Articles | Volume 10, issue 4
https://doi.org/10.5194/amt-10-1511-2017
https://doi.org/10.5194/amt-10-1511-2017
Research article
 | 
21 Apr 2017
Research article |  | 21 Apr 2017

Merged ozone profiles from four MIPAS processors

Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Bianca Maria Dinelli, Anu Dudhia, Piera Raspollini, Norbert Glatthor, Udo Grabowski, Viktoria Sofieva, Lucien Froidevaux, Kaley A. Walker, and Claus Zehner

Related authors

IMK–IAA MIPAS retrieval version 8: CH4 and N2O
Norbert Glatthor, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 17, 2849–2871, https://doi.org/10.5194/amt-17-2849-2024,https://doi.org/10.5194/amt-17-2849-2024, 2024
Short summary
Version 8 IMK/IAA MIPAS measurements of CFC-11, CFC-12, and HCFC-22
Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Bernd Funke, Maya García-Comas, and Manuel López-Puertas
Atmos. Meas. Tech., 17, 1759–1789, https://doi.org/10.5194/amt-17-1759-2024,https://doi.org/10.5194/amt-17-1759-2024, 2024
Short summary
MIPAS ozone retrieval version 8: middle-atmosphere measurements
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 5609–5645, https://doi.org/10.5194/amt-16-5609-2023,https://doi.org/10.5194/amt-16-5609-2023, 2023
Short summary
Impact of chlorine ion chemistry on ozone loss in the middle atmosphere during very large solar proton events
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023,https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Updated merged SAGE-CCI-OMPS+ dataset for the evaluation of ozone trends in the stratosphere
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech., 16, 1881–1899, https://doi.org/10.5194/amt-16-1881-2023,https://doi.org/10.5194/amt-16-1881-2023, 2023
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks
Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 18, 241–264, https://doi.org/10.5194/amt-18-241-2025,https://doi.org/10.5194/amt-18-241-2025, 2025
Short summary
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024,https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024,https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024,https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary

Cited articles

Carlotti, M.: Global–fit approach to the analysis of limb–scanning atmospheric measurements, Appl. Optics, 27, 3250–3254, 1988.
Carlotti, M., Brizzi, G., Papandrea, E., Prevedelli, M., Ridolfi, M., Dinelli, B. M., and Magnani, L.: GMTR: Two–dimensional geo–fit multitarget retrieval model for Michelson Interferometer for Passive Atmospheric Sounding/Environmental Satellite observations, Appl. Optics, 45, 716–727, 2006.
Ceccherini, S., Carli, B., and Raspollini, P.:Equilvalence of data fusion and simultaneous retrieval, Opt. Express, 23, 8476–8488, 2015.
Dinelli, B. M., Arnone, E., Brizzi, G., Carlotti, M., Castelli, E., Magnani, L., Papandrea, E., Prevedelli, M., and Ridolfi, M.: The MIPAS2D database of MIPAS/ENVISAT measurements retrieved with a multi-target 2-dimensional tomographic approach, Atmos. Meas. Tech., 3, 355–374, https://doi.org/10.5194/amt-3-355-2010, 2010.
Dudhia, A., Jay, V. L., and Rodgers, C. D.: Microwindow selection for high–spectral–resolution sounders, Appl. Optics, 41, 3665–3673, 2002.
Download
Short summary
A MIPAS instrument was flown in 2002–2012 on the Envisat satellite and measured atmospheric composition. There exist four processors retrieving atmospheric profiles from MIPAS spectra. We performed a mathematically clean merging of 2007–2008 datasets of ozone from these four processors. The merged product was compared with ozone datasets from ACE-FTS and MLS instruments. The advantages and the shortcomings of this merged product are discussed.