Articles | Volume 8, issue 12
Atmos. Meas. Tech., 8, 5289–5299, 2015
https://doi.org/10.5194/amt-8-5289-2015
Atmos. Meas. Tech., 8, 5289–5299, 2015
https://doi.org/10.5194/amt-8-5289-2015

Research article 18 Dec 2015

Research article | 18 Dec 2015

Gas adsorption and desorption effects on cylinders and their importance for long-term gas records

M. C. Leuenberger et al.

Related authors

Cambial-age related correlations of stable isotopes and tree-ring widths in wood samples of tree-line conifers
Tito Arosio, Malin M. Ziehmer-Wenz, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-406,https://doi.org/10.5194/bg-2020-406, 2020
Revised manuscript not accepted
Short summary
Alpine Holocene tree-ring dataset: age-related trends in the stable isotopes of cellulose show species-specific patterns
Tito Arosio, Malin M. Ziehmer, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences, 17, 4871–4882, https://doi.org/10.5194/bg-17-4871-2020,https://doi.org/10.5194/bg-17-4871-2020, 2020
Short summary
Comparison of Holocene temperature reconstructions based on GISP2 multiple-gas-isotope measurements
Michael Döring and Markus Christian Leuenberger
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-132,https://doi.org/10.5194/cp-2020-132, 2020
Manuscript not accepted for further review
Short summary
Investigation of adsorption and desorption behavior of small-volume cylinders and its relevance for atmospheric trace gas analysis
Ece Satar, Peter Nyfeler, Bernhard Bereiter, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 101–117, https://doi.org/10.5194/amt-13-101-2020,https://doi.org/10.5194/amt-13-101-2020, 2020
Short summary
Towards an understanding of surface effects: testing of various materials in a small volume measurement chamber and its relevance for atmospheric trace gas analysis
Ece Satar, Peter Nyfeler, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 119–130, https://doi.org/10.5194/amt-13-119-2020,https://doi.org/10.5194/amt-13-119-2020, 2020
Short summary

Related subject area

Subject: Gases | Technique: Laboratory Measurement | Topic: Validation and Intercomparisons
Characterisation of gas reference materials for underpinning atmospheric measurements of stable isotopes of nitrous oxide
Ruth E. Hill-Pearce, Aimee Hillier, Eric Mussell Webber, Kanokrat Charoenpornpukdee, Simon O'Doherty, Joachim Mohn, Christoph Zellweger, David R. Worton, and Paul J. Brewer
Atmos. Meas. Tech., 14, 5447–5458, https://doi.org/10.5194/amt-14-5447-2021,https://doi.org/10.5194/amt-14-5447-2021, 2021
Short summary
An indirect-calibration method for non-target quantification of trace gases applied to a time series of fourth-generation synthetic halocarbons at the Taunus Observatory (Germany)
Fides Lefrancois, Markus Jesswein, Markus Thoma, Andreas Engel, Kieran Stanley, and Tanja Schuck
Atmos. Meas. Tech., 14, 4669–4687, https://doi.org/10.5194/amt-14-4669-2021,https://doi.org/10.5194/amt-14-4669-2021, 2021
Short summary
Revision of the World Meteorological Organization Global Atmosphere Watch (WMO/GAW) CO2 calibration scale
Bradley D. Hall, Andrew M. Crotwell, Duane R. Kitzis, Thomas Mefford, Benjamin R. Miller, Michael F. Schibig, and Pieter P. Tans
Atmos. Meas. Tech., 14, 3015–3032, https://doi.org/10.5194/amt-14-3015-2021,https://doi.org/10.5194/amt-14-3015-2021, 2021
Short summary
Comparability of calibration strategies for measuring mercury concentrations in gas emission sources and the atmosphere
Iris de Krom, Wijnand Bavius, Ruben Ziel, Elizabeth A. McGhee, Richard J. C. Brown, Igor Živković, Jan Gačnik, Vesna Fajon, Jože Kotnik, Milena Horvat, and Hugo Ent
Atmos. Meas. Tech., 14, 2317–2326, https://doi.org/10.5194/amt-14-2317-2021,https://doi.org/10.5194/amt-14-2317-2021, 2021
Short summary
Characterizing water vapour concentration dependence of commercial cavity ring-down spectrometers for continuous on-site atmospheric water vapour isotope measurements in the tropics
Shujiro Komiya, Fumiyoshi Kondo, Heiko Moossen, Thomas Seifert, Uwe Schultz, Heike Geilmann, David Walter, and Jost V. Lavric
Atmos. Meas. Tech., 14, 1439–1455, https://doi.org/10.5194/amt-14-1439-2021,https://doi.org/10.5194/amt-14-1439-2021, 2021
Short summary

Cited articles

Bender, M. L., Tans, P. P., Ellis, J. T., Orchardo, J., and Habfast, K.: A high-precision isotope ratio mass-spectrometry method for measuring the O2 N2 ratio of air, Geochim. Cosmochim. Ac., 58, 4751–4758, 1994.
Berhanu, T. A., Satar, E., Schanda, R., Nyfeler, P., Moret, H., Brunner, D., Oney, B., and Leuenberger, M.: Measurements of greenhouse gases at Beromünster tall tower station in Switzerland, Atmos. Meas. Tech. Discuss., 8, 10793–10822, https://doi.org/10.5194/amtd-8-10793-2015, 2015.
Brunauer, S., Emmett, P. H., and Teller, E.: Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 60, 309–319, 1938.
Chen, H.: Long-term stability of calibration gases in cylinders for CO2, CH4, CO, N2O, and SF6, in 17th WMO(IAEA meeting on Carbon Dioxide , other greenhouse gases and related measurement techniques (GGMT-2013), edited by: WMO/IAEA, Chinese Meterological Administration, Beijing, China, 2013.
Freundlich, H. M. F.: Über die Adsorption in Lösungen., Z. Phys. Chem., 57, 385–470, 1906.
Download
Short summary
Adsorption/desorption effects of trace gases in gas cylinders were investigated. Our measurements indicate a rather strong effect on steel cylinders for CO2 that becomes easily visible through enhanced concentrations for low (<20 bars) gas pressure. Much smaller effects are observed for CO and CH4. Significantly smaller effects are measured for all gas species investigated on aluminium cylinders. Careful selection of gas cylinders for high-precision calibration purposes is recommended.