasts. It showcases how flexible laser technology can enhance atmospheric observation.
Dimitri Trapon, Holger Baars, Athena Augusta Floutsi, Sebastian Bley, Moritz Haarig, Adrien Lacour, Thomas Flament, Alain Dabas, Amin R. Nehrir, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 18, 3873–3896, https://doi.org/10.5194/amt-18-3873-2025, https://doi.org/10.5194/amt-18-3873-2025, 2025
Short summary
Short summary
The study highlights how aerosol measurements from aircraft can be used in synergy with ground-based observations to validate the European Space Agency's Aeolus satellite aerosol product above the tropical Atlantic. For the first time, collocated sections of the troposphere up to 626 km long are crossed. Combining measurements from satellite, aircraft, and ground-based instruments allows characterization of the optical properties of the observed dust particles emitted from the Sahara.
Ewan Crosbie, Johnathan W. Hair, Amin R. Nehrir, Richard A. Ferrare, Chris Hostetler, Taylor Shingler, David Harper, Marta Fenn, James Collins, Rory Barton-Grimley, Brian Collister, K. Lee Thornhill, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
Atmos. Meas. Tech., 18, 2639–2658, https://doi.org/10.5194/amt-18-2639-2025, https://doi.org/10.5194/amt-18-2639-2025, 2025
Short summary
Short summary
A method was developed to extract information from airborne lidar observations about the distribution of ice and liquid water within clouds. The method specifically targets signatures of horizontal and vertical gradients in ice and water that appear in the polarization of the lidar signals. The method was tested against direct measurements of the cloud properties collected by a second aircraft.
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024, https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Short summary
In this study, we describe and validate a new technique in which three radar tones are used to estimate the water vapor inside clouds and precipitation. This instrument flew on board NASA's P-3 aircraft during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign and the Synergies Of Active optical and Active microwave Remote Sensing Experiment (SOA2RSE) campaign.
John S. Schreck, Gabrielle Gantos, Matthew Hayman, Aaron Bansemer, and David John Gagne
Atmos. Meas. Tech., 15, 5793–5819, https://doi.org/10.5194/amt-15-5793-2022, https://doi.org/10.5194/amt-15-5793-2022, 2022
Short summary
Short summary
We show promising results for a new machine-learning based paradigm for processing field-acquired cloud droplet holograms. The approach is fast, scalable, and leverages GPUs and other heterogeneous computing platforms. It combines applications of transfer and active learning by using synthetic data for training and a small set of hand-labeled data for refinement and validation. Artificial noise applied during synthetic training enables optimized models for real-world situations.
Willem J. Marais and Matthew Hayman
Atmos. Meas. Tech., 15, 5159–5180, https://doi.org/10.5194/amt-15-5159-2022, https://doi.org/10.5194/amt-15-5159-2022, 2022
Short summary
Short summary
For atmospheric science and weather prediction, it is important to make water vapor measurements in real time. A low-cost lidar instrument has been developed by Montana State University and the National Center for Atmospheric Research. We developed an advanced signal-processing method to extend the scientific capability of the lidar instrument. With the new method we show that the maximum altitude at which the MPD can make water vapor measurements can be extended up to 8 km.
Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, and Kenneth J. Davis
Atmos. Meas. Tech., 15, 4623–4650, https://doi.org/10.5194/amt-15-4623-2022, https://doi.org/10.5194/amt-15-4623-2022, 2022
Short summary
Short summary
HALO is a multi-functional lidar that measures CH4 columns and profiles of H2O mixing ratio and aerosol/cloud optical properties. HALO supports carbon cycle, weather dynamics, and radiation science suborbital research and is a technology testbed for future space-based differential absorption lidar missions. In 2019 HALO collected CH4 columns and aerosol/cloud profiles during the ACT-America campaign. Here we assess HALO's CH4 accuracy and precision compared to co-located in situ observations.
Liqiao Lei, Timothy A. Berkoff, Guillaume Gronoff, Jia Su, Amin R. Nehrir, Yonghua Wu, Fred Moshary, and Shi Kuang
Atmos. Meas. Tech., 15, 2465–2478, https://doi.org/10.5194/amt-15-2465-2022, https://doi.org/10.5194/amt-15-2465-2022, 2022
Short summary
Short summary
Aerosol extinction in the UVB (280–315 nm) is difficult to retrieve using simple lidar techniques due to the lack of lidar ratios at those wavelengths. The 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City region provided the opportunity to characterize the lidar ratio for UVB aerosol retrieval for the Langley Mobile Ozone Lidar (LMOL). A 292 nm aerosol product comparison between the NASA Langley High Altitude Lidar Observatory (HALO) and LMOL was also carried out.
Brian J. Carroll, Amin R. Nehrir, Susan A. Kooi, James E. Collins, Rory A. Barton-Grimley, Anthony Notari, David B. Harper, and Joseph Lee
Atmos. Meas. Tech., 15, 605–626, https://doi.org/10.5194/amt-15-605-2022, https://doi.org/10.5194/amt-15-605-2022, 2022
Short summary
Short summary
HALO is a recently developed lidar system that demonstrates new technologies and advanced algorithms for profiling water vapor as well as aerosol and cloud properties. The high-resolution, high-accuracy measurements have unique advantages within the suite of atmospheric instrumentation, such as directly trading water vapor measurement resolution for precision. This paper provides the methodology and first water vapor results, showing agreement with in situ and spaceborne sounder measurements.
Scott M. Spuler, Matthew Hayman, Robert A. Stillwell, Joshua Carnes, Todd Bernatsky, and Kevin S. Repasky
Atmos. Meas. Tech., 14, 4593–4616, https://doi.org/10.5194/amt-14-4593-2021, https://doi.org/10.5194/amt-14-4593-2021, 2021
Short summary
Short summary
Continuous water vapor and temperature profiles are critically needed for improved understanding of the lower atmosphere and potential advances in weather forecasting skill. To address this observation need, an active remote sensing technology based on a diode-laser-based lidar architecture is being developed. We discuss the details of the lidar architecture and analyze how it addresses a national-scale profiling network's need to provide continuous thermodynamic observations.
Kristopher M. Bedka, Amin R. Nehrir, Michael Kavaya, Rory Barton-Grimley, Mark Beaubien, Brian Carroll, James Collins, John Cooney, G. David Emmitt, Steven Greco, Susan Kooi, Tsengdar Lee, Zhaoyan Liu, Sharon Rodier, and Gail Skofronick-Jackson
Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, https://doi.org/10.5194/amt-14-4305-2021, 2021
Short summary
Short summary
This paper demonstrates the Doppler Aerosol WiNd (DAWN) lidar and High Altitude Lidar Observatory (HALO) measurement capabilities across a range of atmospheric conditions, compares DAWN and HALO measurements with Aeolus satellite Doppler wind lidar to gain an initial perspective of Aeolus performance, and discusses how atmospheric dynamic processes can be resolved and better understood through simultaneous observations of wind, water vapour, and aerosol profile observations.
Cited articles
American National Standard Institute: American National Standard for Safe Use of Lasers, in: Z136.1-2007, edited by Laser Institute of America, Orlando, FL, USA, 2007.
Behrendt, A., Wulfmeyer, V., Riede, A., Wagner, G., Pal, S., Bauer, H., and Späth, F.: Scanning differential absorption lidar for 3D observations of the atmospheric humidity field, in: International Laser Radar Conference, p. 3, St. Petersburg, Russia, 2010.
Bösenberg, J. and Linné, H.: Continuous Ground-Based Water Vapour Profiling using DIAL, in: International Laser Radar Conference, pp. 679–682, Nara City, Japan, 2006.
Ertel, K., Linné, H., and Bösenberg, J.: Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation, Appl. Optics, 44, 5120–5126, 2005.
Feltz, W., Smith, W., Howell, H., Knuteson, R., H., W., and Revercomb, H.: Near-continuous profiling of temperature, moisture, and atmospheric stability using the atmospheric emitted radiance interferometer (AERI), J. Appl. Meteorol., 42, 584–597, 2003.
Goldsmith, J. E., Forest, M., Blair, H., Bisson, S. E., and Turner., D. D.: Turn-Key Raman Lidar for Profiling Atmospheric Water Vapor, Clouds, and Aerosols, Appl. Optics, 37, 4979, https://doi.org/10.1364/AO.37.004979, 1998.
Grossmann, B. E. and Browell, E. V.: Spectroscopy of water-vapor in the 720 nm wavelength region – line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts, J. Mol. Spectrosc., 136, 264–294, 1989:.
Ismail, S. and Browell, E. V.: Influence of Rayleigh-Doppler Broadening on the Selection of H2O DIAL System Parameters, in: International Laser Radar Conference, p. 3, Toronto, Canada, 1986.
Knuteson, R., Revercomb, H., Best, F., Ciganovich, N., Dedecker, R., Dirkx, T., Ellington, S., Feltz, W., Garcia, R., Howell, H., Smith, W., Short, J., and Tobin, D.: Atmospheric emitted radiance interferometer. part II: Instrument performance, J. Atmos. Ocean. Technol., 21, 1777–1789, 2004a.
Knuteson, R., Revercomb, H., Best, F., Ciganovich, N., Dedecker, R., Dirkx, T. P., Ellington, S., Feltz, W., Garcia, R., Howell, H., Smith, W., Short, J., and Tobin, D.: Atmospheric emitted radiance interferometer. Part I: Instrument Design, J. Atmos. Ocean. Technol., 21, 1763–1776, 2004b.
Lisak, D., Havey, D. K., and Hodges, J. T.: Spectroscopic line parameters of water vapor for rotation-vibration transitions near 7180 cm-1, Phys. Rev. A, 79, 1–10, 2009.
Machol, J. L., Ayers, T., Schwenz, K. T., Koenig, K. W., Hardesty, R. M., Senff, C., Krainak, M. A., Abshire, J. B., Bravo, H. E., and Sandberg, S. P.: Preliminary Measurements with an Automated Compact Differential Absorption Lidar for the Profiling of Water Vapor, Appl. Optics, 43, 3110–3121, https://doi.org/10.1364/AO.43.003110, 2004.
National Research Council: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks, The National Academies Press, Washington, DC, 2009.
National Research Council: When Weather Matters: Science and Service to Meet Critical Societal Needs, The National Academies Press, Washington, DC, 2010.
NCAR Atmospheric Chemistry Division: FRAPP\'E – Front Range Air Pollution and Photochemistry Experiment, available at: https://www2.acd.ucar.edu/frappe (last access: 1 October 2014), 2014.
Nehrir, A. R.: Development of an Eye-Safe Diode-Laser-Based Micro-Pulse Differential Absorption Lidar (MP- DIAL) for Atmospheric Water vapor and Aerosol Studies, Ph.D. thesis, Montana State University, 2011.
Nehrir, A. R., Repasky, K. S., Carlsten, J. L., Obland, M. D., and Shaw, J. A.: Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL), J. Atmos. Ocean. Technol., 26, 733–745, https://doi.org/10.1175/2008JTECHA1201.1, 2009.
Nehrir, A. R., Repasky, K. S., and Carlsten, J. L.: Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere, J. Atmos. Ocean. Technol., 28, 131–147, https://doi.org/10.1175/2010JTECHA1452.1, 2011.
Nehrir, A. R., Repasky, K. S., and Carlsten, J. L.: Micropulse water vapor differential absorption lidar: transmitter design and performance, Optics express, 20, 137–151, 2012.
NOAA Physical Sciences Division: The Boulder Atmospheric Observatory, available at: http://www.esrl.noaa.gov/psd/technology/bao/ (last access: 1 October 2014), 2014.
Pike, E. and Sabatier, P.: Scattering, Two-Volume Set: Scattering and inverse scattering in Pure and Applied Science, Elsevier Science, 2001.
Ponsardin, P. L. and Browell, E. V.: Measurements of H216O Linestrengths and Air-Induced Broadenings and Shifts in the 815 nm Spectral Region, J. Molecular Spectr., 185, 58–70, 1997.
Reagan, J. A., Cooley, T. W., and Shaw, J. A.: Prospects for an economical, eye-safe water vapor LIDAR., in: International Geoscience and Remote Sensing Symposium, Better Understanding of Earth Environment, 872–874, IEEE, Kogakuin University, Tokyo, Japan, https://doi.org/10.1109/IGARSS.1993.322198, 1993.
Repasky, K., Moen, D., Spuler, S., Nehrir, A., and Carlsten, J.: Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere, Remote Sens., 5, 6241–6259, https://doi.org/10.3390/rs5126241, 2013.
Rothman, L., Gordon, I., Barbe, A., Benner, D., Bernath, P., Birk, M., Boudon, V., Brown, L., Campargue, A., Champion, J.-P., Chance, K., Coudert, L., Dana, V., Devi, V., Fally, S., Flaud, J.-M., Gamache, R., Goldman, a., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W., Mandin, J.-Y., Massie, S., Mikhailenko, S., Miller, C., Moazzen-Ahmadi, N., Naumenko, O., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Predoi-Cross, A., Rinsland, C., Rotger, M., Šimečková, M., Smith, M., Sung, K., Tashkun, S., Tennyson, J., Toth, R., Vandaele, A. C., and Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectr. Radiat. Trans., 110, 533–572, https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009.
Turner, D. D. and Löhnert, U.: Information Content and Uncertainties in Thermodynamic Profiles and Liquid Cloud Properties Retrieved from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI), J. Appl. Meteorol. Climatol., 53, 752–771, 2014.
Turner, D. D., Ferrare, R. A., Brasseur, L. A. H., Feltz, W. F., and Tooman, T. P.: Automated Retrievals of Water Vapor and Aerosol Profiles from an Operational Raman Lidar, J. Atmos. Ocean. Technol., 19, 37–50, 2002.
Vogelmann, H. and Trickl, T.: Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station, Appl. Optics, 47, 2116, https://doi.org/10.1364/AO.47.002116, 2008.
Vogelmann, H., Sussmann, R., Trickl, T., and Borsdorff, T.: Intercomparison of atmospheric water vapor soundings from the differential absorption lidar (DIAL) and the solar FTIR system on Mt. Zugspitze, Atmos. Meas. Tech., 4, 835–841, https://doi.org/10.5194/amt-4-835-2011, 2011.
Wulfmeyer, V. and Bösenberg, J.: Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution and meteorological applications, Appl. Optics, 37, 3825–3844, 1998.
Wulfmeyer, V. and Walther, C.: Future performance of a ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory, Appl. Optics, 40, 5304–5320, https://doi.org/10.1364/AO.40.005304, 2001a.
Wulfmeyer, V. and Walther, C.: Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system, Appl. Optics, 40, 5321–5336, 2001b.
Short summary
A water vapor lidar has been designed and tested which has the potential to enable a national-scale network. The system is low-maintenance, low-cost, eye-safe, and provides continuous profiles of water vapor with complete coverage, including periods of daytime bright clouds, from 300m above ground level to 4km with 150m nominal vertical resolution and 1 min temporal resolution. The sensor may be useful in improving our understanding of the distribution of atmospheric water vapor.
A water vapor lidar has been designed and tested which has the potential to enable a...