Articles | Volume 9, issue 5
https://doi.org/10.5194/amt-9-1993-2016
https://doi.org/10.5194/amt-9-1993-2016
Research article
 | 
03 May 2016
Research article |  | 03 May 2016

Evaluation of three lidar scanning strategies for turbulence measurements

Jennifer F. Newman, Petra M. Klein, Sonia Wharton, Ameya Sathe, Timothy A. Bonin, Phillip B. Chilson, and Andreas Muschinski

Related authors

An error reduction algorithm to improve lidar turbulence estimates for wind energy
Jennifer F. Newman and Andrew Clifton
Wind Energ. Sci., 2, 77–95, https://doi.org/10.5194/wes-2-77-2017,https://doi.org/10.5194/wes-2-77-2017, 2017
Short summary
Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations
Timothy A. Bonin, Jennifer F. Newman, Petra M. Klein, Phillip B. Chilson, and Sonia Wharton
Atmos. Meas. Tech., 9, 5833–5852, https://doi.org/10.5194/amt-9-5833-2016,https://doi.org/10.5194/amt-9-5833-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Exploring commercial Global Navigation Satellite System (GNSS) radio occultation (RO) products for planetary boundary layer studies in the Arctic
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025,https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
Research on atmospheric temperature fine measurements from the near surface to 60 km altitude based on an integrated lidar system
Zhangjun Wang, Tiantian Guo, Xianxin Li, Chao Chen, Dong Liu, Luoyuan Qu, Hui Li, and Xiufen Wang
Atmos. Meas. Tech., 18, 1405–1414, https://doi.org/10.5194/amt-18-1405-2025,https://doi.org/10.5194/amt-18-1405-2025, 2025
Short summary
Testing ground-based observations of wave activity in the (lower and upper) atmosphere as possible (complementary) indicators of streamer events
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech., 18, 1373–1388, https://doi.org/10.5194/amt-18-1373-2025,https://doi.org/10.5194/amt-18-1373-2025, 2025
Short summary
Quality assessment of YUNYAO radio occultation data in the neutral atmosphere
Xiaoze Xu, Wei Han, Jincheng Wang, Zhiqiu Gao, Fenghui Li, Yan Cheng, and Naifeng Fu
Atmos. Meas. Tech., 18, 1339–1353, https://doi.org/10.5194/amt-18-1339-2025,https://doi.org/10.5194/amt-18-1339-2025, 2025
Short summary
Turbulence kinetic energy dissipation rate estimated from a WindCube Doppler lidar and the LQ7 1.3 GHz radar wind profiler in the convective boundary layer
Hubert Luce and Masanori Yabuki
Atmos. Meas. Tech., 18, 1193–1208, https://doi.org/10.5194/amt-18-1193-2025,https://doi.org/10.5194/amt-18-1193-2025, 2025
Short summary

Cited articles

Arya, S. P.: Introduction to Micrometeorology, vol. 79 of International Geophysics Series, 2nd edn., Academic Press, Cornwall, UK, 2001.
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, 2009.
Bodine, D., Klein, P. M., Arms, S. C., and Shapiro, A.: Variability of surface air temperature over gently sloped terrain, J. Appl. Meteorol. Clim., 48, 1117–1141, 2009.
Bright, D. R. and Mullen, S. L.: The sensitivity of the numerical simulation of the Southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5, Weather Forecast., 17, 99–114, 2002.
Download
Short summary
Remote sensing devices known as lidars are often used to take measurements at potential wind farm sites. These instruments are however not optimized for measuring turbulence, small-scale changes in wind speed. In this manuscript, the impact of lidar configurations and atmospheric conditions on turbulence accuracy is explored. A new method was developed to correct lidar turbulence measurements and is described in detail such that other lidar users can apply it to their own instruments.
Share