Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Download
Short summary
Aerosols, and their interaction with clouds, play a key role in the climate of our planet but many of their properties are poorly understood. We present a new method for estimating the size, shape and optical constants of atmospheric particles from light-scattering measurements made both in the laboratory and aboard an aircraft. This method is shown to have sufficient accuracy to potentially reduce existing uncertainties, particularly in airborne measurements.
Articles | Volume 10, issue 3
Atmos. Meas. Tech., 10, 811–824, 2017
https://doi.org/10.5194/amt-10-811-2017
Atmos. Meas. Tech., 10, 811–824, 2017
https://doi.org/10.5194/amt-10-811-2017

Research article 08 Mar 2017

Research article | 08 Mar 2017

Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements

W. Reed Espinosa et al.

Related authors

In situ measurements of angular-dependent light scattering by aerosols over the contiguous United States
W. Reed Espinosa, J. Vanderlei Martins, Lorraine A. Remer, Anin Puthukkudy, Daniel Orozco, and Gergely Dolgos
Atmos. Chem. Phys., 18, 3737–3754, https://doi.org/10.5194/acp-18-3737-2018,https://doi.org/10.5194/acp-18-3737-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
A novel lidar gradient cluster analysis method of nocturnal boundary layer detection during air pollution episodes
Yinchao Zhang, Su Chen, Siying Chen, He Chen, and Pan Guo
Atmos. Meas. Tech., 13, 6675–6689, https://doi.org/10.5194/amt-13-6675-2020,https://doi.org/10.5194/amt-13-6675-2020, 2020
Short summary
Estimation of pollen counts from light scattering intensity when sampling multiple pollen taxa – Establishment of Automated Multi-taxa Pollen Counting Estimation System (AME System)
Kenji Miki and Shigeto Kawashima
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-320,https://doi.org/10.5194/amt-2020-320, 2020
Revised manuscript accepted for AMT
Short summary
Determination of black carbon mass concentration from aerosol light absorption using variable mass absorption cross-section
Weilun Zhao, Wangshu Tan, Gang Zhao, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-337,https://doi.org/10.5194/amt-2020-337, 2020
Revised manuscript accepted for AMT
Assessment of particle size magnifier inversion methods to obtain the particle size distribution from atmospheric measurements
Tommy Chan, Runlong Cai, Lauri R. Ahonen, Yiliang Liu, Ying Zhou, Joonas Vanhanen, Lubna Dada, Yan Chao, Yongchun Liu, Lin Wang, Markku Kulmala, and Juha Kangasluoma
Atmos. Meas. Tech., 13, 4885–4898, https://doi.org/10.5194/amt-13-4885-2020,https://doi.org/10.5194/amt-13-4885-2020, 2020
Short summary
Effects of Multi-Charge on Aerosol Hygroscopicity Measurement by HTDMA
Chuanyang Shen, Gang Zhao, and Chunsheng Zhao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-338,https://doi.org/10.5194/amt-2020-338, 2020
Revised manuscript accepted for AMT
Short summary

Cited articles

Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.: Performance Characteristics of a High-Sensitivity, Three-Wavelength Total Scattering/Backscatter Nephelometer, J. Atmos. Ocean. Tech., 13, 967–986, 1996.
Barkey, B., Paulson, S. E., and Chung, A.: Genetic Algorithm Inversion of Dual Polarization Polar Nephelometer Data to Determine Aerosol Refractive Index, Aerosol Sci. Technol., 41, 751–760, https://doi.org/10.1080/02786820701432640, 2007.
Barkey, B., Kim, H., and Paulson, S. E.: Genetic Algorithm Retrieval of Real Refractive Index from Aerosol Distributions that are not Lognormal, Aerosol Sci. Technol., 44, 1089–1095, https://doi.org/10.1080/02786826.2010.512025, 2010.
Bateman, J., Weneck, E., and Eshler, D.: Determination of particle size and concentration from spectrophotometric transmission, J. Coll. Sci. Imp. U. Tok., 14, 308–329, https://doi.org/10.1016/0095-8522(59)90055-8, 1959.
Beaton, A. E. and Tukey, J. W.: The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data, Technometrics, 16, 147–185, https://doi.org/10.2307/1267936, 1974.
Publications Copernicus
Download
Short summary
Aerosols, and their interaction with clouds, play a key role in the climate of our planet but many of their properties are poorly understood. We present a new method for estimating the size, shape and optical constants of atmospheric particles from light-scattering measurements made both in the laboratory and aboard an aircraft. This method is shown to have sufficient accuracy to potentially reduce existing uncertainties, particularly in airborne measurements.
Citation