Articles | Volume 11, issue 3
https://doi.org/10.5194/amt-11-1481-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-1481-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA
Georgios I. Gkatzelis
Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
Thorsten Hohaus
Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
Markus Müller
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
Ionicon Analytik GmbH, Innsbruck, Austria
Philipp Eichler
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
now at: German Environment Agency, Dessau-Roßlau, Germany
Kang-Ming Xu
Institute for Marine and Atmospheric research Utrecht, Princetonplein 5, 3584 CC, Utrecht, the Netherlands
Patrick Schlag
Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
now at: Institute of Physics, University of Sao Paulo, Sao Paulo, Brazil
Sebastian H. Schmitt
Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
Robert Wegener
Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
Martin Kaminski
Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
Rupert Holzinger
Institute for Marine and Atmospheric research Utrecht, Princetonplein 5, 3584 CC, Utrecht, the Netherlands
Armin Wisthaler
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
Department of Chemistry, University of Oslo, Oslo, Norway
Astrid Kiendler-Scharr
Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
Related authors
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Hendrik Fuchs, Aaron Stainsby, Florian Berg, René Dubus, Michelle Färber, Andreas Hofzumahaus, Frank Holland, Kelvin H. Bates, Steven S. Brown, Matthew M. Coggon, Glenn S. Diskin, Georgios I. Gkatzelis, Christopher M. Jernigan, Jeff Peischl, Michael A. Robinson, Andrew W. Rollins, Nell B. Schafer, Rebecca H. Schwantes, Chelsea E. Stockwell, Patrick R. Veres, Carsten Warneke, Eleanor M. Waxman, Lu Xu, Kristen Zuraski, Andreas Wahner, and Anna Novelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2752, https://doi.org/10.5194/egusphere-2024-2752, 2024
Short summary
Short summary
Significant improvements have been made to the instruments used to measure OH reactivity, which is equivalent to the sum of air pollutant concentrations. Accurate and precise measurements with a high time resolution have been achieved, allowing use on aircraft, as demonstrated during flights in the USA.
Andrew O. Langford, Raul J. Alvarez II, Kenneth C. Aikin, Sunil Baidar, W. Alan Brewer, Steven S. Brown, Matthew M. Coggan, Patrick D. Cullis, Jessica Gilman, Georgios I. Gkatzelis, Detlev Helmig, Bryan J. Johnson, K. Emma Knowland, Rajesh Kumar, Aaron D. Lamplugh, Audra McClure-Begley, Brandi J. McCarty, Ann M. Middlebrook, Gabriele Pfister, Jeff Peischl, Irina Petropavlovskikh, Pamela S. Rickley, Andrew W. Rollins, Scott P. Sandberg, Christoph J. Senff, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1938, https://doi.org/10.5194/egusphere-2024-1938, 2024
Short summary
Short summary
High ozone (O3) formed by reactions of nitrogen oxides (NOx) and volatile organic compounds (VOCs) can harm human health and welfare. High O3 is usually associated with hot summer days, but under certain conditions, high O3 can also form under winter conditions. In this study, we describe a high O3 event that occurred in Colorado during the COVID-19 quarantine that was caused in part by the decrease in traffic, and in part by a shallow inversion created by descent of stratospheric air.
Matthew M. Coggon, Chelsea E. Stockwell, Megan S. Claflin, Eva Y. Pfannerstill, Lu Xu, Jessica B. Gilman, Julia Marcantonio, Cong Cao, Kelvin Bates, Georgios I. Gkatzelis, Aaron Lamplugh, Erin F. Katz, Caleb Arata, Eric C. Apel, Rebecca S. Hornbrook, Felix Piel, Francesca Majluf, Donald R. Blake, Armin Wisthaler, Manjula Canagaratna, Brian M. Lerner, Allen H. Goldstein, John E. Mak, and Carsten Warneke
Atmos. Meas. Tech., 17, 801–825, https://doi.org/10.5194/amt-17-801-2024, https://doi.org/10.5194/amt-17-801-2024, 2024
Short summary
Short summary
Mass spectrometry is a tool commonly used to measure air pollutants. This study evaluates measurement artifacts produced in the proton-transfer-reaction mass spectrometer. We provide methods to correct these biases and better measure compounds that degrade air quality.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Jacky Y. S. Pang, Florian Berg, Anna Novelli, Birger Bohn, Michelle Färber, Philip T. M. Carlsson, René Dubus, Georgios I. Gkatzelis, Franz Rohrer, Sergej Wedel, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 12631–12649, https://doi.org/10.5194/acp-23-12631-2023, https://doi.org/10.5194/acp-23-12631-2023, 2023
Short summary
Short summary
In this study, the oxidations of sabinene by OH radicals and ozone were investigated with an atmospheric simulation chamber. Reaction rate coefficients of the OH-oxidation reaction at temperatures between 284 to 340 K were determined for the first time in the laboratory by measuring the OH reactivity. Product yields determined in chamber experiments had good agreement with literature values, but discrepancies were found between experimental yields and expected yields from oxidation mechanisms.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023, https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Short summary
Air quality in the USA has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfire pollution in the western USA in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we used a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western USA.
Tobias Schuldt, Georgios I. Gkatzelis, Christian Wesolek, Franz Rohrer, Benjamin Winter, Thomas A. J. Kuhlbusch, Astrid Kiendler-Scharr, and Ralf Tillmann
Atmos. Meas. Tech., 16, 373–386, https://doi.org/10.5194/amt-16-373-2023, https://doi.org/10.5194/amt-16-373-2023, 2023
Short summary
Short summary
We report in situ measurements of air pollutant concentrations within the planetary boundary layer on board a Zeppelin NT in Germany. We highlight the in-flight evaluation of electrochemical sensors that were installed inside a hatch box located on the bottom of the Zeppelin. Results from this work emphasize the potential of these sensors for other in situ airborne applications, e.g., on board unmanned aerial vehicles (UAVs).
Therese S. Carter, Colette L. Heald, Jesse H. Kroll, Eric C. Apel, Donald Blake, Matthew Coggon, Achim Edtbauer, Georgios Gkatzelis, Rebecca S. Hornbrook, Jeff Peischl, Eva Y. Pfannerstill, Felix Piel, Nina G. Reijrink, Akima Ringsdorf, Carsten Warneke, Jonathan Williams, Armin Wisthaler, and Lu Xu
Atmos. Chem. Phys., 22, 12093–12111, https://doi.org/10.5194/acp-22-12093-2022, https://doi.org/10.5194/acp-22-12093-2022, 2022
Short summary
Short summary
Fires emit many gases which can contribute to smog and air pollution. However, the amount and properties of these chemicals are not well understood, so this work updates and expands their representation in a global atmospheric model, including by adding new chemicals. We confirm that this updated representation generally matches measurements taken in several fire regions. We then show that fires provide ~15 % of atmospheric reactivity globally and more than 75 % over fire source regions.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Shang Liu, Barbara Barletta, Rebecca S. Hornbrook, Alan Fried, Jeff Peischl, Simone Meinardi, Matthew Coggon, Aaron Lamplugh, Jessica B. Gilman, Georgios I. Gkatzelis, Carsten Warneke, Eric C. Apel, Alan J. Hills, Ilann Bourgeois, James Walega, Petter Weibring, Dirk Richter, Toshihiro Kuwayama, Michael FitzGibbon, and Donald Blake
Atmos. Chem. Phys., 22, 10937–10954, https://doi.org/10.5194/acp-22-10937-2022, https://doi.org/10.5194/acp-22-10937-2022, 2022
Short summary
Short summary
California’s ozone persistently exceeds the air quality standards. We studied the spatial distribution of volatile organic compounds (VOCs) that produce ozone over the most polluted regions in California using aircraft measurements. We find that the oxygenated VOCs have the highest ozone formation potential. Spatially, biogenic VOCs are important during high ozone episodes in the South Coast Air Basin, while dairy emissions may be critical for ozone production in San Joaquin Valley.
Ralf Tillmann, Georgios I. Gkatzelis, Franz Rohrer, Benjamin Winter, Christian Wesolek, Tobias Schuldt, Anne C. Lange, Philipp Franke, Elmar Friese, Michael Decker, Robert Wegener, Morten Hundt, Oleg Aseev, and Astrid Kiendler-Scharr
Atmos. Meas. Tech., 15, 3827–3842, https://doi.org/10.5194/amt-15-3827-2022, https://doi.org/10.5194/amt-15-3827-2022, 2022
Short summary
Short summary
We report in situ measurements of air pollutant concentrations within the planetary boundary layer on board a Zeppelin in Germany. The low costs of commercial flights provide an affordable and efficient method to improve our understanding of changes in emissions in space and time. The experimental setup expands the capabilities of this platform and provides insights into primary and secondary pollution observations and planetary boundary layer dynamics which determine air quality significantly.
Jin Liao, Glenn M. Wolfe, Reem A. Hannun, Jason M. St. Clair, Thomas F. Hanisco, Jessica B. Gilman, Aaron Lamplugh, Vanessa Selimovic, Glenn S. Diskin, John B. Nowak, Hannah S. Halliday, Joshua P. DiGangi, Samuel R. Hall, Kirk Ullmann, Christopher D. Holmes, Charles H. Fite, Anxhelo Agastra, Thomas B. Ryerson, Jeff Peischl, Ilann Bourgeois, Carsten Warneke, Matthew M. Coggon, Georgios I. Gkatzelis, Kanako Sekimoto, Alan Fried, Dirk Richter, Petter Weibring, Eric C. Apel, Rebecca S. Hornbrook, Steven S. Brown, Caroline C. Womack, Michael A. Robinson, Rebecca A. Washenfelder, Patrick R. Veres, and J. Andrew Neuman
Atmos. Chem. Phys., 21, 18319–18331, https://doi.org/10.5194/acp-21-18319-2021, https://doi.org/10.5194/acp-21-18319-2021, 2021
Short summary
Short summary
Formaldehyde (HCHO) is an important oxidant precursor and affects the formation of O3 and other secondary pollutants in wildfire plumes. We disentangle the processes controlling HCHO evolution from wildfire plumes sampled by NASA DC-8 during FIREX-AQ. We find that OH abundance rather than normalized OH reactivity is the main driver of fire-to-fire variability in HCHO secondary production and estimate an effective HCHO yield per volatile organic compound molecule oxidized in wildfire plumes.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Chelsea E. Stockwell, Matthew M. Coggon, Georgios I. Gkatzelis, John Ortega, Brian C. McDonald, Jeff Peischl, Kenneth Aikin, Jessica B. Gilman, Michael Trainer, and Carsten Warneke
Atmos. Chem. Phys., 21, 6005–6022, https://doi.org/10.5194/acp-21-6005-2021, https://doi.org/10.5194/acp-21-6005-2021, 2021
Short summary
Short summary
Volatile chemical products are emerging as a large source of petrochemical organics in urban environments. We identify markers for the coatings category by linking ambient observations to laboratory measurements, investigating volatile organic compound (VOC) composition, and quantifying key VOC emissions via controlled evaporation experiments. Ingredients and sales surveys are used to confirm the prevalence and usage trends to support the assignment of water and solvent-borne coating tracers.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Anna Novelli, Luc Vereecken, Birger Bohn, Hans-Peter Dorn, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, David Reimer, Franz Rohrer, Simon Rosanka, Domenico Taraborrelli, Ralf Tillmann, Robert Wegener, Zhujun Yu, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 20, 3333–3355, https://doi.org/10.5194/acp-20-3333-2020, https://doi.org/10.5194/acp-20-3333-2020, 2020
Short summary
Short summary
Experimental evidence from a simulation chamber study shows that the regeneration efficiency of the hydroxyl radical is maintained globally at values higher than 0.5 for a wide range of nitrogen oxide concentrations as a result of isomerizations of peroxy radicals originating from the OH oxidation of isoprene. The available models were tested, and suggestions on how to improve their ability to reproduce the measured radical and oxygenated volatile organic compound concentrations are provided.
Yu Wang, Ying Chen, Zhijun Wu, Dongjie Shang, Yuxuan Bian, Zhuofei Du, Sebastian H. Schmitt, Rong Su, Georgios I. Gkatzelis, Patrick Schlag, Thorsten Hohaus, Aristeidis Voliotis, Keding Lu, Limin Zeng, Chunsheng Zhao, M. Rami Alfarra, Gordon McFiggans, Alfred Wiedensohler, Astrid Kiendler-Scharr, Yuanhang Zhang, and Min Hu
Atmos. Chem. Phys., 20, 2161–2175, https://doi.org/10.5194/acp-20-2161-2020, https://doi.org/10.5194/acp-20-2161-2020, 2020
Short summary
Short summary
Severe haze events, with high particulate nitrate (pNO3−) burden, frequently prevail in Beijing. In this study, we demonstrate a mutual-promotion effect between aerosol water uptake and pNO3− formation backed up by theoretical calculations and field observations throughout a typical pNO3−-dominated haze event in Beijing wintertime. This self-amplified mutual-promotion effect between aerosol water content and particulate nitrate can rapidly deteriorate air quality and degrade visibility.
Georgios I. Gkatzelis, Thorsten Hohaus, Ralf Tillmann, Iulia Gensch, Markus Müller, Philipp Eichler, Kang-Ming Xu, Patrick Schlag, Sebastian H. Schmitt, Zhujun Yu, Robert Wegener, Martin Kaminski, Rupert Holzinger, Armin Wisthaler, and Astrid Kiendler-Scharr
Atmos. Chem. Phys., 18, 12969–12989, https://doi.org/10.5194/acp-18-12969-2018, https://doi.org/10.5194/acp-18-12969-2018, 2018
Short summary
Short summary
Defining the fundamental parameters that distribute organic molecules between the gas and particle phases is essential to understand their impact on the atmosphere. In this work, gas to particle partitioning of major biogenic oxidation products from monoterpenes and real plant emissions was investigated. While measurement results and theoretical calculation for most semi-volatile compounds are in good agreement, significant deviations are found for intermediate volatile organic compounds.
Zhaofeng Tan, Franz Rohrer, Keding Lu, Xuefei Ma, Birger Bohn, Sebastian Broch, Huabin Dong, Hendrik Fuchs, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, Xin Li, Ying Liu, Yuhan Liu, Anna Novelli, Min Shao, Haichao Wang, Yusheng Wu, Limin Zeng, Min Hu, Astrid Kiendler-Scharr, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 18, 12391–12411, https://doi.org/10.5194/acp-18-12391-2018, https://doi.org/10.5194/acp-18-12391-2018, 2018
Short summary
Short summary
We present the first wintertime OH, HO2, and RO2 measurements in Beijing, China. OH concentrations are nearly 2-fold larger than those observed in foreign cities during wintertime. The high OH and large OH reactivities indicate photochemical processes can be effective even during wintertime. A box model largely underestimated HO2 and RO2 concentrations during pollution episodes correlated with high NOx, indicating a deficit current chemistry in the high NOx regime.
Hendrik Fuchs, Sascha Albrecht, Ismail–Hakki Acir, Birger Bohn, Martin Breitenlechner, Hans-Peter Dorn, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, Martin Kaminski, Frank N. Keutsch, Anna Novelli, David Reimer, Franz Rohrer, Ralf Tillmann, Luc Vereecken, Robert Wegener, Alexander Zaytsev, Astrid Kiendler-Scharr, and Andreas Wahner
Atmos. Chem. Phys., 18, 8001–8016, https://doi.org/10.5194/acp-18-8001-2018, https://doi.org/10.5194/acp-18-8001-2018, 2018
Short summary
Short summary
The photooxidation of methyl vinyl ketone MVK, one of the most important products of isoprene that is emitted by plants, was investigated in the atmospheric simulation chamber SAPHIR for conditions found in forested areas. The comparison of measured trace gas time series with model calculations shows a gap in the understanding of radical chemistry in the MVK oxidation scheme. The possibility of unimolecular isomerization reactions were investigated by means of quantum-chemical calculations.
Kalliopi Florou, Dimitrios K. Papanastasiou, Michael Pikridas, Christos Kaltsonoudis, Evangelos Louvaris, Georgios I. Gkatzelis, David Patoulias, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 17, 3145–3163, https://doi.org/10.5194/acp-17-3145-2017, https://doi.org/10.5194/acp-17-3145-2017, 2017
Short summary
Short summary
The composition of fine particulate matter (PM) in two major Greek cities (Athens and Patras) was measured during two wintertime campaigns in 2012 and 2013. Residential wood burning has dramatically increased due to the Greek financial crisis, contributing around 50 % of the fine PM on average and more than 80 % during nighttime. Cooking is also an important source during both midday and evening, while transportation dominates only during the morning rush hour.
G. I. Gkatzelis, D. K. Papanastasiou, K. Florou, C. Kaltsonoudis, E. Louvaris, and S. N. Pandis
Atmos. Meas. Tech., 9, 103–114, https://doi.org/10.5194/amt-9-103-2016, https://doi.org/10.5194/amt-9-103-2016, 2016
Short summary
Short summary
A method for the measurement of the nonvolatile atmospheric particle size distribution is developed and tested. The tests include laboratory experiments with biogenic and anthropogenic secondary organic aerosol as well as nucleation experiments with ambient air. The method is then further tested during an ambient campaign.
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024, https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary
Short summary
Four-dimensional variational data assimilation allows for the simultaneous optimisation of initial values and emission rates by using trace-gas profiles from drone observations in a regional air quality model. Assimilated profiles positively impact the representation of air pollutants in the model by improving their vertical distribution and ground-level concentrations. This case study highlights the potential of drone data to enhance air quality analyses including local emission evaluation.
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Battist Utinger, Alexandre Barth, Andreas Paul, Arya Mukherjee, Steven John Campbell, Christa-Maria Müller, Mika Ihalainen, Pasi Yli-Pirilä, Miika Kortelainen, Zheng Fang, Patrick Mertens, Markus Somero, Juho Louhisalmi, Thorsten Hohaus, Hendryk Czech, Olli Sippula, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-27, https://doi.org/10.5194/ar-2024-27, 2024
Preprint under review for AR
Short summary
Short summary
The oxidative potential (OP) of air pollution particles might be a metric explaining particle toxicity. This study quantifies OP of particles of fresh and aged car and wood burning emissions and how OP changes over time, using novel high time resolution instruments. We show that emissions from wood burning are more toxic than car exhaust per particle mass, especially as they age in the atmosphere. We also calculate emission factors for OP, which could help to improve air pollution policies.
Hendrik Fuchs, Aaron Stainsby, Florian Berg, René Dubus, Michelle Färber, Andreas Hofzumahaus, Frank Holland, Kelvin H. Bates, Steven S. Brown, Matthew M. Coggon, Glenn S. Diskin, Georgios I. Gkatzelis, Christopher M. Jernigan, Jeff Peischl, Michael A. Robinson, Andrew W. Rollins, Nell B. Schafer, Rebecca H. Schwantes, Chelsea E. Stockwell, Patrick R. Veres, Carsten Warneke, Eleanor M. Waxman, Lu Xu, Kristen Zuraski, Andreas Wahner, and Anna Novelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2752, https://doi.org/10.5194/egusphere-2024-2752, 2024
Short summary
Short summary
Significant improvements have been made to the instruments used to measure OH reactivity, which is equivalent to the sum of air pollutant concentrations. Accurate and precise measurements with a high time resolution have been achieved, allowing use on aircraft, as demonstrated during flights in the USA.
Andrew O. Langford, Raul J. Alvarez II, Kenneth C. Aikin, Sunil Baidar, W. Alan Brewer, Steven S. Brown, Matthew M. Coggan, Patrick D. Cullis, Jessica Gilman, Georgios I. Gkatzelis, Detlev Helmig, Bryan J. Johnson, K. Emma Knowland, Rajesh Kumar, Aaron D. Lamplugh, Audra McClure-Begley, Brandi J. McCarty, Ann M. Middlebrook, Gabriele Pfister, Jeff Peischl, Irina Petropavlovskikh, Pamela S. Rickley, Andrew W. Rollins, Scott P. Sandberg, Christoph J. Senff, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1938, https://doi.org/10.5194/egusphere-2024-1938, 2024
Short summary
Short summary
High ozone (O3) formed by reactions of nitrogen oxides (NOx) and volatile organic compounds (VOCs) can harm human health and welfare. High O3 is usually associated with hot summer days, but under certain conditions, high O3 can also form under winter conditions. In this study, we describe a high O3 event that occurred in Colorado during the COVID-19 quarantine that was caused in part by the decrease in traffic, and in part by a shallow inversion created by descent of stratospheric air.
Maitane Iturrate-Garcia, Thérèse Salameh, Paul Schlauri, Annarita Baldan, Martin K. Vollmer, Evdokia Stratigou, Sebastian Dusanter, Jianrong Li, Stefan Persijn, Anja Claude, Rupert Holzinger, Christophe Sutour, Tatiana Macé, Yasin Elshorbany, Andreas Ackermann, Céline Pascale, and Stefan Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2236, https://doi.org/10.5194/egusphere-2024-2236, 2024
Short summary
Short summary
Accurate and comparable measurements of oxygenated organic compounds (OVOCs) are crucial to assess tropospheric ozone burdens and trends. However, monitoring of many OVOCs remains challenging because of their low atmospheric abundance and lack of stable and traceable calibration standards. This research describes the calibration standards developed for selected OVOCs at low amount of substance fractions (<100 nmol mol-1) to transfer traceability to the international system of units to the field.
Hengheng Zhang, Christian Rolf, Ralf Tillmann, Christian Wesolek, Frank Gunther Wienhold, Thomas Leisner, and Harald Saathoff
Aerosol Research, 2, 135–151, https://doi.org/10.5194/ar-2-135-2024, https://doi.org/10.5194/ar-2-135-2024, 2024
Short summary
Short summary
Our study employs advanced tools, including scanning lidar, balloons, and UAVs, to explore aerosol particles in the atmosphere. The scanning lidar offers distinctive near-ground-level insights, enriching our comprehension of aerosol distribution from ground level to the free troposphere. This research provides valuable data for comparing remote sensing and in situ aerosol measurements, advancing our understanding of aerosol impacts on radiative transfer, clouds, and air quality.
Felix Wieser, Rolf Sander, Changmin Cho, Hendrik Fuchs, Thorsten Hohaus, Anna Novelli, Ralf Tillmann, and Domenico Taraborrelli
Geosci. Model Dev., 17, 4311–4330, https://doi.org/10.5194/gmd-17-4311-2024, https://doi.org/10.5194/gmd-17-4311-2024, 2024
Short summary
Short summary
The chemistry scheme of the atmospheric box model CAABA/MECCA is expanded to achieve an improved aerosol formation from emitted organic compounds. In addition to newly added reactions, temperature-dependent partitioning of all new species between the gas and aqueous phases is estimated and included in the pre-existing scheme. Sensitivity runs show an overestimation of key compounds from isoprene, which can be explained by a lack of aqueous-phase degradation reactions and box model limitations.
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024, https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules are important contributors to secondary organic aerosol. Their yield depends on detailed atmospheric chemical composition. One important parameter is the ratio of hydroperoxy radicals to organic peroxy radicals (HO2/RO2), and we show that higher HO2/RO2 ratios lower the secondary organic aerosol yield. This is of importance as laboratory studies are often biased towards organic peroxy radicals.
Rongrong Wu, Sören R. Zorn, Sungah Kang, Astrid Kiendler-Scharr, Andreas Wahner, and Thomas F. Mentel
Atmos. Meas. Tech., 17, 1811–1835, https://doi.org/10.5194/amt-17-1811-2024, https://doi.org/10.5194/amt-17-1811-2024, 2024
Short summary
Short summary
Recent advances in high-resolution time-of-flight chemical ionization mass spectrometry (CIMS) enable the detection of highly oxygenated organic molecules, which efficiently contribute to secondary organic aerosol. Here we present an application of fuzzy c-means (FCM) clustering to deconvolve CIMS data. FCM not only reduces the complexity of mass spectrometric data but also the chemical and kinetic information retrieved by clustering gives insights into the chemical processes involved.
Matthew M. Coggon, Chelsea E. Stockwell, Megan S. Claflin, Eva Y. Pfannerstill, Lu Xu, Jessica B. Gilman, Julia Marcantonio, Cong Cao, Kelvin Bates, Georgios I. Gkatzelis, Aaron Lamplugh, Erin F. Katz, Caleb Arata, Eric C. Apel, Rebecca S. Hornbrook, Felix Piel, Francesca Majluf, Donald R. Blake, Armin Wisthaler, Manjula Canagaratna, Brian M. Lerner, Allen H. Goldstein, John E. Mak, and Carsten Warneke
Atmos. Meas. Tech., 17, 801–825, https://doi.org/10.5194/amt-17-801-2024, https://doi.org/10.5194/amt-17-801-2024, 2024
Short summary
Short summary
Mass spectrometry is a tool commonly used to measure air pollutants. This study evaluates measurement artifacts produced in the proton-transfer-reaction mass spectrometer. We provide methods to correct these biases and better measure compounds that degrade air quality.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Jacky Y. S. Pang, Florian Berg, Anna Novelli, Birger Bohn, Michelle Färber, Philip T. M. Carlsson, René Dubus, Georgios I. Gkatzelis, Franz Rohrer, Sergej Wedel, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 12631–12649, https://doi.org/10.5194/acp-23-12631-2023, https://doi.org/10.5194/acp-23-12631-2023, 2023
Short summary
Short summary
In this study, the oxidations of sabinene by OH radicals and ozone were investigated with an atmospheric simulation chamber. Reaction rate coefficients of the OH-oxidation reaction at temperatures between 284 to 340 K were determined for the first time in the laboratory by measuring the OH reactivity. Product yields determined in chamber experiments had good agreement with literature values, but discrepancies were found between experimental yields and expected yields from oxidation mechanisms.
Farhan R. Nursanto, Roy Meinen, Rupert Holzinger, Maarten C. Krol, Xinya Liu, Ulrike Dusek, Bas Henzing, and Juliane L. Fry
Atmos. Chem. Phys., 23, 10015–10034, https://doi.org/10.5194/acp-23-10015-2023, https://doi.org/10.5194/acp-23-10015-2023, 2023
Short summary
Short summary
Particulate matter (PM) is a harmful air pollutant that depends on the complex mixture of natural and anthropogenic emissions into the atmosphere. Thus, in different regions and seasons, the way that PM is formed and grows can differ. In this study, we use a combined statistical analysis of the chemical composition and particle size distribution to determine what drives particle formation and growth across seasons, using varying wind directions to elucidate the role of different sources.
Hao Luo, Luc Vereecken, Hongru Shen, Sungah Kang, Iida Pullinen, Mattias Hallquist, Hendrik Fuchs, Andreas Wahner, Astrid Kiendler-Scharr, Thomas F. Mentel, and Defeng Zhao
Atmos. Chem. Phys., 23, 7297–7319, https://doi.org/10.5194/acp-23-7297-2023, https://doi.org/10.5194/acp-23-7297-2023, 2023
Short summary
Short summary
Oxidation of limonene, an element emitted by trees and chemical products, by OH, a daytime oxidant, forms many highly oxygenated organic molecules (HOMs), including C10-20 compounds. HOMs play an important role in new particle formation and growth. HOM formation can be explained by the chemistry of peroxy radicals. We found that a minor branching ratio initial pathway plays an unexpected, significant role. Considering this pathway enables accurate simulations of HOMs and other concentrations.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023, https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Short summary
Air quality in the USA has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfire pollution in the western USA in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we used a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western USA.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
David R. Worton, Sergi Moreno, Kieran O'Daly, and Rupert Holzinger
Atmos. Meas. Tech., 16, 1061–1072, https://doi.org/10.5194/amt-16-1061-2023, https://doi.org/10.5194/amt-16-1061-2023, 2023
Short summary
Short summary
Proton-transfer-reaction mass spectrometry is widely used in the environmental, health, and food and beverage sectors. As a result, there is a need for accurate and comparable measurements. In this work we have developed a 20-component gravimetrically prepared traceable primary reference material (gas standard in a high-pressure cylinder) to enable quantitative and comparable measurements. The accuracy of all components was better than 3 %–10 % with stabilities of better than 1–2 years.
Changmin Cho, Hendrik Fuchs, Andreas Hofzumahaus, Frank Holland, William J. Bloss, Birger Bohn, Hans-Peter Dorn, Marvin Glowania, Thorsten Hohaus, Lu Liu, Paul S. Monks, Doreen Niether, Franz Rohrer, Roberto Sommariva, Zhaofeng Tan, Ralf Tillmann, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
Atmos. Chem. Phys., 23, 2003–2033, https://doi.org/10.5194/acp-23-2003-2023, https://doi.org/10.5194/acp-23-2003-2023, 2023
Short summary
Short summary
With this study, we investigated the processes leading to the formation, destruction, and recycling of radicals for four seasons in a rural environment. Complete knowledge of their chemistry is needed if we are to predict the formation of secondary pollutants from primary emissions. The results highlight a still incomplete understanding of the paths leading to the formation of the OH radical, which has been observed in several other environments as well and needs to be further investigated.
Tobias Schuldt, Georgios I. Gkatzelis, Christian Wesolek, Franz Rohrer, Benjamin Winter, Thomas A. J. Kuhlbusch, Astrid Kiendler-Scharr, and Ralf Tillmann
Atmos. Meas. Tech., 16, 373–386, https://doi.org/10.5194/amt-16-373-2023, https://doi.org/10.5194/amt-16-373-2023, 2023
Short summary
Short summary
We report in situ measurements of air pollutant concentrations within the planetary boundary layer on board a Zeppelin NT in Germany. We highlight the in-flight evaluation of electrochemical sensors that were installed inside a hatch box located on the bottom of the Zeppelin. Results from this work emphasize the potential of these sensors for other in situ airborne applications, e.g., on board unmanned aerial vehicles (UAVs).
Zhaofeng Tan, Hendrik Fuchs, Andreas Hofzumahaus, William J. Bloss, Birger Bohn, Changmin Cho, Thorsten Hohaus, Frank Holland, Chandrakiran Lakshmisha, Lu Liu, Paul S. Monks, Anna Novelli, Doreen Niether, Franz Rohrer, Ralf Tillmann, Thalassa S. E. Valkenburg, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Roberto Sommariva
Atmos. Chem. Phys., 22, 13137–13152, https://doi.org/10.5194/acp-22-13137-2022, https://doi.org/10.5194/acp-22-13137-2022, 2022
Short summary
Short summary
During the 2019 JULIAC campaign, ClNO2 was measured at a rural site in Germany in different seasons. The highest ClNO2 level was 1.6 ppbv in September. ClNO2 production was more sensitive to the availability of NO2 than O3. The average ClNO2 production efficiency was up to 18 % in February and September and down to 3 % in December. These numbers are at the high end of the values reported in the literature, indicating the importance of ClNO2 chemistry in rural environments in midwestern Europe.
Therese S. Carter, Colette L. Heald, Jesse H. Kroll, Eric C. Apel, Donald Blake, Matthew Coggon, Achim Edtbauer, Georgios Gkatzelis, Rebecca S. Hornbrook, Jeff Peischl, Eva Y. Pfannerstill, Felix Piel, Nina G. Reijrink, Akima Ringsdorf, Carsten Warneke, Jonathan Williams, Armin Wisthaler, and Lu Xu
Atmos. Chem. Phys., 22, 12093–12111, https://doi.org/10.5194/acp-22-12093-2022, https://doi.org/10.5194/acp-22-12093-2022, 2022
Short summary
Short summary
Fires emit many gases which can contribute to smog and air pollution. However, the amount and properties of these chemicals are not well understood, so this work updates and expands their representation in a global atmospheric model, including by adding new chemicals. We confirm that this updated representation generally matches measurements taken in several fire regions. We then show that fires provide ~15 % of atmospheric reactivity globally and more than 75 % over fire source regions.
Yindong Guo, Hongru Shen, Iida Pullinen, Hao Luo, Sungah Kang, Luc Vereecken, Hendrik Fuchs, Mattias Hallquist, Ismail-Hakki Acir, Ralf Tillmann, Franz Rohrer, Jürgen Wildt, Astrid Kiendler-Scharr, Andreas Wahner, Defeng Zhao, and Thomas F. Mentel
Atmos. Chem. Phys., 22, 11323–11346, https://doi.org/10.5194/acp-22-11323-2022, https://doi.org/10.5194/acp-22-11323-2022, 2022
Short summary
Short summary
The oxidation of limonene, a common volatile emitted by trees and chemical products, by NO3, a nighttime oxidant, forms many highly oxygenated organic molecules (HOM), including C10-30 compounds. Most of the HOM are second-generation organic nitrates, in which carbonyl-substituted C10 nitrates accounted for a major fraction. Their formation can be explained by chemistry of peroxy radicals. HOM, especially low-volatile ones, play an important role in nighttime new particle formation and growth.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Shang Liu, Barbara Barletta, Rebecca S. Hornbrook, Alan Fried, Jeff Peischl, Simone Meinardi, Matthew Coggon, Aaron Lamplugh, Jessica B. Gilman, Georgios I. Gkatzelis, Carsten Warneke, Eric C. Apel, Alan J. Hills, Ilann Bourgeois, James Walega, Petter Weibring, Dirk Richter, Toshihiro Kuwayama, Michael FitzGibbon, and Donald Blake
Atmos. Chem. Phys., 22, 10937–10954, https://doi.org/10.5194/acp-22-10937-2022, https://doi.org/10.5194/acp-22-10937-2022, 2022
Short summary
Short summary
California’s ozone persistently exceeds the air quality standards. We studied the spatial distribution of volatile organic compounds (VOCs) that produce ozone over the most polluted regions in California using aircraft measurements. We find that the oxygenated VOCs have the highest ozone formation potential. Spatially, biogenic VOCs are important during high ozone episodes in the South Coast Air Basin, while dairy emissions may be critical for ozone production in San Joaquin Valley.
Jacky Yat Sing Pang, Anna Novelli, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Philip T. M. Carlsson, Changmin Cho, Hans-Peter Dorn, Andreas Hofzumahaus, Xin Li, Anna Lutz, Sascha Nehr, David Reimer, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 22, 8497–8527, https://doi.org/10.5194/acp-22-8497-2022, https://doi.org/10.5194/acp-22-8497-2022, 2022
Short summary
Short summary
This study investigates the radical chemical budget during the limonene oxidation at different atmospheric-relevant NO concentrations in chamber experiments under atmospheric conditions. It is found that the model–measurement discrepancies of HO2 and RO2 are very large at low NO concentrations that are typical for forested environments. Possible additional processes impacting HO2 and RO2 concentrations are discussed.
Ralf Tillmann, Georgios I. Gkatzelis, Franz Rohrer, Benjamin Winter, Christian Wesolek, Tobias Schuldt, Anne C. Lange, Philipp Franke, Elmar Friese, Michael Decker, Robert Wegener, Morten Hundt, Oleg Aseev, and Astrid Kiendler-Scharr
Atmos. Meas. Tech., 15, 3827–3842, https://doi.org/10.5194/amt-15-3827-2022, https://doi.org/10.5194/amt-15-3827-2022, 2022
Short summary
Short summary
We report in situ measurements of air pollutant concentrations within the planetary boundary layer on board a Zeppelin in Germany. The low costs of commercial flights provide an affordable and efficient method to improve our understanding of changes in emissions in space and time. The experimental setup expands the capabilities of this platform and provides insights into primary and secondary pollution observations and planetary boundary layer dynamics which determine air quality significantly.
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
Rupert Holzinger, Oliver Eppers, Kouji Adachi, Heiko Bozem, Markus Hartmann, Andreas Herber, Makoto Koike, Dylan B. Millet, Nobuhiro Moteki, Sho Ohata, Frank Stratmann, and Atsushi Yoshida
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-95, https://doi.org/10.5194/acp-2022-95, 2022
Revised manuscript not accepted
Short summary
Short summary
In spring 2018 the research aircraft Polar 5 conducted flights in the Arctic atmosphere. The flight operation was from Station Nord in Greenland, 1700 km north of the Arctic Circle (81°43'N, 17°47'W). Using a mass spectrometer we measured more than 100 organic compounds in the air. We found a clear signature of natural organic compounds that are transported from forests to the high Arctic. These compounds have the potential to change the cloud cover and energy budget of the Arctic region.
Zhi-Hui Zhang, Elena Hartner, Battist Utinger, Benjamin Gfeller, Andreas Paul, Martin Sklorz, Hendryk Czech, Bin Xia Yang, Xin Yi Su, Gert Jakobi, Jürgen Orasche, Jürgen Schnelle-Kreis, Seongho Jeong, Thomas Gröger, Michal Pardo, Thorsten Hohaus, Thomas Adam, Astrid Kiendler-Scharr, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Atmos. Chem. Phys., 22, 1793–1809, https://doi.org/10.5194/acp-22-1793-2022, https://doi.org/10.5194/acp-22-1793-2022, 2022
Short summary
Short summary
Using a novel setup, we comprehensively characterized the formation of particle-bound reactive oxygen species (ROS) in anthropogenic and biogenic secondary organic aerosols (SOAs). We found that more than 90 % of all ROS components in both SOA types have a short lifetime. Our results also show that photochemical aging promotes particle-bound ROS production and enhances the oxidative potential of the aerosols. We found consistent results between chemical-based and biological-based ROS analyses.
Jin Liao, Glenn M. Wolfe, Reem A. Hannun, Jason M. St. Clair, Thomas F. Hanisco, Jessica B. Gilman, Aaron Lamplugh, Vanessa Selimovic, Glenn S. Diskin, John B. Nowak, Hannah S. Halliday, Joshua P. DiGangi, Samuel R. Hall, Kirk Ullmann, Christopher D. Holmes, Charles H. Fite, Anxhelo Agastra, Thomas B. Ryerson, Jeff Peischl, Ilann Bourgeois, Carsten Warneke, Matthew M. Coggon, Georgios I. Gkatzelis, Kanako Sekimoto, Alan Fried, Dirk Richter, Petter Weibring, Eric C. Apel, Rebecca S. Hornbrook, Steven S. Brown, Caroline C. Womack, Michael A. Robinson, Rebecca A. Washenfelder, Patrick R. Veres, and J. Andrew Neuman
Atmos. Chem. Phys., 21, 18319–18331, https://doi.org/10.5194/acp-21-18319-2021, https://doi.org/10.5194/acp-21-18319-2021, 2021
Short summary
Short summary
Formaldehyde (HCHO) is an important oxidant precursor and affects the formation of O3 and other secondary pollutants in wildfire plumes. We disentangle the processes controlling HCHO evolution from wildfire plumes sampled by NASA DC-8 during FIREX-AQ. We find that OH abundance rather than normalized OH reactivity is the main driver of fire-to-fire variability in HCHO secondary production and estimate an effective HCHO yield per volatile organic compound molecule oxidized in wildfire plumes.
Seán Schmitz, Sherry Towers, Guillermo Villena, Alexandre Caseiro, Robert Wegener, Dieter Klemp, Ines Langer, Fred Meier, and Erika von Schneidemesser
Atmos. Meas. Tech., 14, 7221–7241, https://doi.org/10.5194/amt-14-7221-2021, https://doi.org/10.5194/amt-14-7221-2021, 2021
Short summary
Short summary
The last 2 decades have seen substantial technological advances in the development of low-cost air pollution instruments. This study introduces a seven-step methodology for the field calibration of low-cost sensors with user-friendly guidelines, open-access code, and a discussion of common barriers. Our goal with this work is to push for standardized reporting of methods, make critical data processing steps clear for users, and encourage responsible use in the scientific community and beyond.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Zhaofeng Tan, Luisa Hantschke, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Changmin Cho, Hans-Peter Dorn, Xin Li, Anna Novelli, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 16067–16091, https://doi.org/10.5194/acp-21-16067-2021, https://doi.org/10.5194/acp-21-16067-2021, 2021
Short summary
Short summary
The photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR. The chemical structure of myrcene is partly similar to isoprene. Therefore, it can be expected that hydrogen shift reactions could play a role as observed for isoprene. In this work, their potential impact on the regeneration efficiency of hydroxyl radicals is investigated.
Janne Lampilahti, Hanna E. Manninen, Tuomo Nieminen, Sander Mirme, Mikael Ehn, Iida Pullinen, Katri Leino, Siegfried Schobesberger, Juha Kangasluoma, Jenni Kontkanen, Emma Järvinen, Riikka Väänänen, Taina Yli-Juuti, Radovan Krejci, Katrianne Lehtipalo, Janne Levula, Aadu Mirme, Stefano Decesari, Ralf Tillmann, Douglas R. Worsnop, Franz Rohrer, Astrid Kiendler-Scharr, Tuukka Petäjä, Veli-Matti Kerminen, Thomas F. Mentel, and Markku Kulmala
Atmos. Chem. Phys., 21, 12649–12663, https://doi.org/10.5194/acp-21-12649-2021, https://doi.org/10.5194/acp-21-12649-2021, 2021
Short summary
Short summary
We studied aerosol particle formation and growth in different parts of the planetary boundary layer at two different locations (Po Valley, Italy, and Hyytiälä, Finland). The observations consist of airborne measurements on board an instrumented Zeppelin and a small airplane combined with comprehensive ground-based measurements.
Luisa Hantschke, Anna Novelli, Birger Bohn, Changmin Cho, David Reimer, Franz Rohrer, Ralf Tillmann, Marvin Glowania, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 12665–12685, https://doi.org/10.5194/acp-21-12665-2021, https://doi.org/10.5194/acp-21-12665-2021, 2021
Short summary
Short summary
The reactions of Δ3-carene with ozone and the hydroxyl radical (OH) and the photolysis and OH reaction of caronaldehyde were investigated in the simulation chamber SAPHIR. Reaction rate constants of these reactions were determined. Caronaldehyde yields of the ozonolysis and OH reaction were determined. The organic nitrate yield of the reaction of Δ3-carene and caronaldehyde-derived peroxy radicals with NO was determined. The ROx budget (ROx = OH+HO2+RO2) was also investigated.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Rongrong Wu, Luc Vereecken, Epameinondas Tsiligiannis, Sungah Kang, Sascha R. Albrecht, Luisa Hantschke, Defeng Zhao, Anna Novelli, Hendrik Fuchs, Ralf Tillmann, Thorsten Hohaus, Philip T. M. Carlsson, Justin Shenolikar, François Bernard, John N. Crowley, Juliane L. Fry, Bellamy Brownwood, Joel A. Thornton, Steven S. Brown, Astrid Kiendler-Scharr, Andreas Wahner, Mattias Hallquist, and Thomas F. Mentel
Atmos. Chem. Phys., 21, 10799–10824, https://doi.org/10.5194/acp-21-10799-2021, https://doi.org/10.5194/acp-21-10799-2021, 2021
Short summary
Short summary
Isoprene is the biogenic volatile organic compound with the largest emissions rates. The nighttime reaction of isoprene with the NO3 radical has a large potential to contribute to SOA. We classified isoprene nitrates into generations and proposed formation pathways. Considering the potential functionalization of the isoprene nitrates we propose that mainly isoprene dimers contribute to SOA formation from the isoprene NO3 reactions with at least a 5 % mass yield.
Defeng Zhao, Iida Pullinen, Hendrik Fuchs, Stephanie Schrade, Rongrong Wu, Ismail-Hakki Acir, Ralf Tillmann, Franz Rohrer, Jürgen Wildt, Yindong Guo, Astrid Kiendler-Scharr, Andreas Wahner, Sungah Kang, Luc Vereecken, and Thomas F. Mentel
Atmos. Chem. Phys., 21, 9681–9704, https://doi.org/10.5194/acp-21-9681-2021, https://doi.org/10.5194/acp-21-9681-2021, 2021
Short summary
Short summary
The reaction of isoprene, a biogenic volatile organic compound with the globally largest emission rates, with NO3, an nighttime oxidant influenced heavily by anthropogenic emissions, forms a large number of highly oxygenated organic molecules (HOM). These HOM are formed via one or multiple oxidation steps, followed by autoxidation. Their total yield is much higher than that in the daytime oxidation of isoprene. They may play an important role in nighttime organic aerosol formation and growth.
Djacinto Monteiro dos Santos, Luciana Varanda Rizzo, Samara Carbone, Patrick Schlag, and Paulo Artaxo
Atmos. Chem. Phys., 21, 8761–8773, https://doi.org/10.5194/acp-21-8761-2021, https://doi.org/10.5194/acp-21-8761-2021, 2021
Short summary
Short summary
The metropolitan area of São Paulo (MASP), with very extensive biofuel use, has unique atmospheric chemistry among world megacities. In this study, we examine the complex relationships between aerosol chemical composition and particle size distribution. Our findings provide a better understanding of the dynamics of the physicochemical properties of submicron particles and highlight the key role of secondary organic aerosol formation in the pollution levels in São Paulo.
Marvin Glowania, Franz Rohrer, Hans-Peter Dorn, Andreas Hofzumahaus, Frank Holland, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Meas. Tech., 14, 4239–4253, https://doi.org/10.5194/amt-14-4239-2021, https://doi.org/10.5194/amt-14-4239-2021, 2021
Short summary
Short summary
Three instruments that use different techniques to measure gaseous formaldehyde concentrations were compared in experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich. The results demonstrated the need to correct the baseline in measurements by instruments that use the Hantzsch reaction or make use of cavity ring-down spectroscopy. After applying corrections, all three methods gave accurate and precise measurements within their specifications.
Chelsea E. Stockwell, Matthew M. Coggon, Georgios I. Gkatzelis, John Ortega, Brian C. McDonald, Jeff Peischl, Kenneth Aikin, Jessica B. Gilman, Michael Trainer, and Carsten Warneke
Atmos. Chem. Phys., 21, 6005–6022, https://doi.org/10.5194/acp-21-6005-2021, https://doi.org/10.5194/acp-21-6005-2021, 2021
Short summary
Short summary
Volatile chemical products are emerging as a large source of petrochemical organics in urban environments. We identify markers for the coatings category by linking ambient observations to laboratory measurements, investigating volatile organic compound (VOC) composition, and quantifying key VOC emissions via controlled evaporation experiments. Ingredients and sales surveys are used to confirm the prevalence and usage trends to support the assignment of water and solvent-borne coating tracers.
Clara Betancourt, Christoph Küppers, Tammarat Piansawan, Uta Sager, Andrea B. Hoyer, Heinz Kaminski, Gerhard Rapp, Astrid C. John, Miriam Küpper, Ulrich Quass, Thomas Kuhlbusch, Jochen Rudolph, Astrid Kiendler-Scharr, and Iulia Gensch
Atmos. Chem. Phys., 21, 5953–5964, https://doi.org/10.5194/acp-21-5953-2021, https://doi.org/10.5194/acp-21-5953-2021, 2021
Short summary
Short summary
For the first time, we included stable isotopes in the Lagrangian particle dispersion model FLEXPART to investigate firewood home heating aerosol. This is an innovative source apportionment methodology since comparison of stable isotope ratio model predictions with observations delivers quantitative understanding of atmospheric processes. The main outcome of this study is that the home heating aerosol in residential areas was not of remote origin.
Michael Priestley, Thomas J. Bannan, Michael Le Breton, Stephen D. Worrall, Sungah Kang, Iida Pullinen, Sebastian Schmitt, Ralf Tillmann, Einhard Kleist, Defeng Zhao, Jürgen Wildt, Olga Garmash, Archit Mehra, Asan Bacak, Dudley E. Shallcross, Astrid Kiendler-Scharr, Åsa M. Hallquist, Mikael Ehn, Hugh Coe, Carl J. Percival, Mattias Hallquist, Thomas F. Mentel, and Gordon McFiggans
Atmos. Chem. Phys., 21, 3473–3490, https://doi.org/10.5194/acp-21-3473-2021, https://doi.org/10.5194/acp-21-3473-2021, 2021
Short summary
Short summary
A significant fraction of emissions from human activity consists of aromatic hydrocarbons, e.g. benzene, which oxidise to form new compounds important for particle growth. Characterisation of benzene oxidation products highlights the range of species produced as well as their chemical properties and contextualises them within relevant frameworks, e.g. MCM. Cluster analysis of the oxidation product time series distinguishes behaviours of CHON compounds that could aid in identifying functionality.
Changmin Cho, Andreas Hofzumahaus, Hendrik Fuchs, Hans-Peter Dorn, Marvin Glowania, Frank Holland, Franz Rohrer, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
Atmos. Meas. Tech., 14, 1851–1877, https://doi.org/10.5194/amt-14-1851-2021, https://doi.org/10.5194/amt-14-1851-2021, 2021
Short summary
Short summary
This study describes the implementation and characterization of the chemical modulation reactor (CMR) used in the laser-induced fluorescence instrument of the Forschungszentrum Jülich. The CMR allows for interference-free OH radical measurement in ambient air. During a field campaign in a rural environment, the observed interference was mostly below the detection limit of the instrument and fully explained by the known ozone interference.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Jakob B. Pernov, Rossana Bossi, Thibaut Lebourgeois, Jacob K. Nøjgaard, Rupert Holzinger, Jens L. Hjorth, and Henrik Skov
Atmos. Chem. Phys., 21, 2895–2916, https://doi.org/10.5194/acp-21-2895-2021, https://doi.org/10.5194/acp-21-2895-2021, 2021
Short summary
Short summary
Volatile organic compounds (VOCs) are an important constituent in the Arctic atmosphere due to their effect on aerosol and ozone formation. However, an understanding of their sources is lacking. This research presents a multiseason high-time-resolution dataset of VOCs in the Arctic and details their temporal characteristics and source apportionment. Four sources were identified: biomass burning, marine cryosphere, background, and Arctic haze.
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Short summary
North Atlantic Aerosols and Marine Ecosystems Study measurements combined with GEOS-Chem-TOMAS modeling suggest that several not-well-understood key factors control northwest Atlantic aerosol number and size. These synergetic and climate-relevant factors include particle formation near and above the marine boundary layer top, particle growth by marine secondary organic aerosol on descent, particle formation/growth related to dimethyl sulfide, sea spray aerosol, and ship emissions.
Huan Song, Xiaorui Chen, Keding Lu, Qi Zou, Zhaofeng Tan, Hendrik Fuchs, Alfred Wiedensohler, Daniel R. Moon, Dwayne E. Heard, María-Teresa Baeza-Romero, Mei Zheng, Andreas Wahner, Astrid Kiendler-Scharr, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 15835–15850, https://doi.org/10.5194/acp-20-15835-2020, https://doi.org/10.5194/acp-20-15835-2020, 2020
Short summary
Short summary
Accurate calculation of the HO2 uptake coefficient is one of the key parameters to quantify the co-reduction of both aerosol and ozone pollution. We modelled various lab measurements of γHO2 based on a gas-liquid phase kinetic model and developed a state-of-the-art parameterized equation. Based on a dataset from a comprehensive field campaign in the North China Plain, we proposed that the determination of the heterogeneous uptake process for HO2 should be included in future field campaigns.
Michael Rolletter, Marion Blocquet, Martin Kaminski, Birger Bohn, Hans-Peter Dorn, Andreas Hofzumahaus, Frank Holland, Xin Li, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 20, 13701–13719, https://doi.org/10.5194/acp-20-13701-2020, https://doi.org/10.5194/acp-20-13701-2020, 2020
Short summary
Short summary
The photooxidation of pinonaldehyde is investigated in a chamber study under natural sunlight and low NO conditions with and without an added hydroxyl radical (OH) scavenger. The experimentally determined pinonaldehyde photolysis frequency is faster by a factor of 3.5 than currently used parameterizations in atmospheric models. Yields of degradation products are measured in the presence and absence of OH. Measurements are compared to current atmospheric models and a theory-based mechanism.
Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 10459–10475, https://doi.org/10.5194/acp-20-10459-2020, https://doi.org/10.5194/acp-20-10459-2020, 2020
Short summary
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
Iida Pullinen, Sebastian Schmitt, Sungah Kang, Mehrnaz Sarrafzadeh, Patrick Schlag, Stefanie Andres, Einhard Kleist, Thomas F. Mentel, Franz Rohrer, Monika Springer, Ralf Tillmann, Jürgen Wildt, Cheng Wu, Defeng Zhao, Andreas Wahner, and Astrid Kiendler-Scharr
Atmos. Chem. Phys., 20, 10125–10147, https://doi.org/10.5194/acp-20-10125-2020, https://doi.org/10.5194/acp-20-10125-2020, 2020
Short summary
Short summary
Biogenic and anthropogenic air masses mix in the atmosphere, bringing plant-emitted monoterpenes and traffic-related nitrogen oxides together. There is debate whether the presence of nitrogen oxides reduces or increases secondary aerosol formation. This is important as secondary aerosols have cooling effects in the climate system but also constitute a health risk in populated areas. We show that the presence of NOx alone should not much affect the mass yields of secondary organic aerosols.
Rebecca H. Schwantes, Louisa K. Emmons, John J. Orlando, Mary C. Barth, Geoffrey S. Tyndall, Samuel R. Hall, Kirk Ullmann, Jason M. St. Clair, Donald R. Blake, Armin Wisthaler, and Thao Paul V. Bui
Atmos. Chem. Phys., 20, 3739–3776, https://doi.org/10.5194/acp-20-3739-2020, https://doi.org/10.5194/acp-20-3739-2020, 2020
Short summary
Short summary
Ozone is a greenhouse gas and air pollutant that is harmful to human health and plants. During the summer in the southeastern US, many regional and global models are biased high for surface ozone compared to observations. Here adding more complex and updated chemistry for isoprene and terpenes, which are biogenic hydrocarbons emitted from trees and vegetation, into an earth system model greatly reduces the simulated surface ozone bias compared to aircraft and monitoring station data.
Anna Novelli, Luc Vereecken, Birger Bohn, Hans-Peter Dorn, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, David Reimer, Franz Rohrer, Simon Rosanka, Domenico Taraborrelli, Ralf Tillmann, Robert Wegener, Zhujun Yu, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 20, 3333–3355, https://doi.org/10.5194/acp-20-3333-2020, https://doi.org/10.5194/acp-20-3333-2020, 2020
Short summary
Short summary
Experimental evidence from a simulation chamber study shows that the regeneration efficiency of the hydroxyl radical is maintained globally at values higher than 0.5 for a wide range of nitrogen oxide concentrations as a result of isomerizations of peroxy radicals originating from the OH oxidation of isoprene. The available models were tested, and suggestions on how to improve their ability to reproduce the measured radical and oxygenated volatile organic compound concentrations are provided.
Yu Wang, Ying Chen, Zhijun Wu, Dongjie Shang, Yuxuan Bian, Zhuofei Du, Sebastian H. Schmitt, Rong Su, Georgios I. Gkatzelis, Patrick Schlag, Thorsten Hohaus, Aristeidis Voliotis, Keding Lu, Limin Zeng, Chunsheng Zhao, M. Rami Alfarra, Gordon McFiggans, Alfred Wiedensohler, Astrid Kiendler-Scharr, Yuanhang Zhang, and Min Hu
Atmos. Chem. Phys., 20, 2161–2175, https://doi.org/10.5194/acp-20-2161-2020, https://doi.org/10.5194/acp-20-2161-2020, 2020
Short summary
Short summary
Severe haze events, with high particulate nitrate (pNO3−) burden, frequently prevail in Beijing. In this study, we demonstrate a mutual-promotion effect between aerosol water uptake and pNO3− formation backed up by theoretical calculations and field observations throughout a typical pNO3−-dominated haze event in Beijing wintertime. This self-amplified mutual-promotion effect between aerosol water content and particulate nitrate can rapidly deteriorate air quality and degrade visibility.
Olga Garmash, Matti P. Rissanen, Iida Pullinen, Sebastian Schmitt, Oskari Kausiala, Ralf Tillmann, Defeng Zhao, Carl Percival, Thomas J. Bannan, Michael Priestley, Åsa M. Hallquist, Einhard Kleist, Astrid Kiendler-Scharr, Mattias Hallquist, Torsten Berndt, Gordon McFiggans, Jürgen Wildt, Thomas F. Mentel, and Mikael Ehn
Atmos. Chem. Phys., 20, 515–537, https://doi.org/10.5194/acp-20-515-2020, https://doi.org/10.5194/acp-20-515-2020, 2020
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) facilitate aerosol formation in the atmosphere. Using NO3− chemical ionization mass spectrometry we investigated HOM composition and yield in oxidation of aromatic compounds at different reactant concentrations, in the presence of NOx and seed aerosol. Higher OH concentrations increased HOM yield, suggesting multiple oxidation steps, and affected HOM composition, potentially explaining in part discrepancies in published secondary organic aerosol yields.
Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Kanako Sekimoto, Bin Yuan, Jessica B. Gilman, David H. Hagan, Vanessa Selimovic, Kyle J. Zarzana, Steven S. Brown, James M. Roberts, Markus Müller, Robert Yokelson, Armin Wisthaler, Jordan E. Krechmer, Jose L. Jimenez, Christopher Cappa, Jesse H. Kroll, Joost de Gouw, and Carsten Warneke
Atmos. Chem. Phys., 19, 14875–14899, https://doi.org/10.5194/acp-19-14875-2019, https://doi.org/10.5194/acp-19-14875-2019, 2019
Short summary
Short summary
Wildfire emissions significantly contribute to adverse air quality; however, the chemical processes that lead to hazardous pollutants, such as ozone, are not fully understood. In this study, we describe laboratory experiments where we simulate the atmospheric chemistry of smoke emitted from a range of biomass fuels. We show that certain understudied compounds, such as furans and phenolic compounds, are significant contributors to pollutants formed as a result of typical atmospheric oxidation.
Rupert Holzinger, W. Joe F. Acton, William J. Bloss, Martin Breitenlechner, Leigh R. Crilley, Sébastien Dusanter, Marc Gonin, Valerie Gros, Frank N. Keutsch, Astrid Kiendler-Scharr, Louisa J. Kramer, Jordan E. Krechmer, Baptiste Languille, Nadine Locoge, Felipe Lopez-Hilfiker, Dušan Materić, Sergi Moreno, Eiko Nemitz, Lauriane L. J. Quéléver, Roland Sarda Esteve, Stéphane Sauvage, Simon Schallhart, Roberto Sommariva, Ralf Tillmann, Sergej Wedel, David R. Worton, Kangming Xu, and Alexander Zaytsev
Atmos. Meas. Tech., 12, 6193–6208, https://doi.org/10.5194/amt-12-6193-2019, https://doi.org/10.5194/amt-12-6193-2019, 2019
Michael Rolletter, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Hans-Peter Dorn, Xin Li, Anna Lutz, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 19, 11635–11649, https://doi.org/10.5194/acp-19-11635-2019, https://doi.org/10.5194/acp-19-11635-2019, 2019
Short summary
Short summary
Here we present a study of the photooxidation of alpha-pinene, the most abundant monoterpene, by hydroxyl radicals (OH) conducted in the simulation chamber SAPHIR under low NOx and atmospheric alpha-pinene concentrations. Yields of the main degradation products acetone, formaldehyde, and pinonaldehyde were determined and the HOx (OH + HO2) radical budget was investigated. Measurements were used to test current atmospheric models and a theory-based mechanism.
Sanna Saarikoski, Leah R. Williams, Steven R. Spielman, Gregory S. Lewis, Arantzazu Eiguren-Fernandez, Minna Aurela, Susanne V. Hering, Kimmo Teinilä, Philip Croteau, John T. Jayne, Thorsten Hohaus, Douglas R. Worsnop, and Hilkka Timonen
Atmos. Meas. Tech., 12, 3907–3920, https://doi.org/10.5194/amt-12-3907-2019, https://doi.org/10.5194/amt-12-3907-2019, 2019
Short summary
Short summary
An air-to-air ultrafine particle concentrator (Aerosol Dynamics Inc. concentrator; ADIc) has been tailored for the low (~ 0.08 L min−1) inlet flow of aerosol mass spectrometers, and it provides a factor of 8–21 enrichment in the concentration of particles. The ADIc was evaluated in laboratory and field measurements. The results showed that the concentration factor depends primarily on the ratio between the sample flow and the output flow and is independent of particle size above about 10 nm.
Zhaofeng Tan, Keding Lu, Andreas Hofzumahaus, Hendrik Fuchs, Birger Bohn, Frank Holland, Yuhan Liu, Franz Rohrer, Min Shao, Kang Sun, Yusheng Wu, Limin Zeng, Yinsong Zhang, Qi Zou, Astrid Kiendler-Scharr, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 19, 7129–7150, https://doi.org/10.5194/acp-19-7129-2019, https://doi.org/10.5194/acp-19-7129-2019, 2019
Short summary
Short summary
Atmospheric OH, HO2, and RO2 radicals; OH reactivity; and trace gases measured in the Pearl River Delta in autumn 2014 are used for radical budget analyses. The RO2 budget suggests that unexplained OH reactivity is due to unmeasured volatile organic compounds. The OH budget points to a missing OH source and that of RO2 to a missing RO2 sink at low NO. This could indicate a common, unknown process that converts RO2 to OH without the involvement of NO, which would reduce ozone production by 30 %.
Dušan Materić, Elke Ludewig, Kangming Xu, Thomas Röckmann, and Rupert Holzinger
The Cryosphere, 13, 297–307, https://doi.org/10.5194/tc-13-297-2019, https://doi.org/10.5194/tc-13-297-2019, 2019
William H. Brune, Xinrong Ren, Li Zhang, Jingqiu Mao, David O. Miller, Bruce E. Anderson, Donald R. Blake, Ronald C. Cohen, Glenn S. Diskin, Samuel R. Hall, Thomas F. Hanisco, L. Gregory Huey, Benjamin A. Nault, Jeff Peischl, Ilana Pollack, Thomas B. Ryerson, Taylor Shingler, Armin Sorooshian, Kirk Ullmann, Armin Wisthaler, and Paul J. Wooldridge
Atmos. Chem. Phys., 18, 14493–14510, https://doi.org/10.5194/acp-18-14493-2018, https://doi.org/10.5194/acp-18-14493-2018, 2018
Short summary
Short summary
Thunderstorms pull in polluted air from near the ground, transport it up through clouds containing lightning, and deposit it at altitudes where airplanes fly. The resulting chemical mixture in this air reacts to form ozone and particles, which affect climate. In this study, aircraft observations of the reactive gases responsible for this chemistry generally agree with modeled values, even in ice clouds. Thus, atmospheric oxidation chemistry appears to be mostly understood for this environment.
Georgios I. Gkatzelis, Thorsten Hohaus, Ralf Tillmann, Iulia Gensch, Markus Müller, Philipp Eichler, Kang-Ming Xu, Patrick Schlag, Sebastian H. Schmitt, Zhujun Yu, Robert Wegener, Martin Kaminski, Rupert Holzinger, Armin Wisthaler, and Astrid Kiendler-Scharr
Atmos. Chem. Phys., 18, 12969–12989, https://doi.org/10.5194/acp-18-12969-2018, https://doi.org/10.5194/acp-18-12969-2018, 2018
Short summary
Short summary
Defining the fundamental parameters that distribute organic molecules between the gas and particle phases is essential to understand their impact on the atmosphere. In this work, gas to particle partitioning of major biogenic oxidation products from monoterpenes and real plant emissions was investigated. While measurement results and theoretical calculation for most semi-volatile compounds are in good agreement, significant deviations are found for intermediate volatile organic compounds.
Jorge Saturno, Bruna A. Holanda, Christopher Pöhlker, Florian Ditas, Qiaoqiao Wang, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Jeannine Ditas, Thorsten Hoffmann, Isabella Hrabe de Angelis, Tobias Könemann, Jošt V. Lavrič, Nan Ma, Jing Ming, Hauke Paulsen, Mira L. Pöhlker, Luciana V. Rizzo, Patrick Schlag, Hang Su, David Walter, Stefan Wolff, Yuxuan Zhang, Paulo Artaxo, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 12817–12843, https://doi.org/10.5194/acp-18-12817-2018, https://doi.org/10.5194/acp-18-12817-2018, 2018
Short summary
Short summary
Biomass burning emits light-absorbing aerosol particles that warm the atmosphere. One of them is the primarily emitted black carbon, which strongly absorbs radiation in the visible and UV spectral regions. Another one is the so-called brown carbon, a fraction of organic aerosol particles that are able to absorb radiation, especially in the UV spectral region. The contribution of both kinds of aerosol particles to light absorption over the Amazon rainforest is studied in this paper.
Zhaofeng Tan, Franz Rohrer, Keding Lu, Xuefei Ma, Birger Bohn, Sebastian Broch, Huabin Dong, Hendrik Fuchs, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, Xin Li, Ying Liu, Yuhan Liu, Anna Novelli, Min Shao, Haichao Wang, Yusheng Wu, Limin Zeng, Min Hu, Astrid Kiendler-Scharr, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 18, 12391–12411, https://doi.org/10.5194/acp-18-12391-2018, https://doi.org/10.5194/acp-18-12391-2018, 2018
Short summary
Short summary
We present the first wintertime OH, HO2, and RO2 measurements in Beijing, China. OH concentrations are nearly 2-fold larger than those observed in foreign cities during wintertime. The high OH and large OH reactivities indicate photochemical processes can be effective even during wintertime. A box model largely underestimated HO2 and RO2 concentrations during pollution episodes correlated with high NOx, indicating a deficit current chemistry in the high NOx regime.
Hongyu Guo, Rene Otjes, Patrick Schlag, Astrid Kiendler-Scharr, Athanasios Nenes, and Rodney J. Weber
Atmos. Chem. Phys., 18, 12241–12256, https://doi.org/10.5194/acp-18-12241-2018, https://doi.org/10.5194/acp-18-12241-2018, 2018
Short summary
Short summary
Reduction in ammonia has been proposed as a way to lower fine particle mass and improve air quality, but gas-phase ammonia is linked to agricultural productivity. We assess the feasibility of ammonia control at a variety of locations through an aerosol thermodynamic analysis. We show that aerosol response to ammonia control is highly nonlinear and only becomes effective when ambient particle pH drops below approximately 3. Particle pH is a relevant aerosol air quality parameter.
Anna Novelli, Martin Kaminski, Michael Rolletter, Ismail-Hakki Acir, Birger Bohn, Hans-Peter Dorn, Xin Li, Anna Lutz, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Frank Holland, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 18, 11409–11422, https://doi.org/10.5194/acp-18-11409-2018, https://doi.org/10.5194/acp-18-11409-2018, 2018
Short summary
Short summary
The impact of photooxidation of 2-methyl-3-butene-2-ol (MBO) on the concentration of radical species was studied in the atmospheric simulation chamber SAPHIR. MBO is a volatile organic compound mainly emitted by ponderosa and lodgepole pines which are very abundant in forests in the central-west USA. A very good agreement between measured and modelled radical concentrations and products from the oxidation of MBO was observed in an environment with NO of ~ 200 pptv.
Eleni Karnezi, Benjamin N. Murphy, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Florian Rubach, Astrid Kiendler-Scharr, Thomas F. Mentel, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 10759–10772, https://doi.org/10.5194/acp-18-10759-2018, https://doi.org/10.5194/acp-18-10759-2018, 2018
Short summary
Short summary
Different parameterizations of the organic aerosol (OA) formation and evolution are evaluated using ground and airborne measurements collected in the 2012 PEGASOS field campaign in the Po Valley (Italy). Total OA concentration and O : C ratios were reproduced within experimental error by a number of schemes. Anthropogenic secondary OA (SOA) contributed 15–25 % of the total OA, 20–35 % of SOA from intermediate volatility compounds oxidation, and 15–45 % of biogenic SOA depending on the scheme.
Hendrik Fuchs, Sascha Albrecht, Ismail–Hakki Acir, Birger Bohn, Martin Breitenlechner, Hans-Peter Dorn, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, Martin Kaminski, Frank N. Keutsch, Anna Novelli, David Reimer, Franz Rohrer, Ralf Tillmann, Luc Vereecken, Robert Wegener, Alexander Zaytsev, Astrid Kiendler-Scharr, and Andreas Wahner
Atmos. Chem. Phys., 18, 8001–8016, https://doi.org/10.5194/acp-18-8001-2018, https://doi.org/10.5194/acp-18-8001-2018, 2018
Short summary
Short summary
The photooxidation of methyl vinyl ketone MVK, one of the most important products of isoprene that is emitted by plants, was investigated in the atmospheric simulation chamber SAPHIR for conditions found in forested areas. The comparison of measured trace gas time series with model calculations shows a gap in the understanding of radical chemistry in the MVK oxidation scheme. The possibility of unimolecular isomerization reactions were investigated by means of quantum-chemical calculations.
Mingjin Wang, Tong Zhu, Defeng Zhao, Florian Rubach, Andreas Wahner, Astrid Kiendler-Scharr, and Thomas F. Mentel
Atmos. Chem. Phys., 18, 7345–7359, https://doi.org/10.5194/acp-18-7345-2018, https://doi.org/10.5194/acp-18-7345-2018, 2018
Short summary
Short summary
Organic coatings modify hygroscopicity and CCN activation of mineral dust perticles. Small amounts of oleic acid coating (volume fraction (vf) ≤ 4.1 %) decreased the CCN activity of CaCO3 particles, while more oleic acid coating (vf ≥ 14.8 %) increased the CCN activity of CaCO3 particles, while malonic acid coating (vf = 0.4−42 %) even in smallest amounts increased the CCN activity of CaCO3 particles. Our laboratory results should also hold under conditions of the atmosphere.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Defeng Zhao, Sebastian H. Schmitt, Mingjin Wang, Ismail-Hakki Acir, Ralf Tillmann, Zhaofeng Tan, Anna Novelli, Hendrik Fuchs, Iida Pullinen, Robert Wegener, Franz Rohrer, Jürgen Wildt, Astrid Kiendler-Scharr, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 18, 1611–1628, https://doi.org/10.5194/acp-18-1611-2018, https://doi.org/10.5194/acp-18-1611-2018, 2018
Short summary
Short summary
Air pollutants emitted by human activities such as NOx and SO2 can influence the abundance of secondary organic aerosol (SOA) from biogenic volatile organic compounds (VOCs). We found that NOx suppressed new particle formation and SOA mass formation. When both SO2 and NOx are present, the suppressing effect of NOx on SOA mass formation was counteracted by SO2. High NOx changed SOA chemical composition, forming more organic nitrate, because NOx changed radical chemistry during VOC oxidation.
Hendrik Fuchs, Anna Novelli, Michael Rolletter, Andreas Hofzumahaus, Eva Y. Pfannerstill, Stephan Kessel, Achim Edtbauer, Jonathan Williams, Vincent Michoud, Sebastien Dusanter, Nadine Locoge, Nora Zannoni, Valerie Gros, Francois Truong, Roland Sarda-Esteve, Danny R. Cryer, Charlotte A. Brumby, Lisa K. Whalley, Daniel Stone, Paul W. Seakins, Dwayne E. Heard, Coralie Schoemaecker, Marion Blocquet, Sebastien Coudert, Sebastien Batut, Christa Fittschen, Alexander B. Thames, William H. Brune, Cheryl Ernest, Hartwig Harder, Jennifer B. A. Muller, Thomas Elste, Dagmar Kubistin, Stefanie Andres, Birger Bohn, Thorsten Hohaus, Frank Holland, Xin Li, Franz Rohrer, Astrid Kiendler-Scharr, Ralf Tillmann, Robert Wegener, Zhujun Yu, Qi Zou, and Andreas Wahner
Atmos. Meas. Tech., 10, 4023–4053, https://doi.org/10.5194/amt-10-4023-2017, https://doi.org/10.5194/amt-10-4023-2017, 2017
Short summary
Short summary
Hydroxyl radical reactivity (k(OH)) is closely related to processes that lead to the formation of oxidised, secondary pollutants such as ozone and aerosol. In order to compare the performances of instruments measuring k(OH), experiments were conducted in the simulation chamber SAPHIR. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. Overall, the results show that instruments are capable of measuring k(OH).
Bianca C. Baier, William H. Brune, David O. Miller, Donald Blake, Russell Long, Armin Wisthaler, Christopher Cantrell, Alan Fried, Brian Heikes, Steven Brown, Erin McDuffie, Frank Flocke, Eric Apel, Lisa Kaser, and Andrew Weinheimer
Atmos. Chem. Phys., 17, 11273–11292, https://doi.org/10.5194/acp-17-11273-2017, https://doi.org/10.5194/acp-17-11273-2017, 2017
Short summary
Short summary
Ozone production rates were measured using the Measurement of Ozone Production Sensor (MOPS). Measurements are compared to modeled ozone production rates using two different chemical mechanisms. At high nitric oxide levels, observed rates are higher than those modeled, prompting the need to revisit current model photochemistry. These direct measurements can add to our understanding of the ozone chemistry within air quality models and can be used to guide government regulatory strategies.
Min Huang, Gregory R. Carmichael, James H. Crawford, Armin Wisthaler, Xiwu Zhan, Christopher R. Hain, Pius Lee, and Alex B. Guenther
Geosci. Model Dev., 10, 3085–3104, https://doi.org/10.5194/gmd-10-3085-2017, https://doi.org/10.5194/gmd-10-3085-2017, 2017
Short summary
Short summary
Various sensitivity simulations during two airborne campaigns were performed to assess the impact of different initialization methods and model resolutions on NUWRF-modeled weather states, heat fluxes, and the follow-on MEGAN isoprene emission calculations. Proper land initialization is shown to be important to the coupled weather modeling and the follow-on emission modeling, which is also critical to accurately representing other processes in air quality modeling and data assimilation.
Cheng Wu, Iida Pullinen, Stefanie Andres, Astrid Kiendler-Scharr, Einhard Kleist, Andreas Wahner, Jürgen Wildt, and Thomas F. Mentel
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-260, https://doi.org/10.5194/bg-2017-260, 2017
Manuscript not accepted for further review
Short summary
Short summary
Biogenic volatile organic compounds are important for atmospheric chemistry. We showed by 13CO2 labelling experiments that biosynthesis is not restricted to the presence of light. In particular sesquiterpenes exhibit substantial de novo emissions in darkness with the carbon being delivered from alternative carbon sources. Our findings are of importance for future emissions under conditions of climate change as the response of de novo emissions to stresses differs from that of pool emissions.
Martin Kaminski, Hendrik Fuchs, Ismail-Hakki Acir, Birger Bohn, Theo Brauers, Hans-Peter Dorn, Rolf Häseler, Andreas Hofzumahaus, Xin Li, Anna Lutz, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Luc Vereecken, Robert Wegener, and Andreas Wahner
Atmos. Chem. Phys., 17, 6631–6650, https://doi.org/10.5194/acp-17-6631-2017, https://doi.org/10.5194/acp-17-6631-2017, 2017
Short summary
Short summary
Monoterpenes emitted by trees are among the volatile organic compounds with the highest global emission rates. The atmospheric degradation of the monoterpene β-pinene was investigated in the atmosphere simulation chamber SAPHIR in Jülich under low NOx and atmospheric β-pinene concentrations. While the budget of OH was balanced, both OH and HO2 concentrations were underestimated in the simulation results. These observations suggest the existence of unaccounted sources of HO2.
Carl Meusinger, Ulrike Dusek, Stephanie M. King, Rupert Holzinger, Thomas Rosenørn, Peter Sperlich, Maxime Julien, Gerald S. Remaud, Merete Bilde, Thomas Röckmann, and Matthew S. Johnson
Atmos. Chem. Phys., 17, 6373–6391, https://doi.org/10.5194/acp-17-6373-2017, https://doi.org/10.5194/acp-17-6373-2017, 2017
Short summary
Short summary
Isotope studies can constrain budgets of secondary organic aerosol (SOA) that is pivotal to air pollution and climate. SOA from α-pinene ozonolysis was found to be enriched in 13C relative to the precursor. The observed difference in 13C between the gas and particle phases may arise from isotope-dependent changes in branching ratios. Alternatively, some gas-phase products involve carbon atoms from highly enriched and depleted sites, giving a non-kinetic origin to the observed fractionations.
Ulrike Dusek, Regina Hitzenberger, Anne Kasper-Giebl, Magdalena Kistler, Harro A. J. Meijer, Sönke Szidat, Lukas Wacker, Rupert Holzinger, and Thomas Röckmann
Atmos. Chem. Phys., 17, 3233–3251, https://doi.org/10.5194/acp-17-3233-2017, https://doi.org/10.5194/acp-17-3233-2017, 2017
Short summary
Short summary
Measurements of the radioactive carbon isotope 14C allow to identify the sources of aerosol carbon. We report an extensive 14C source apportionment record in the Netherlands with samples covering a whole year. We discovered that long-range transport has a large influence on aerosol carbon levels. Fossil fuel carbon is least influenced by long-range transport and more regional in origin. Biomass burning seems to be a minor source of aerosol carbon in the Netherlands.
Kalliopi Florou, Dimitrios K. Papanastasiou, Michael Pikridas, Christos Kaltsonoudis, Evangelos Louvaris, Georgios I. Gkatzelis, David Patoulias, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 17, 3145–3163, https://doi.org/10.5194/acp-17-3145-2017, https://doi.org/10.5194/acp-17-3145-2017, 2017
Short summary
Short summary
The composition of fine particulate matter (PM) in two major Greek cities (Athens and Patras) was measured during two wintertime campaigns in 2012 and 2013. Residential wood burning has dramatically increased due to the Greek financial crisis, contributing around 50 % of the fine PM on average and more than 80 % during nighttime. Cooking is also an important source during both midday and evening, while transportation dominates only during the morning rush hour.
Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Herrmann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert McLaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, and Rahul A. Zaveri
Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, https://doi.org/10.5194/acp-17-2103-2017, 2017
Short summary
Short summary
Oxidation of biogenic volatile organic compounds by NO3 is an important interaction between anthropogenic
and natural emissions. This review results from a June 2015 workshop and includes the recent literature
on kinetics, mechanisms, organic aerosol yields, and heterogeneous chemistry; advances in analytical
instrumentation; the current state NO3-BVOC chemistry in atmospheric models; and critical needs for
future research in modeling, field observations, and laboratory studies.
Beatriz Sayuri Oyama, Maria de Fátima Andrade, Pierre Herckes, Ulrike Dusek, Thomas Röckmann, and Rupert Holzinger
Atmos. Chem. Phys., 16, 14397–14408, https://doi.org/10.5194/acp-16-14397-2016, https://doi.org/10.5194/acp-16-14397-2016, 2016
Short summary
Short summary
Vehicular emissions have a strong impact on air pollution in big cities; hence, the study was performed in São Paulo city, where light- (LDVs) and heavy-duty vehicles (HDVs) run on different fuels. We find that organic aerosol emission from LDVs and HDVs is a complex process involving oxidation of fuel constituents, NOx chemistry, and condensation of unburned fuel hydrocarbons on new or existing particles. The obtained emission patterns can be used to study processing of young aerosol in Brazil.
Richard J. Pope, Nigel A. D. Richards, Martyn P. Chipperfield, David P. Moore, Sarah A. Monks, Stephen R. Arnold, Norbert Glatthor, Michael Kiefer, Tom J. Breider, Jeremy J. Harrison, John J. Remedios, Carsten Warneke, James M. Roberts, Glenn S. Diskin, Lewis G. Huey, Armin Wisthaler, Eric C. Apel, Peter F. Bernath, and Wuhu Feng
Atmos. Chem. Phys., 16, 13541–13559, https://doi.org/10.5194/acp-16-13541-2016, https://doi.org/10.5194/acp-16-13541-2016, 2016
Weiwei Hu, Brett B. Palm, Douglas A. Day, Pedro Campuzano-Jost, Jordan E. Krechmer, Zhe Peng, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Karsten Baumann, Lina Hacker, Astrid Kiendler-Scharr, Abigail R. Koss, Joost A. de Gouw, Allen H. Goldstein, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Francesco Canonaco, André S. H. Prévôt, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 11563–11580, https://doi.org/10.5194/acp-16-11563-2016, https://doi.org/10.5194/acp-16-11563-2016, 2016
Short summary
Short summary
IEPOX-SOA is biogenically derived secondary organic aerosol under anthropogenic influence, which has been shown to comprise a substantial fraction of OA globally. We investigated the lifetime of ambient IEPOX-SOA in the SE US and Amazonia, with an oxidation flow reactor and thermodenuder coupled with MS-based instrumentation. The low volatility and long lifetime of IEPOX-SOA against OH radicals' oxidation (> 2 weeks) was observed, which can help to constrain OA impact on air quality and climate.
Mehrnaz Sarrafzadeh, Jürgen Wildt, Iida Pullinen, Monika Springer, Einhard Kleist, Ralf Tillmann, Sebastian H. Schmitt, Cheng Wu, Thomas F. Mentel, Defeng Zhao, Donald R. Hastie, and Astrid Kiendler-Scharr
Atmos. Chem. Phys., 16, 11237–11248, https://doi.org/10.5194/acp-16-11237-2016, https://doi.org/10.5194/acp-16-11237-2016, 2016
Short summary
Short summary
We investigated NOx impacts on the formation of secondary organic aerosol (SOA) mass from b-pinene and we could reveal two different mechanisms of impacts. One of them was the impact of NOx on OH that could explain increasing SOA yield with increasing NOx at low NOx conditions. The other was the suppression of new particle formation limiting the condensational sink for the SOA precursors. This effect could explain a substantial fraction of the decrease of SOA yield observed at high NOx.
Patrick Schlag, Astrid Kiendler-Scharr, Marcus Johannes Blom, Francesco Canonaco, Jeroen Sebastiaan Henzing, Marcel Moerman, André Stephan Henry Prévôt, and Rupert Holzinger
Atmos. Chem. Phys., 16, 8831–8847, https://doi.org/10.5194/acp-16-8831-2016, https://doi.org/10.5194/acp-16-8831-2016, 2016
Short summary
Short summary
This work provides chemical composition data of atmospheric aerosols acquired during 1 year in the rural site of Cabauw, the Netherlands. In some periods, we found unexpected high particle mass concentrations exceeding the WHO limits. Using these composition data, we found that reducing ammonia emissions in this region would largely reduce the main aerosol component ammonium nitrate, whereas the local mitigation of the organics turned out to be difficult due to the lack of a designated source.
Bernadette Rosati, Martin Gysel, Florian Rubach, Thomas F. Mentel, Brigitta Goger, Laurent Poulain, Patrick Schlag, Pasi Miettinen, Aki Pajunoja, Annele Virtanen, Henk Klein Baltink, J. S. Bas Henzing, Johannes Größ, Gian Paolo Gobbi, Alfred Wiedensohler, Astrid Kiendler-Scharr, Stefano Decesari, Maria Cristina Facchini, Ernest Weingartner, and Urs Baltensperger
Atmos. Chem. Phys., 16, 7295–7315, https://doi.org/10.5194/acp-16-7295-2016, https://doi.org/10.5194/acp-16-7295-2016, 2016
Short summary
Short summary
This study presents PEGASOS project data from field campaigns in the Po Valley, Italy and the Netherlands. Vertical profiles of aerosol hygroscopicity and chemical composition were investigated with airborne measurements on board a Zeppelin NT airship. A special focus was on the evolution of different mixing layers within the PBL as a function of daytime. A closure study showed that variations in aerosol hygroscopicity can well be explained by the variations in chemical composition.
Simon Schallhart, Pekka Rantala, Eiko Nemitz, Ditte Taipale, Ralf Tillmann, Thomas F. Mentel, Benjamin Loubet, Giacomo Gerosa, Angelo Finco, Janne Rinne, and Taina M. Ruuskanen
Atmos. Chem. Phys., 16, 7171–7194, https://doi.org/10.5194/acp-16-7171-2016, https://doi.org/10.5194/acp-16-7171-2016, 2016
Short summary
Short summary
We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. Detectable fluxes were observed for 29 compounds, dominated by isoprene, which comprised over 60 % of the upward flux. Methanol seemed to be deposited to dew, as the deposition happened in the early morning. We estimated that up to 30 % of the upward flux of methyl vinyl ketone and methacrolein originated from atmospheric oxidation of isoprene.
W. Joe F. Acton, Simon Schallhart, Ben Langford, Amy Valach, Pekka Rantala, Silvano Fares, Giulia Carriero, Ralf Tillmann, Sam J. Tomlinson, Ulrike Dragosits, Damiano Gianelle, C. Nicholas Hewitt, and Eiko Nemitz
Atmos. Chem. Phys., 16, 7149–7170, https://doi.org/10.5194/acp-16-7149-2016, https://doi.org/10.5194/acp-16-7149-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) represent a large source of reactive carbon in the atmosphere and hence have a significant impact on air quality. It is therefore important that we can accurately quantify their emission. In this paper we use three methods to determine the fluxes of reactive VOCs from a woodland canopy. We show that two different canopy-scale measurement methods give good agreement, whereas estimates based on leaf-level-based emission underestimate isoprene fluxes.
Jenny A. Fisher, Daniel J. Jacob, Katherine R. Travis, Patrick S. Kim, Eloise A. Marais, Christopher Chan Miller, Karen Yu, Lei Zhu, Robert M. Yantosca, Melissa P. Sulprizio, Jingqiu Mao, Paul O. Wennberg, John D. Crounse, Alex P. Teng, Tran B. Nguyen, Jason M. St. Clair, Ronald C. Cohen, Paul Romer, Benjamin A. Nault, Paul J. Wooldridge, Jose L. Jimenez, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Paul B. Shepson, Fulizi Xiong, Donald R. Blake, Allen H. Goldstein, Pawel K. Misztal, Thomas F. Hanisco, Glenn M. Wolfe, Thomas B. Ryerson, Armin Wisthaler, and Tomas Mikoviny
Atmos. Chem. Phys., 16, 5969–5991, https://doi.org/10.5194/acp-16-5969-2016, https://doi.org/10.5194/acp-16-5969-2016, 2016
Short summary
Short summary
We use new airborne and ground-based observations from two summer 2013 campaigns in the southeastern US, interpreted with a chemical transport model, to understand the impact of isoprene and monoterpene chemistry on the atmospheric NOx budget via production of organic nitrates (RONO2). We find that a diversity of species contribute to observed RONO2. Our work implies that the NOx sink to RONO2 production is only sensitive to NOx emissions in regions where they are already low.
Bernadette Rosati, Erik Herrmann, Silvia Bucci, Federico Fierli, Francesco Cairo, Martin Gysel, Ralf Tillmann, Johannes Größ, Gian Paolo Gobbi, Luca Di Liberto, Guido Di Donfrancesco, Alfred Wiedensohler, Ernest Weingartner, Annele Virtanen, Thomas F. Mentel, and Urs Baltensperger
Atmos. Chem. Phys., 16, 4539–4554, https://doi.org/10.5194/acp-16-4539-2016, https://doi.org/10.5194/acp-16-4539-2016, 2016
Short summary
Short summary
We present vertical profiles of aerosol optical properties, which were explored within the planetary boundary layer in a case study in 2012 in the Po Valley region. A comparison of in situ measurements recorded aboard a Zeppelin NT and ground-based remote-sensing data was performed yielding good agreement. Additionally, the role of ambient relative humidity for the aerosol particles' optical properties was investigated.
Karen Yu, Daniel J. Jacob, Jenny A. Fisher, Patrick S. Kim, Eloise A. Marais, Christopher C. Miller, Katherine R. Travis, Lei Zhu, Robert M. Yantosca, Melissa P. Sulprizio, Ron C. Cohen, Jack E. Dibb, Alan Fried, Tomas Mikoviny, Thomas B. Ryerson, Paul O. Wennberg, and Armin Wisthaler
Atmos. Chem. Phys., 16, 4369–4378, https://doi.org/10.5194/acp-16-4369-2016, https://doi.org/10.5194/acp-16-4369-2016, 2016
Short summary
Short summary
Increasing the spatial resolution of a chemical transport model may improve simulations but can be computationally expensive. Using observations from the SEAC4RS aircraft campaign, we find that at higher spatial resolutions, models are better able to simulate the chemical pathways of ozone precursors, but the overall effect on regional mean concentrations is small. This implies that for continental boundary layer applications, coarse resolution models are adequate.
Hendrik Fuchs, Zhaofeng Tan, Andreas Hofzumahaus, Sebastian Broch, Hans-Peter Dorn, Frank Holland, Christopher Künstler, Sebastian Gomm, Franz Rohrer, Stephanie Schrade, Ralf Tillmann, and Andreas Wahner
Atmos. Meas. Tech., 9, 1431–1447, https://doi.org/10.5194/amt-9-1431-2016, https://doi.org/10.5194/amt-9-1431-2016, 2016
Short summary
Short summary
The hydroxyl radical is the key reactant that controls the chemical transformation of pollutants in the atmosphere. Observations of nighttime radicals concentrations were larger than predicted by models in field campaigns in forested and urban environments. Here, we investigated, if measurements could have been affected by artifacts. No significant interferences were found for atmospheric concentrations of reactants in ozonolysis experiments, but small artificats from nitrate radicals.
T. Hohaus, U. Kuhn, S. Andres, M. Kaminski, F. Rohrer, R. Tillmann, A. Wahner, R. Wegener, Z. Yu, and A. Kiendler-Scharr
Atmos. Meas. Tech., 9, 1247–1259, https://doi.org/10.5194/amt-9-1247-2016, https://doi.org/10.5194/amt-9-1247-2016, 2016
Short summary
Short summary
As an extension of the atmosphere simulation chamber SAPHIR, an environmentally-controlled dynamic (flow-through) plant chamber under SAPHIR (SAPHIR-PLUS) was developed. This facility allows for feeding a natural blend of biogenic trace gases into SAPHIR. PLUS is utilized to characterize the atmospheric chemistry of natural trace gas mixtures at close to ambient concentration levels. In this study, the results of the initial characterization experiments are presented in detail.
Markus Müller, Bruce E. Anderson, Andreas J. Beyersdorf, James H. Crawford, Glenn S. Diskin, Philipp Eichler, Alan Fried, Frank N. Keutsch, Tomas Mikoviny, Kenneth L. Thornhill, James G. Walega, Andrew J. Weinheimer, Melissa Yang, Robert J. Yokelson, and Armin Wisthaler
Atmos. Chem. Phys., 16, 3813–3824, https://doi.org/10.5194/acp-16-3813-2016, https://doi.org/10.5194/acp-16-3813-2016, 2016
Short summary
Short summary
Atmospheric emissions from small forest fires and their impact on regional air quality are still poorly characterized. We used an instrumented NASA P-3B aircraft to study emissions from a small forest understory fire in Georgia (USA) and to investigate chemical transformations in the fire plume in the 1 h downwind region. A state-of-the-art chemical model was able to accurately simulate key chemical processes in the aging plume.
Andrea Ghirardo, Junfei Xie, Xunhua Zheng, Yuesi Wang, Rüdiger Grote, Katja Block, Jürgen Wildt, Thomas Mentel, Astrid Kiendler-Scharr, Mattias Hallquist, Klaus Butterbach-Bahl, and Jörg-Peter Schnitzler
Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, https://doi.org/10.5194/acp-16-2901-2016, 2016
Short summary
Short summary
Trees can impact urban air quality. Large emissions of plant volatiles are emitted in Beijing as a stress response to the urban polluted environment, but their impacts on secondary particulate matter remain relatively low compared to those originated from anthropogenic activities. The present study highlights the importance of including stress-induced compounds when studying plant volatile emissions.
M. Dal Maso, L. Liao, J. Wildt, A. Kiendler-Scharr, E. Kleist, R. Tillmann, M. Sipilä, J. Hakala, K. Lehtipalo, M. Ehn, V.-M. Kerminen, M. Kulmala, D. Worsnop, and T. Mentel
Atmos. Chem. Phys., 16, 1955–1970, https://doi.org/10.5194/acp-16-1955-2016, https://doi.org/10.5194/acp-16-1955-2016, 2016
Short summary
Short summary
In this paper, we present the first direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We found that the formation rate was proportional to the product of sulphuric acid and biogenic VOC emission strength, and that the formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid.
A. W. H. Chan, N. M. Kreisberg, T. Hohaus, P. Campuzano-Jost, Y. Zhao, D. A. Day, L. Kaser, T. Karl, A. Hansel, A. P. Teng, C. R. Ruehl, D. T. Sueper, J. T. Jayne, D. R. Worsnop, J. L. Jimenez, S. V. Hering, and A. H. Goldstein
Atmos. Chem. Phys., 16, 1187–1205, https://doi.org/10.5194/acp-16-1187-2016, https://doi.org/10.5194/acp-16-1187-2016, 2016
Short summary
Short summary
Using a novel instrument, we have made measurements of organic compounds that can exist as a gas or particle in the rural atmosphere. Through hourly measurements, we have identified the sources and atmospheric processes of these compounds, which are important for modeling the climate and health impact of these emissions.
D. F. Zhao, A. Buchholz, B. Kortner, P. Schlag, F. Rubach, H. Fuchs, A. Kiendler-Scharr, R. Tillmann, A. Wahner, Å. K. Watne, M. Hallquist, J. M. Flores, Y. Rudich, K. Kristensen, A. M. K. Hansen, M. Glasius, I. Kourtchev, M. Kalberer, and Th. F. Mentel
Atmos. Chem. Phys., 16, 1105–1121, https://doi.org/10.5194/acp-16-1105-2016, https://doi.org/10.5194/acp-16-1105-2016, 2016
Short summary
Short summary
This study investigated the cloud droplet activation behavior and hygroscopic growth of mixed anthropogenic and biogenic SOA (ABSOA) compared to pure biogenic SOA (BSOA) and pure anthropogenic SOA (ASOA). Cloud droplet activation behaviors of different types of SOA were similar. In contrast, the hygroscopicity of ASOA was higher than BSOA and ABSOA. ASOA components enhanced the hygroscopicity of the ABSOA. Yet this enhancement cannot be described by a linear mixing of pure SOA systems.
G. I. Gkatzelis, D. K. Papanastasiou, K. Florou, C. Kaltsonoudis, E. Louvaris, and S. N. Pandis
Atmos. Meas. Tech., 9, 103–114, https://doi.org/10.5194/amt-9-103-2016, https://doi.org/10.5194/amt-9-103-2016, 2016
Short summary
Short summary
A method for the measurement of the nonvolatile atmospheric particle size distribution is developed and tested. The tests include laboratory experiments with biogenic and anthropogenic secondary organic aerosol as well as nucleation experiments with ambient air. The method is then further tested during an ambient campaign.
J. Timkovsky, A. W. H. Chan, T. Dorst, A. H. Goldstein, B. Oyama, and R. Holzinger
Atmos. Meas. Tech., 8, 5177–5187, https://doi.org/10.5194/amt-8-5177-2015, https://doi.org/10.5194/amt-8-5177-2015, 2015
P. Roldin, L. Liao, D. Mogensen, M. Dal Maso, A. Rusanen, V.-M. Kerminen, T. F. Mentel, J. Wildt, E. Kleist, A. Kiendler-Scharr, R. Tillmann, M. Ehn, M. Kulmala, and M. Boy
Atmos. Chem. Phys., 15, 10777–10798, https://doi.org/10.5194/acp-15-10777-2015, https://doi.org/10.5194/acp-15-10777-2015, 2015
Short summary
Short summary
We used the ADCHAM model to study new particle formation events in the JPAC chamber. The model results show that the new particles may be formed by a kinetic type of nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of volatile organic compounds (VOCs). The observed particle growth may either be controlled by the condensation of semi- and low-volatililty organic compounds or by the formation of low-volatility compounds (oligomers) at the particle surface.
R. Holzinger
Atmos. Meas. Tech., 8, 3903–3922, https://doi.org/10.5194/amt-8-3903-2015, https://doi.org/10.5194/amt-8-3903-2015, 2015
J. Liu, E. Scheuer, J. Dibb, G. S. Diskin, L. D. Ziemba, K. L. Thornhill, B. E. Anderson, A. Wisthaler, T. Mikoviny, J. J. Devi, M. Bergin, A. E. Perring, M. Z. Markovic, J. P. Schwarz, P. Campuzano-Jost, D. A. Day, J. L. Jimenez, and R. J. Weber
Atmos. Chem. Phys., 15, 7841–7858, https://doi.org/10.5194/acp-15-7841-2015, https://doi.org/10.5194/acp-15-7841-2015, 2015
Short summary
Short summary
Brown carbon (BrC) is found throughout the US continental troposphere during a summer of extensive biomass burning and its prevalence relative to black carbon (BC) increases with altitude. A radiative transfer model based on direct measurements of aerosol scattering and absorption by BC and BrC shows BrC reduces top-of-atmosphere forcing by 20%. A method to estimate BrC radiative forcing efficiencies from surface-based measurements is provided.
C. C. Hoerger, A. Claude, C. Plass-Duelmer, S. Reimann, E. Eckart, R. Steinbrecher, J. Aalto, J. Arduini, N. Bonnaire, J. N. Cape, A. Colomb, R. Connolly, J. Diskova, P. Dumitrean, C. Ehlers, V. Gros, H. Hakola, M. Hill, J. R. Hopkins, J. Jäger, R. Junek, M. K. Kajos, D. Klemp, M. Leuchner, A. C. Lewis, N. Locoge, M. Maione, D. Martin, K. Michl, E. Nemitz, S. O'Doherty, P. Pérez Ballesta, T. M. Ruuskanen, S. Sauvage, N. Schmidbauer, T. G. Spain, E. Straube, M. Vana, M. K. Vollmer, R. Wegener, and A. Wenger
Atmos. Meas. Tech., 8, 2715–2736, https://doi.org/10.5194/amt-8-2715-2015, https://doi.org/10.5194/amt-8-2715-2015, 2015
Short summary
Short summary
The performance of 20 European laboratories involved in long-term non-methane hydrocarbon (NMHC) measurements was assessed with respect to ACTRIS and GAW data quality objectives. The participants were asked to measure both a 30-component NMHC mixture in nitrogen and whole air. The NMHCs were analysed either by GC-FID or GC-MS. Most systems performed well for the NMHC in nitrogen, whereas in air more scatter was observed. Reasons for this are explained in the paper.
N. L. Wagner, C. A. Brock, W. M. Angevine, A. Beyersdorf, P. Campuzano-Jost, D. Day, J. A. de Gouw, G. S. Diskin, T. D. Gordon, M. G. Graus, J. S. Holloway, G. Huey, J. L. Jimenez, D. A. Lack, J. Liao, X. Liu, M. Z. Markovic, A. M. Middlebrook, T. Mikoviny, J. Peischl, A. E. Perring, M. S. Richardson, T. B. Ryerson, J. P. Schwarz, C. Warneke, A. Welti, A. Wisthaler, L. D. Ziemba, and D. M. Murphy
Atmos. Chem. Phys., 15, 7085–7102, https://doi.org/10.5194/acp-15-7085-2015, https://doi.org/10.5194/acp-15-7085-2015, 2015
Short summary
Short summary
This paper investigates the summertime vertical profile of aerosol over the southeastern US using in situ measurements collected from aircraft. We use a vertical mixing model and measurements of CO to predict the vertical profile of aerosol that we would expect from vertical mixing alone and compare with the observed aerosol profile. We found a modest enhancement of aerosol in the cloudy transition layer during shallow cumulus convection and attribute the enhancement to local aerosol formation.
L. K. Emmons, S. R. Arnold, S. A. Monks, V. Huijnen, S. Tilmes, K. S. Law, J. L. Thomas, J.-C. Raut, I. Bouarar, S. Turquety, Y. Long, B. Duncan, S. Steenrod, S. Strode, J. Flemming, J. Mao, J. Langner, A. M. Thompson, D. Tarasick, E. C. Apel, D. R. Blake, R. C. Cohen, J. Dibb, G. S. Diskin, A. Fried, S. R. Hall, L. G. Huey, A. J. Weinheimer, A. Wisthaler, T. Mikoviny, J. Nowak, J. Peischl, J. M. Roberts, T. Ryerson, C. Warneke, and D. Helmig
Atmos. Chem. Phys., 15, 6721–6744, https://doi.org/10.5194/acp-15-6721-2015, https://doi.org/10.5194/acp-15-6721-2015, 2015
Short summary
Short summary
Eleven 3-D tropospheric chemistry models have been compared and evaluated with observations in the Arctic during the International Polar Year (IPY 2008). Large differences are seen among the models, particularly related to the model chemistry of volatile organic compounds (VOCs) and reactive nitrogen (NOx, PAN, HNO3) partitioning. Consistency among the models in the underestimation of CO, ethane and propane indicates the emission inventory is too low for these compounds.
P. Eichler, M. Müller, B. D'Anna, and A. Wisthaler
Atmos. Meas. Tech., 8, 1353–1360, https://doi.org/10.5194/amt-8-1353-2015, https://doi.org/10.5194/amt-8-1353-2015, 2015
J. Kaiser, G. M. Wolfe, B. Bohn, S. Broch, H. Fuchs, L. N. Ganzeveld, S. Gomm, R. Häseler, A. Hofzumahaus, F. Holland, J. Jäger, X. Li, I. Lohse, K. Lu, A. S. H. Prévôt, F. Rohrer, R. Wegener, R. Wolf, T. F. Mentel, A. Kiendler-Scharr, A. Wahner, and F. N. Keutsch
Atmos. Chem. Phys., 15, 1289–1298, https://doi.org/10.5194/acp-15-1289-2015, https://doi.org/10.5194/acp-15-1289-2015, 2015
Short summary
Short summary
Using measurements acquired from a Zeppelin airship during the PEGASOS 2012 campaign, we show that VOC oxidation alone cannot account for the formaldehyde concentrations observed in the morning over rural Italy. Vertical profiles suggest a ground-level source of HCHO. Incorporating this additional HCHO source into a photochemical model increases calculated O3 production by as much as 12%.
D. F. Zhao, M. Kaminski, P. Schlag, H. Fuchs, I.-H. Acir, B. Bohn, R. Häseler, A. Kiendler-Scharr, F. Rohrer, R. Tillmann, M. J. Wang, R. Wegener, J. Wildt, A. Wahner, and Th. F. Mentel
Atmos. Chem. Phys., 15, 991–1012, https://doi.org/10.5194/acp-15-991-2015, https://doi.org/10.5194/acp-15-991-2015, 2015
C. Wu, I. Pullinen, S. Andres, G. Carriero, S. Fares, H. Goldbach, L. Hacker, T. Kasal, A. Kiendler-Scharr, E. Kleist, E. Paoletti, A. Wahner, J. Wildt, and Th. F. Mentel
Biogeosciences, 12, 177–191, https://doi.org/10.5194/bg-12-177-2015, https://doi.org/10.5194/bg-12-177-2015, 2015
Short summary
Short summary
Impacts of soil moisture on de novo monoterpene emissions from several tree species were studied. Mild drought slightly increased MT emissions, but with further progressing drought the emissions decreased to almost zero. Increases of MT emissions were explainable by increases of leaf temperature due to lowered transpirational cooling. The decrease of emissions observed when soil moisture fell below certain thresholds was parameterized, allowing considering impacts of soil moisture in models.
M. Müller, T. Mikoviny, S. Feil, S. Haidacher, G. Hanel, E. Hartungen, A. Jordan, L. Märk, P. Mutschlechner, R. Schottkowsky, P. Sulzer, J. H. Crawford, and A. Wisthaler
Atmos. Meas. Tech., 7, 3763–3772, https://doi.org/10.5194/amt-7-3763-2014, https://doi.org/10.5194/amt-7-3763-2014, 2014
Short summary
Short summary
This paper describes a new airborne instrument for measuring the trace gas composition of the atmosphere.
C. Fountoukis, A. G. Megaritis, K. Skyllakou, P. E. Charalampidis, C. Pilinis, H. A. C. Denier van der Gon, M. Crippa, F. Canonaco, C. Mohr, A. S. H. Prévôt, J. D. Allan, L. Poulain, T. Petäjä, P. Tiitta, S. Carbone, A. Kiendler-Scharr, E. Nemitz, C. O'Dowd, E. Swietlicki, and S. N. Pandis
Atmos. Chem. Phys., 14, 9061–9076, https://doi.org/10.5194/acp-14-9061-2014, https://doi.org/10.5194/acp-14-9061-2014, 2014
H. Fuchs, I.-H. Acir, B. Bohn, T. Brauers, H.-P. Dorn, R. Häseler, A. Hofzumahaus, F. Holland, M. Kaminski, X. Li, K. Lu, A. Lutz, S. Nehr, F. Rohrer, R. Tillmann, R. Wegener, and A. Wahner
Atmos. Chem. Phys., 14, 7895–7908, https://doi.org/10.5194/acp-14-7895-2014, https://doi.org/10.5194/acp-14-7895-2014, 2014
S. Nehr, B. Bohn, H.-P. Dorn, H. Fuchs, R. Häseler, A. Hofzumahaus, X. Li, F. Rohrer, R. Tillmann, and A. Wahner
Atmos. Chem. Phys., 14, 6941–6952, https://doi.org/10.5194/acp-14-6941-2014, https://doi.org/10.5194/acp-14-6941-2014, 2014
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
J. M. Flores, D. F. Zhao, L. Segev, P. Schlag, A. Kiendler-Scharr, H. Fuchs, Å. K. Watne, N. Bluvshtein, Th. F. Mentel, M. Hallquist, and Y. Rudich
Atmos. Chem. Phys., 14, 5793–5806, https://doi.org/10.5194/acp-14-5793-2014, https://doi.org/10.5194/acp-14-5793-2014, 2014
J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch
Atmos. Meas. Tech., 7, 1571–1580, https://doi.org/10.5194/amt-7-1571-2014, https://doi.org/10.5194/amt-7-1571-2014, 2014
J. Wildt, T. F. Mentel, A. Kiendler-Scharr, T. Hoffmann, S. Andres, M. Ehn, E. Kleist, P. Müsgen, F. Rohrer, Y. Rudich, M. Springer, R. Tillmann, and A. Wahner
Atmos. Chem. Phys., 14, 2789–2804, https://doi.org/10.5194/acp-14-2789-2014, https://doi.org/10.5194/acp-14-2789-2014, 2014
D. Helmig, V. Petrenko, P. Martinerie, E. Witrant, T. Röckmann, A. Zuiderweg, R. Holzinger, J. Hueber, C. Thompson, J. W. C. White, W. Sturges, A. Baker, T. Blunier, D. Etheridge, M. Rubino, and P. Tans
Atmos. Chem. Phys., 14, 1463–1483, https://doi.org/10.5194/acp-14-1463-2014, https://doi.org/10.5194/acp-14-1463-2014, 2014
M. Paglione, A. Kiendler-Scharr, A. A. Mensah, E. Finessi, L. Giulianelli, S. Sandrini, M. C. Facchini, S. Fuzzi, P. Schlag, A. Piazzalunga, E. Tagliavini, J. S. Henzing, and S. Decesari
Atmos. Chem. Phys., 14, 25–45, https://doi.org/10.5194/acp-14-25-2014, https://doi.org/10.5194/acp-14-25-2014, 2014
J. Timkovsky, P. Gankema, R. Pierik, and R. Holzinger
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-9005-2013, https://doi.org/10.5194/amtd-6-9005-2013, 2013
Preprint withdrawn
R. Holzinger, A. H. Goldstein, P. L. Hayes, J. L. Jimenez, and J. Timkovsky
Atmos. Chem. Phys., 13, 10125–10141, https://doi.org/10.5194/acp-13-10125-2013, https://doi.org/10.5194/acp-13-10125-2013, 2013
Th. F. Mentel, E. Kleist, S. Andres, M. Dal Maso, T. Hohaus, A. Kiendler-Scharr, Y. Rudich, M. Springer, R. Tillmann, R. Uerlings, A. Wahner, and J. Wildt
Atmos. Chem. Phys., 13, 8755–8770, https://doi.org/10.5194/acp-13-8755-2013, https://doi.org/10.5194/acp-13-8755-2013, 2013
Y. P. Li, H. Elbern, K. D. Lu, E. Friese, A. Kiendler-Scharr, Th. F. Mentel, X. S. Wang, A. Wahner, and Y. H. Zhang
Atmos. Chem. Phys., 13, 6289–6304, https://doi.org/10.5194/acp-13-6289-2013, https://doi.org/10.5194/acp-13-6289-2013, 2013
H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, J. N. Crowley, W. P. Dubé, H. Fuchs, R. Häseler, U. Heitmann, R. L. Jones, A. Kiendler-Scharr, I. Labazan, J. M. Langridge, J. Meinen, T. F. Mentel, U. Platt, D. Pöhler, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. J. L. Shillings, W. R. Simpson, J. Thieser, R. Tillmann, R. Varma, D. S. Venables, and A. Wahner
Atmos. Meas. Tech., 6, 1111–1140, https://doi.org/10.5194/amt-6-1111-2013, https://doi.org/10.5194/amt-6-1111-2013, 2013
E. C. Browne, K.-E. Min, P. J. Wooldridge, E. Apel, D. R. Blake, W. H. Brune, C. A. Cantrell, M. J. Cubison, G. S. Diskin, J. L. Jimenez, A. J. Weinheimer, P. O. Wennberg, A. Wisthaler, and R. C. Cohen
Atmos. Chem. Phys., 13, 4543–4562, https://doi.org/10.5194/acp-13-4543-2013, https://doi.org/10.5194/acp-13-4543-2013, 2013
E. U. Emanuelsson, M. Hallquist, K. Kristensen, M. Glasius, B. Bohn, H. Fuchs, B. Kammer, A. Kiendler-Scharr, S. Nehr, F. Rubach, R. Tillmann, A. Wahner, H.-C. Wu, and Th. F. Mentel
Atmos. Chem. Phys., 13, 2837–2855, https://doi.org/10.5194/acp-13-2837-2013, https://doi.org/10.5194/acp-13-2837-2013, 2013
J.-H. Park, A. H. Goldstein, J. Timkovsky, S. Fares, R. Weber, J. Karlik, and R. Holzinger
Atmos. Chem. Phys., 13, 1439–1456, https://doi.org/10.5194/acp-13-1439-2013, https://doi.org/10.5194/acp-13-1439-2013, 2013
E. Kleist, T. F. Mentel, S. Andres, A. Bohne, A. Folkers, A. Kiendler-Scharr, Y. Rudich, M. Springer, R. Tillmann, and J. Wildt
Biogeosciences, 9, 5111–5123, https://doi.org/10.5194/bg-9-5111-2012, https://doi.org/10.5194/bg-9-5111-2012, 2012
Related subject area
Subject: Aerosols | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Calibration of PurpleAir low-cost particulate matter sensors: model development for air quality under high relative humidity conditions
Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests
Classification accuracy and compatibility across devices of a new Rapid-E+ flow cytometer
A 2-year intercomparison of three methods for measuring black carbon concentration at a high-altitude research station in Europe
The Fifth International Workshop on Ice Nucleation Phase 3 (FIN-03): Field Intercomparison of Ice Nucleation Measurements
Comparison of the LEO and CPMA-SP2 techniques for black-carbon mixing-state measurements
Aerosol trace element solubility determined using ultrapure water batch leaching: an intercomparison study of four different leaching protocols
Field comparison of dual- and single-spot Aethalometers: equivalent black carbon, light absorption, Ångström exponent and secondary brown carbon estimations
Comparison of the imaginary parts of the atmospheric refractive index structure parameter and aerosol flux based on different measurement methods
Spectral analysis approach for assessing the accuracy of low-cost air quality sensor network data
Challenges and solutions in determining dilution ratios and emission factors from chase measurements of passenger vehicles
Seasonally optimized calibrations improve low-cost sensor performance: long-term field evaluation of PurpleAir sensors in urban and rural India
Performance evaluation of portable dual-spot micro-aethalometers for source identification of black carbon aerosols: application to wildfire smoke and traffic emissions in the Pacific Northwest
Further validation of the estimates of the downwelling solar radiation at ground level in cloud-free conditions provided by the McClear service: the case of Sub-Saharan Africa and the Maldives Archipelago
Identifying optimal co-location calibration periods for low-cost sensors
Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments
Balloon-borne aerosol–cloud interaction studies (BACIS): field campaigns to understand and quantify aerosol effects on clouds
Correcting for filter-based aerosol light absorption biases at the Atmospheric Radiation Measurement program's Southern Great Plains site using photoacoustic measurements and machine learning
Development and evaluation of correction models for a low-cost fine particulate matter monitor
Relative errors in derived multi-wavelength intensive aerosol optical properties using cavity attenuated phase shift single-scattering albedo monitors, a nephelometer, and tricolour absorption photometer measurements
Aircraft-engine particulate matter emissions from conventional and sustainable aviation fuel combustion: comparison of measurement techniques for mass, number, and size
Inter-comparison of online and offline methods for measuring ambient heavy and trace elements and water-soluble inorganic ions (NO3−, SO42−, NH4+, and Cl−) in PM2.5 over a heavily polluted megacity, Delhi
Measurement of black carbon emissions from multiple engine and source types using laser-induced incandescence: sensitivity to laser fluence
Compositional data analysis (CoDA) as a tool to evaluate a new low-cost settling-based PM10 sampling head in a desert dust source region
On the use of reference mass spectra for reducing uncertainty in source apportionment of solid-fuel burning in ambient organic aerosol
Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic
Effects of different correction algorithms on absorption coefficient – a comparison of three optical absorption photometers at a boreal forest site
Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes: a multi-instrumental approach
Evaluation of retrieval methods for planetary boundary layer height based on radiosonde data
Absorption instruments inter-comparison campaign at the Arctic Pallas station
Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor
Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index
Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 2: Spatiotemporal trends
The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission
Intercomparison of thermal–optical carbon measurements by Sunset and Desert Research Institute (DRI) analyzers using the IMPROVE_A protocol
Ångström exponent errors prevent accurate visibility measurement
Comparison of co-located refractory black carbon (rBC) and elemental carbon (EC) mass concentration measurements during field campaigns at several European sites
Real-time measurement of radionuclide concentrations and its impact on inverse modeling of 106Ru release in the fall of 2017
Effects of the prewhitening method, the time granularity, and the time segmentation on the Mann–Kendall trend detection and the associated Sen's slope
Best practices for precipitation sample storage for offline studies of ice nucleation in marine and coastal environments
Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples
Multi-year ACSM measurements at the central European research station Melpitz (Germany) – Part 1: Instrument robustness, quality assurance, and impact of upper size cutoff diameter
The new instrument using a TC–BC (total carbon–black carbon) method for the online measurement of carbonaceous aerosols
Aerosol retrievals from the EKO MS-711 spectral direct irradiance measurements and corrections of the circumsolar radiation
Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer
Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods
Intercomparison between the aerosol optical properties retrieved by different inversion methods from SKYNET sky radiometer observations over Qionghai and Yucheng in China
A comparison of lognormal and gamma size distributions for characterizing the stratospheric aerosol phase function from optical particle counter measurements
Comparison of aircraft measurements during GoAmazon2014/5 and ACRIDICON-CHUVA
Field comparison of dry deposition samplers for collection of atmospheric mineral dust: results from single-particle characterization
Martine E. Mathieu-Campbell, Chuqi Guo, Andrew P. Grieshop, and Jennifer Richmond-Bryant
Atmos. Meas. Tech., 17, 6735–6749, https://doi.org/10.5194/amt-17-6735-2024, https://doi.org/10.5194/amt-17-6735-2024, 2024
Short summary
Short summary
The main source of measurement error from particulate matter PurpleAir sensors is relative humidity. Recent bias correction methods have not focused on the humid southeastern United States (US). To provide high-quality spatial and temporal data to inform community exposure in this area, our study developed and evaluated PurpleAir correction models for use in the warm–humid climate zones of the US. We found improved performance metrics, with error metrics decreasing by 16–23 % for our models.
Marleen A. E. Vos, Wim de Vries, G. F. (Ciska) Veen, Marcel R. Hoosbeek, and Frank J. Sterck
Atmos. Meas. Tech., 17, 6579–6594, https://doi.org/10.5194/amt-17-6579-2024, https://doi.org/10.5194/amt-17-6579-2024, 2024
Short summary
Short summary
Atmospheric deposition poses risks with high anthropogenic inputs. Current deposition measurement methods are labor-intensive. Ion exchange resin (IER) offers a promising, cost-effective alternative. We assessed IER for bulk deposition and throughfall, testing adsorption capacity, recovery efficiency and field performance. IER showed good adsorption and recovery and was unaffected by environmental conditions, showing potential for robust and efficient measurements of atmospheric deposition.
Branko Sikoparija, Predrag Matavulj, Isidora Simovic, Predrag Radisic, Sanja Brdar, Vladan Minic, Danijela Tesendic, Evgeny Kadantsev, Julia Palamarchuk, and Mikhail Sofiev
Atmos. Meas. Tech., 17, 5051–5070, https://doi.org/10.5194/amt-17-5051-2024, https://doi.org/10.5194/amt-17-5051-2024, 2024
Short summary
Short summary
We assess the suitability of a Rapid-E+ particle counter for use in pollen monitoring networks. The criterion was the ability of different devices to provide the same signal for the same pollen type, which would allow for unified reference libraries and recognition algorithms for Rapid-E+. We tested three devices and found notable differences between their fluorescence measurements. Each one showed potential for pollen identification, but the large variability between them needs to be addressed.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Véronique Pont, Mathilde Arnaud, Thierry Bourrianne, Maria Dias Alves, and Eric Gardrat
Atmos. Meas. Tech., 17, 3897–3915, https://doi.org/10.5194/amt-17-3897-2024, https://doi.org/10.5194/amt-17-3897-2024, 2024
Short summary
Short summary
The three most widely used techniques for measuring black carbon (BC) have been deployed continuously for 2 years at a French high-altitude research station. Despite a similar temporal variation in the BC load, we found significant biases by up to a factor of 8 between the three instruments. This study raises questions about the relevance of using these instruments for specific background sites, as well as the processing of their data, which can vary according to the atmospheric conditions.
Paul DeMott, Jessica Mirrielees, Sarah Petters, Daniel Cziczo, Markus Petters, Heinz Bingemer, Thomas Hill, Karl Froyd, Sarvesh Garimella, Gannet Hallar, Ezra Levin, Ian McCubbin, Anne Perring, Christopher Rapp, Thea Schiebel, Jann Schrod, Kaitlyn Suski, Daniel Weber, Martin Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah Brooks
EGUsphere, https://doi.org/10.5194/egusphere-2024-1744, https://doi.org/10.5194/egusphere-2024-1744, 2024
Short summary
Short summary
The Fifth International Ice Nucleation Workshop 3rd Phase (FIN-03) compared the ambient atmospheric performance of ice nucleating particle (INP) measuring systems and explored general methods for discerning atmospheric INP compositions. Mirroring laboratory results, most measurements agreed within one order of magnitude. Measurements of total aerosol properties and investigations of INP compositions supported a dominant role of soil and plant organic aerosol elements as INPs during the study.
Arash Naseri, Joel C. Corbin, and Jason S. Olfert
Atmos. Meas. Tech., 17, 3719–3738, https://doi.org/10.5194/amt-17-3719-2024, https://doi.org/10.5194/amt-17-3719-2024, 2024
Short summary
Short summary
It is crucial to accurately measure the mixing states of light-absorbing carbon particles from emission sources like wildfires and biomass combustion to decrease climate forcing uncertainties. This study compares methods that measure light-absorbing carbon in the atmosphere. The CPMA-SP2 method offers more accurate results than traditional light-scattering methods, such as the leading-edge-only (LEO) method, thereby enhancing the accuracy of measuring the mixing states of light-absorbing carbon.
Rui Li, Prema Piyusha Panda, Yizhu Chen, Zhenming Zhu, Fu Wang, Yujiao Zhu, He Meng, Yan Ren, Ashwini Kumar, and Mingjin Tang
Atmos. Meas. Tech., 17, 3147–3156, https://doi.org/10.5194/amt-17-3147-2024, https://doi.org/10.5194/amt-17-3147-2024, 2024
Short summary
Short summary
We found that for ultrapure water batch leaching, the difference in specific experimental parameters, including agitation methods, filter pore size, and contact time, only led to a small and sometimes insignificant difference in determined aerosol trace element solubility. Furthermore, aerosol trace element solubility determined using four common ultrapure water leaching protocols showed good agreement.
Liangbin Wu, Cheng Wu, Tao Deng, Dui Wu, Mei Li, Yong Jie Li, and Zhen Zhou
Atmos. Meas. Tech., 17, 2917–2936, https://doi.org/10.5194/amt-17-2917-2024, https://doi.org/10.5194/amt-17-2917-2024, 2024
Short summary
Short summary
Field comparison of dual-spot (AE33) and single-spot (AE31) Aethalometers by full-year collocated measurements suggests that site-specific correction factors are needed to ensure the long-term data continuity for AE31-to-AE33 transition in black carbon monitoring networks; babs agrees well between AE33 and AE31, with slight variations by wavelength (slope: 0.87–1.04; R2: 0.95–0.97). A ~ 20 % difference in secondary brown carbon light absorption was found between AE33 and AE31.
Renmin Yuan, Hongsheng Zhang, Jiajia Hua, Hao Liu, Peizhe Wu, Xingyu Zhu, and Jianning Sun
Atmos. Meas. Tech., 17, 2089–2102, https://doi.org/10.5194/amt-17-2089-2024, https://doi.org/10.5194/amt-17-2089-2024, 2024
Short summary
Short summary
Previously, a new method for atmospheric aerosol flux was proposed, and a large-aperture scintillometer was developed for experimental measurements, but the method was consistently not validated. In this paper, eddy correlation experiments for aerosol vertical transport fluxes were conducted to verify the reliability of the previous large-aperture scintillometer method. The experimental results also show that urban green land is a sink area for aerosol particles.
Vijay Kumar, Dinushani Senarathna, Supraja Gurajala, William Olsen, Shantanu Sur, Sumona Mondal, and Suresh Dhaniyala
Atmos. Meas. Tech., 16, 5415–5427, https://doi.org/10.5194/amt-16-5415-2023, https://doi.org/10.5194/amt-16-5415-2023, 2023
Short summary
Short summary
Low-cost sensors are becoming increasingly important in air quality monitoring due to their affordability and ease of deployment. While low-cost sensors have the potential to democratize air quality monitoring, their use must be accompanied by careful interpretation and validation of the data. Analysis of their long-term data record clearly shows that the reported data from low-cost sensors may not be equally sensitive to all emission sources, which can complicate policy-making.
Ville Leinonen, Miska Olin, Sampsa Martikainen, Panu Karjalainen, and Santtu Mikkonen
Atmos. Meas. Tech., 16, 5075–5089, https://doi.org/10.5194/amt-16-5075-2023, https://doi.org/10.5194/amt-16-5075-2023, 2023
Short summary
Short summary
Emission factor calculation was studied to provide models that do not use traditional CO2-based calculation in exhaust plume analysis. Two types of models, one based on the physical dependency of dilution of the exhaust flow rate and speed and two based on the statistical, measured dependency of dilution of the exhaust flow rate, acceleration, speed, altitude change, and/or wind, were developed. These methods could possibly be extended to also calculate non-exhaust emissions in the future.
Mark Joseph Campmier, Jonathan Gingrich, Saumya Singh, Nisar Baig, Shahzad Gani, Adithi Upadhya, Pratyush Agrawal, Meenakshi Kushwaha, Harsh Raj Mishra, Ajay Pillarisetti, Sreekanth Vakacherla, Ravi Kant Pathak, and Joshua S. Apte
Atmos. Meas. Tech., 16, 4357–4374, https://doi.org/10.5194/amt-16-4357-2023, https://doi.org/10.5194/amt-16-4357-2023, 2023
Short summary
Short summary
We studied a low-cost air pollution sensor called PurpleAir PA-II in three different locations in India (Delhi, Hamirpur, and Bangalore) to characterize its performance. We compared its signal to more expensive reference sensors and found that the PurpleAir sensor was precise but inaccurate without calibration. We created a custom calibration equation for each location, which improved the accuracy of the PurpleAir sensor, and found that calibrations should be adjusted for different seasons.
Mrinmoy Chakraborty, Amanda Giang, and Naomi Zimmerman
Atmos. Meas. Tech., 16, 2333–2352, https://doi.org/10.5194/amt-16-2333-2023, https://doi.org/10.5194/amt-16-2333-2023, 2023
Short summary
Short summary
Black carbon (BC) has important climate and human health impacts. Aethalometers are used to measure BC, but they are hard to deploy in many environments (remote, mobile). We evaluate how well a portable micro-aethalometer (MA300) performs compared to a reference aethalometer at a road-side site in Vancouver, BC, Canada, during regular and wildfire conditions. We find that the MA300 can reproduce overall patterns in concentrations and source characterization but with some underestimation.
William Wandji Nyamsi, Yves-Marie Saint-Drenan, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 16, 2001–2036, https://doi.org/10.5194/amt-16-2001-2023, https://doi.org/10.5194/amt-16-2001-2023, 2023
Short summary
Short summary
The McClear service provides estimates of surface solar irradiances in cloud-free conditions. By comparing McClear estimates to 1 min measurements performed in Sub-Saharan Africa and the Maldives Archipelago in the Indian Ocean, McClear accurately estimates global irradiance and tends to overestimate direct irrradiance. This work establishes a general overview of the performance of the McClear service.
Misti Levy Zamora, Colby Buehler, Abhirup Datta, Drew R. Gentner, and Kirsten Koehler
Atmos. Meas. Tech., 16, 169–179, https://doi.org/10.5194/amt-16-169-2023, https://doi.org/10.5194/amt-16-169-2023, 2023
Short summary
Short summary
We assessed five pairs of co-located reference and low-cost sensor data sets (PM2.5, O3, NO2, NO, and CO) to make recommendations for best practices regarding the field calibration of low-cost air quality sensors. We found diminishing improvements for calibration periods longer than about 6 weeks for all sensors and that co-location can be minimized if the period is strategically selected and monitored so that the calibration period is representative of the desired measurement setting.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Varaha Ravi Kiran, Madineni Venkat Ratnam, Masatomo Fujiwara, Herman Russchenberg, Frank G. Wienhold, Bomidi Lakshmi Madhavan, Mekalathur Roja Raman, Renju Nandan, Sivan Thankamani Akhil Raj, Alladi Hemanth Kumar, and Saginela Ravindra Babu
Atmos. Meas. Tech., 15, 4709–4734, https://doi.org/10.5194/amt-15-4709-2022, https://doi.org/10.5194/amt-15-4709-2022, 2022
Short summary
Short summary
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction Studies) field campaigns using balloon-borne in situ measurements and ground-based and space-borne remote sensing instruments. Aerosol-cloud interaction is quantified for liquid clouds by segregating aerosol and cloud information in a balloon profile. Overall, the observational approach proposed here demonstrated its capability for understanding the aerosol–cloud interaction process.
Joshin Kumar, Theo Paik, Nishit J. Shetty, Patrick Sheridan, Allison C. Aiken, Manvendra K. Dubey, and Rajan K. Chakrabarty
Atmos. Meas. Tech., 15, 4569–4583, https://doi.org/10.5194/amt-15-4569-2022, https://doi.org/10.5194/amt-15-4569-2022, 2022
Short summary
Short summary
Accurate long-term measurement of aerosol light absorption is vital for assessing direct aerosol radiative forcing. Light absorption by aerosols at the US Department of Energy long-term climate monitoring SGP site is measured using the Particle Soot Absorption Photometer (PSAP), which suffers from artifacts and biases difficult to quantify. Machine learning offers a promising path forward to correct for biases in the long-term absorption dataset at the SGP site and similar Class-I areas.
Brayden Nilson, Peter L. Jackson, Corinne L. Schiller, and Matthew T. Parsons
Atmos. Meas. Tech., 15, 3315–3328, https://doi.org/10.5194/amt-15-3315-2022, https://doi.org/10.5194/amt-15-3315-2022, 2022
Short summary
Short summary
Correction models were developed using PurpleAir–Federal Equivalent Method (FEM) hourly fine particulate matter (PM2.5) observation colocation sites across North America (NA). These were evaluated in comparison with four existing models at an additional 15 NA colocation sites. This study provides a robust framework for the evaluation of low-cost PM2.5 sensor correction models using the Canadian AQHI+ system and presents an optimized general correction model for North American PA sensors.
Patrick Weber, Andreas Petzold, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Andrew Freedman, Timothy B. Onasch, and Ulrich Bundke
Atmos. Meas. Tech., 15, 3279–3296, https://doi.org/10.5194/amt-15-3279-2022, https://doi.org/10.5194/amt-15-3279-2022, 2022
Short summary
Short summary
In our laboratory closure study, we measured the full set of aerosol optical properties for different light-absorbing aerosols using a set of instruments.
Our key finding is that the extensive and intensive aerosol optical properties obtained agree with data from reference instruments, except the absorption Ångström exponent of externally mixed aerosols. The reported uncertainty in the single-scattering albedo fulfils the defined goals for Global Climate Observing System applications of 10 %.
Joel C. Corbin, Tobias Schripp, Bruce E. Anderson, Greg J. Smallwood, Patrick LeClercq, Ewan C. Crosbie, Steven Achterberg, Philip D. Whitefield, Richard C. Miake-Lye, Zhenhong Yu, Andrew Freedman, Max Trueblood, David Satterfield, Wenyan Liu, Patrick Oßwald, Claire Robinson, Michael A. Shook, Richard H. Moore, and Prem Lobo
Atmos. Meas. Tech., 15, 3223–3242, https://doi.org/10.5194/amt-15-3223-2022, https://doi.org/10.5194/amt-15-3223-2022, 2022
Short summary
Short summary
The combustion of sustainable aviation fuels in aircraft engines produces particulate matter (PM) emissions with different properties than conventional fuels due to changes in fuel composition. Consequently, the response of various diagnostic instruments to PM emissions may be impacted. We found no significant instrument biases in terms of particle mass, number, and size measurements for conventional and sustainable aviation fuel blends despite large differences in the magnitude of emissions.
Himadri Sekhar Bhowmik, Ashutosh Shukla, Vipul Lalchandani, Jay Dave, Neeraj Rastogi, Mayank Kumar, Vikram Singh, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 15, 2667–2684, https://doi.org/10.5194/amt-15-2667-2022, https://doi.org/10.5194/amt-15-2667-2022, 2022
Short summary
Short summary
This study presents comparisons between online and offline measurements of both refractory and non-refractory aerosol. This study shows differences between the measurements, related to either the limitations of the instrument (e.g., aerosol mass spectrometer only observing non-refractory aerosol) or known interferences with the technique (e.g., volatilization or reactions). The findings highlight the measurement methods' accuracy and imply the particular type of measurements needed.
Ruoyang Yuan, Prem Lobo, Greg J. Smallwood, Mark P. Johnson, Matthew C. Parker, Daniel Butcher, and Adrian Spencer
Atmos. Meas. Tech., 15, 241–259, https://doi.org/10.5194/amt-15-241-2022, https://doi.org/10.5194/amt-15-241-2022, 2022
Short summary
Short summary
The relationship between the non-volatile particulate matter (nvPM) mass emissions produced by different engine sources and the response of the LII 300 instrument, used for regulatory measurements of nvPM mass emissions in aircraft engine certification tests, was investigated for different sources and operating conditions. Laser fluence optimisation was required for real-time nvPM mass concentration measurements. These results will inform the development of updated calibration protocols.
Yangjunjie Xu-Yang, Rémi Losno, Fabrice Monna, Jean-Louis Rajot, Mohamed Labiadh, Gilles Bergametti, and Béatrice Marticorena
Atmos. Meas. Tech., 14, 7657–7680, https://doi.org/10.5194/amt-14-7657-2021, https://doi.org/10.5194/amt-14-7657-2021, 2021
Short summary
Short summary
Suspended particles in air (aerosols) are sampled with a pump drawing ambient air through a filter. The air inlet must be carefully designed to control the size of sampled particles and to reject the largest ones (> 10 µm). A low-cost sampling head for determination of the finest fraction of aerosol (> 10 µm in diameter) is presented. Compositional data analysis (CoDA) tools are extensively used here to demonstrate similarity between the low-cost sampling head and other existing systems.
Chunshui Lin, Darius Ceburnis, Anna Trubetskaya, Wei Xu, William Smith, Stig Hellebust, John Wenger, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Meas. Tech., 14, 6905–6916, https://doi.org/10.5194/amt-14-6905-2021, https://doi.org/10.5194/amt-14-6905-2021, 2021
Short summary
Short summary
Source apportionment of solid-fuel-burning emissions can be complicated by the use of different fuels, stoves, and burning conditions. Here, the organic aerosol mass spectra produced from burning a range of solid fuels in several stoves were compared. This study accounts for the source variability and provides better constraints on the primary factor contributions to the ambient organic aerosol estimations, holding significant implications for public health and policymakers.
Sho Ohata, Tatsuhiro Mori, Yutaka Kondo, Sangeeta Sharma, Antti Hyvärinen, Elisabeth Andrews, Peter Tunved, Eija Asmi, John Backman, Henri Servomaa, Daniel Veber, Konstantinos Eleftheriadis, Stergios Vratolis, Radovan Krejci, Paul Zieger, Makoto Koike, Yugo Kanaya, Atsushi Yoshida, Nobuhiro Moteki, Yongjing Zhao, Yutaka Tobo, Junji Matsushita, and Naga Oshima
Atmos. Meas. Tech., 14, 6723–6748, https://doi.org/10.5194/amt-14-6723-2021, https://doi.org/10.5194/amt-14-6723-2021, 2021
Short summary
Short summary
Reliable values of mass absorption cross sections (MACs) of black carbon (BC) are required to determine mass concentrations of BC at Arctic sites using different types of filter-based absorption photometers. We successfully estimated MAC values for these instruments through comparison with independent measurements of BC by a continuous soot monitoring system called COSMOS. These MAC values are consistent with each other and applicable to study spatial and temporal variation in BC in the Arctic.
Krista Luoma, Aki Virkkula, Pasi Aalto, Katrianne Lehtipalo, Tuukka Petäjä, and Markku Kulmala
Atmos. Meas. Tech., 14, 6419–6441, https://doi.org/10.5194/amt-14-6419-2021, https://doi.org/10.5194/amt-14-6419-2021, 2021
Short summary
Short summary
The study presents a comparison of three absorption photometers that measured ambient aerosol particles at a boreal forest site. The study aims to better understand problems related to filter-based measurements. Results show how different correction algorithms, which are used to produce the data, affect the derived optical properties of aerosol particles.
Jesús Yus-Díez, Vera Bernardoni, Griša Močnik, Andrés Alastuey, Davide Ciniglia, Matic Ivančič, Xavier Querol, Noemí Perez, Cristina Reche, Martin Rigler, Roberta Vecchi, Sara Valentini, and Marco Pandolfi
Atmos. Meas. Tech., 14, 6335–6355, https://doi.org/10.5194/amt-14-6335-2021, https://doi.org/10.5194/amt-14-6335-2021, 2021
Short summary
Short summary
Here we characterize the multiple-scattering factor, C, of the dual-spot Aethalometer AE33 and its cross-sensitivity to scattering and wavelength dependence for three background stations: urban, regional and mountaintop. C was obtained for two sets of filter tapes: M8020 and M8060. The cross-sensitivity to scattering and wavelength dependence of C were determined by inter-comparing with other absorption and scattering measurements including multi-angle off-line absorption measurements.
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021, https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary
Short summary
Radiosonde (RS) is widely used to detect the vertical structures of the planetary boundary layer (PBL), and numerous methods have been proposed for retrieving PBL height (PBLH) from RS data. However, an algorithm that is suitable under all atmospheric conditions does not exist. This study evaluates the performance of four common PBLH algorithms under different thermodynamic stability conditions based on RS data.
Eija Asmi, John Backman, Henri Servomaa, Aki Virkkula, Maria I. Gini, Konstantinos Eleftheriadis, Thomas Müller, Sho Ohata, Yutaka Kondo, and Antti Hyvärinen
Atmos. Meas. Tech., 14, 5397–5413, https://doi.org/10.5194/amt-14-5397-2021, https://doi.org/10.5194/amt-14-5397-2021, 2021
Short summary
Short summary
Absorbing aerosols are warming the planet and accurate measurements of their concentrations in pristine environments are needed. We applied eight different absorbing-aerosol measurement methods in a field campaign at the Arctic Pallas station. The filter-based techniques were found to be the most sensitive to detect the minuscule amounts of black carbon present, showing a 40 % agreement between them. Our results help to reduce uncertainties in absorbing aerosol measurements.
Karoline K. Barkjohn, Brett Gantt, and Andrea L. Clements
Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, https://doi.org/10.5194/amt-14-4617-2021, 2021
Short summary
Short summary
Although widely used, air sensor measurements are often biased. In this work we develop a correction with a relative humidity term that reduces the bias and improves consistency between different United States regions. This correction equation, along with proposed data cleaning criteria, has been applied to PurpleAir PM2.5 measurements across the US on the AirNow Fire and Smoke Map and has the potential to be successfully used in other air quality and public health applications.
Richard H. Moore, Elizabeth B. Wiggins, Adam T. Ahern, Stephen Zimmerman, Lauren Montgomery, Pedro Campuzano Jost, Claire E. Robinson, Luke D. Ziemba, Edward L. Winstead, Bruce E. Anderson, Charles A. Brock, Matthew D. Brown, Gao Chen, Ewan C. Crosbie, Hongyu Guo, Jose L. Jimenez, Carolyn E. Jordan, Ming Lyu, Benjamin A. Nault, Nicholas E. Rothfuss, Kevin J. Sanchez, Melinda Schueneman, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Nicholas L. Wagner, and Jian Wang
Atmos. Meas. Tech., 14, 4517–4542, https://doi.org/10.5194/amt-14-4517-2021, https://doi.org/10.5194/amt-14-4517-2021, 2021
Short summary
Short summary
Atmospheric particles are everywhere and exist in a range of sizes, from a few nanometers to hundreds of microns. Because particle size determines the behavior of chemical and physical processes, accurately measuring particle sizes is an important and integral part of atmospheric field measurements! Here, we discuss the performance of two commonly used particle sizers and how changes in particle composition and optical properties may result in sizing uncertainties, which we quantify.
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Stephanie L. Shaw, Eric S. Edgerton, Taekyu Joo, Nga L. Ng, and Ann M. Dillner
Atmos. Meas. Tech., 14, 4355–4374, https://doi.org/10.5194/amt-14-4355-2021, https://doi.org/10.5194/amt-14-4355-2021, 2021
Short summary
Short summary
Infrared spectrometry can be applied in routine monitoring of atmospheric particles to give comprehensive characterization of the organic material by bond rather than species. Using this technique, the concentrations of particle organic material were found to decrease 2011–2016 in the southeastern US, driven by a decline in highly aged material, concurrent with declining anthropogenic emissions. However, an increase was observed in the fraction of more moderately aged organic matter.
Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Douglas A. Day, Jason C. Schroder, Dongwook Kim, Jack E. Dibb, Maximilian Dollner, Bernadett Weinzierl, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 3631–3655, https://doi.org/10.5194/amt-14-3631-2021, https://doi.org/10.5194/amt-14-3631-2021, 2021
Short summary
Short summary
We utilize a set of high-quality datasets collected during the NASA Atmospheric Tomography Mission to investigate the impact of differences in observable particle sizes across aerosol instruments in aerosol measurement comparisons. Very good agreement was found between chemically and physically derived submicron aerosol volume. Results support a lack of significant unknown biases in the response of an Aerodyne aerosol mass spectrometer (AMS) when sampling remote aerosols across the globe.
Xiaolu Zhang, Krystyna Trzepla, Warren White, Sean Raffuse, and Nicole Pauly Hyslop
Atmos. Meas. Tech., 14, 3217–3231, https://doi.org/10.5194/amt-14-3217-2021, https://doi.org/10.5194/amt-14-3217-2021, 2021
Short summary
Short summary
Three models of carbon analyzer were used in the past decade to measure carbonaceous particles from samples collected within the Chemical Speciation Network. This study compares results from these analyzer models to investigate the impact on long-term data from instrument differences. Good agreement was found among the three models for total carbon, organic carbon, and elemental carbon, while the reasons for and implications of some notable differences in their subtractions are investigated.
Hengnan Guo, Zefeng Zhang, Lin Jiang, Junlin An, Bin Zhu, Hanqing Kang, and Jing Wang
Atmos. Meas. Tech., 14, 2441–2450, https://doi.org/10.5194/amt-14-2441-2021, https://doi.org/10.5194/amt-14-2441-2021, 2021
Short summary
Short summary
Visibility is an indicator of atmospheric transparency and is widely used in many research fields. Although efforts have been made to improve the performance of visibility meters, a significant error exists in measured visibility data. This is because current methods of visibility measurement include a false assumption, which leads to the long-term neglect of an important source of visibility errors. Without major adjustments to current methods, it is not possible to obtain reliable data.
Rosaria E. Pileci, Robin L. Modini, Michele Bertò, Jinfeng Yuan, Joel C. Corbin, Angela Marinoni, Bas Henzing, Marcel M. Moerman, Jean P. Putaud, Gerald Spindler, Birgit Wehner, Thomas Müller, Thomas Tuch, Arianna Trentini, Marco Zanatta, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Meas. Tech., 14, 1379–1403, https://doi.org/10.5194/amt-14-1379-2021, https://doi.org/10.5194/amt-14-1379-2021, 2021
Short summary
Short summary
Black carbon (BC), which is an important constituent of atmospheric aerosols, remains difficult to quantify due to various limitations of available methods. This study provides an extensive comparison of co-located field measurements, applying two methods based on different principles. It was shown that both methods indeed quantify the same aerosol property – BC mass concentration. The level of agreement that can be expected was quantified, and some reasons for discrepancy were identified.
Ondřej Tichý, Miroslav Hýža, Nikolaos Evangeliou, and Václav Šmídl
Atmos. Meas. Tech., 14, 803–818, https://doi.org/10.5194/amt-14-803-2021, https://doi.org/10.5194/amt-14-803-2021, 2021
Short summary
Short summary
We present an investigation of the usability of newly developed real-time concentration monitoring systems, which are based on the gamma-ray counting of aerosol filters. These high-resolution data were used for inverse modeling of the 106Ru release in 2017. Our inverse modeling results agree with previously published estimates and provide better temporal resolution of the estimates.
Martine Collaud Coen, Elisabeth Andrews, Alessandro Bigi, Giovanni Martucci, Gonzague Romanens, Frédéric P. A. Vogt, and Laurent Vuilleumier
Atmos. Meas. Tech., 13, 6945–6964, https://doi.org/10.5194/amt-13-6945-2020, https://doi.org/10.5194/amt-13-6945-2020, 2020
Short summary
Short summary
The Mann–Kendall trend test requires prewhitening in the presence of serially correlated data. The effects of five prewhitening methods and time granularity, autocorrelation, temporal segmentation and length of the time series on the statistical significance and the slope are studies for seven atmospheric datasets. Finally, a new algorithm using three prewhitening methods is proposed in order to optimize the power of the test, the amount of erroneous false positive trends and the slope estimate.
Charlotte M. Beall, Dolan Lucero, Thomas C. Hill, Paul J. DeMott, M. Dale Stokes, and Kimberly A. Prather
Atmos. Meas. Tech., 13, 6473–6486, https://doi.org/10.5194/amt-13-6473-2020, https://doi.org/10.5194/amt-13-6473-2020, 2020
Short summary
Short summary
Ice-nucleating particles (INPs) can influence multiple climate-relevant cloud properties. Previous studies report INP observations from precipitation samples that were stored prior to analysis, yet storage protocols vary widely, and little is known about how storage impacts INPs. This study finds that storing samples at −20 °C best preserves INP concentrations and that significant losses of small INPs occur across all storage protocols.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Hongyu Guo, Duseong S. Jo, Anne V. Handschy, Demetrios Pagonis, Jason C. Schroder, Melinda K. Schueneman, Michael J. Cubison, Jack E. Dibb, Alma Hodzic, Weiwei Hu, Brett B. Palm, and Jose L. Jimenez
Atmos. Meas. Tech., 13, 6193–6213, https://doi.org/10.5194/amt-13-6193-2020, https://doi.org/10.5194/amt-13-6193-2020, 2020
Short summary
Short summary
Collecting particulate matter, or aerosols, onto filters to be analyzed offline is a widely used method to investigate the mass concentration and chemical composition of the aerosol, especially the inorganic portion. Here, we show that acidic aerosol (sulfuric acid) collected onto filters and then exposed to high ammonia mixing ratios (from human emissions) will lead to biases in the ammonium collected onto filters, and the uptake of ammonia is rapid (< 10 s), which impacts the filter data.
Laurent Poulain, Gerald Spindler, Achim Grüner, Thomas Tuch, Bastian Stieger, Dominik van Pinxteren, Jean-Eudes Petit, Olivier Favez, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Meas. Tech., 13, 4973–4994, https://doi.org/10.5194/amt-13-4973-2020, https://doi.org/10.5194/amt-13-4973-2020, 2020
Short summary
Short summary
The stability and the comparability between ACSM and collocated filter sampling and MPSS measurements was investigated in order to examine the instruments robustness for year-long measurements. Specific attention was paid to the influence of the upper size cutoff diameter to better understand how it might affect the data validation. Recommendations are provided for better on-site quality assurance and quality control of the ACSM, which would be useful for either long-term or intensive campaigns.
Martin Rigler, Luka Drinovec, Gašper Lavrič, Athanasia Vlachou, André S. H. Prévôt, Jean Luc Jaffrezo, Iasonas Stavroulas, Jean Sciare, Judita Burger, Irena Kranjc, Janja Turšič, Anthony D. A. Hansen, and Griša Močnik
Atmos. Meas. Tech., 13, 4333–4351, https://doi.org/10.5194/amt-13-4333-2020, https://doi.org/10.5194/amt-13-4333-2020, 2020
Short summary
Short summary
Carbonaceous aerosols are a large fraction of fine particulate matter. They are extremely diverse, and they directly impact air quality, visibility, cloud formation and public health. In this paper we present a new instrument and new method to measure carbon content in particulate matter in real time and at a high time resolution. The new method was validated in a 1-month winter field campaign in Ljubljana, Slovenia.
Rosa Delia García-Cabrera, Emilio Cuevas-Agulló, África Barreto, Victoria Eugenia Cachorro, Mario Pó, Ramón Ramos, and Kees Hoogendijk
Atmos. Meas. Tech., 13, 2601–2621, https://doi.org/10.5194/amt-13-2601-2020, https://doi.org/10.5194/amt-13-2601-2020, 2020
Short summary
Short summary
Spectral direct UV–visible normal solar irradiance, measured with an EKO MS-711 grating spectroradiometer at the Izaña Atmospheric Observatory (Spain), has been used to determine aerosol optical depth (AOD) at several wavelengths, and has been compared to synchronous AOD measurements from a reference AERONET (Aerosol RObotic NETwork) Cimel sun photometer.
Yan Zheng, Xi Cheng, Keren Liao, Yaowei Li, Yong Jie Li, Ru-Jin Huang, Weiwei Hu, Ying Liu, Tong Zhu, Shiyi Chen, Limin Zeng, Douglas R. Worsnop, and Qi Chen
Atmos. Meas. Tech., 13, 2457–2472, https://doi.org/10.5194/amt-13-2457-2020, https://doi.org/10.5194/amt-13-2457-2020, 2020
Short summary
Short summary
This paper provides important information to help researchers to understand the mass quantification and source apportionment by Aerodyne aerosol mass spectrometers.
Minxing Si, Ying Xiong, Shan Du, and Ke Du
Atmos. Meas. Tech., 13, 1693–1707, https://doi.org/10.5194/amt-13-1693-2020, https://doi.org/10.5194/amt-13-1693-2020, 2020
Short summary
Short summary
The study evaluated the performance of a low-cost PM sensor in ambient conditions and calibrated its readings using simple linear regression (SLR), multiple linear regression (MLR), and two more powerful machine-learning algorithms with random search techniques for the best model architectures. The two machine-learning algorithms are XGBoost and a feedforward neural network (NN).
Zhe Jiang, Minzheng Duan, Huizheng Che, Wenxing Zhang, Teruyuki Nakajima, Makiko Hashimoto, Bin Chen, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 1195–1212, https://doi.org/10.5194/amt-13-1195-2020, https://doi.org/10.5194/amt-13-1195-2020, 2020
Short summary
Short summary
This study analyzed the aerosol optical properties derived by SKYRAD.pack versions 5.0 and 4.2 using the radiometer measurements over Qionghai and Yucheng in China, which are two new sites of SKYNET. The seasonal variability of the aerosol properties over the two sites were investigated based on SKYRAD.pack V5.0. The validation results provide valuable references for continued improvement of the retrieval algorithms of SKYNET and other aerosol observational networks.
Ernest Nyaku, Robert Loughman, Pawan K. Bhartia, Terry Deshler, Zhong Chen, and Peter R. Colarco
Atmos. Meas. Tech., 13, 1071–1087, https://doi.org/10.5194/amt-13-1071-2020, https://doi.org/10.5194/amt-13-1071-2020, 2020
Short summary
Short summary
This paper shows the importance of the nature of the aerosol phase function used in the retrieval of the stratospheric aerosol extinction from limb scattering measurements. The aerosol phase function is derived from the parameters using either a unimodal lognormal or gamma aerosol size distribution. These two distributions were fitted to the same aerosol concentration measurements at two altitudes, and depending on the nature of the measurements, each distribution shows its strengths.
Fan Mei, Jian Wang, Jennifer M. Comstock, Ralf Weigel, Martina Krämer, Christoph Mahnke, John E. Shilling, Johannes Schneider, Christiane Schulz, Charles N. Long, Manfred Wendisch, Luiz A. T. Machado, Beat Schmid, Trismono Krisna, Mikhail Pekour, John Hubbe, Andreas Giez, Bernadett Weinzierl, Martin Zoeger, Mira L. Pöhlker, Hans Schlager, Micael A. Cecchini, Meinrat O. Andreae, Scot T. Martin, Suzane S. de Sá, Jiwen Fan, Jason Tomlinson, Stephen Springston, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker, Thomas Klimach, Andreas Minikin, Armin Afchine, and Stephan Borrmann
Atmos. Meas. Tech., 13, 661–684, https://doi.org/10.5194/amt-13-661-2020, https://doi.org/10.5194/amt-13-661-2020, 2020
Short summary
Short summary
In 2014, the US DOE G1 aircraft and the German HALO aircraft overflew the Amazon basin to study how aerosols influence cloud cycles under a clean condition and around a tropical megacity. This paper describes how to meaningfully compare similar measurements from two research aircraft and identify the potential measurement issue. We also discuss the uncertainty range for each measurement for further usage in model evaluation and satellite data validation.
Andebo Waza, Kilian Schneiders, Jan May, Sergio Rodríguez, Bernd Epple, and Konrad Kandler
Atmos. Meas. Tech., 12, 6647–6665, https://doi.org/10.5194/amt-12-6647-2019, https://doi.org/10.5194/amt-12-6647-2019, 2019
Short summary
Short summary
Deposition or other passive measurement techniques are used to sample mineral dust from the atmosphere. However, there exist a multitude of different collection instruments with different, usually not well-characterized sampling efficiencies, so the resulting data might be considerably biased with respect to their size representatively. In the paper, we report on collection properties of different deposition and other passive samplers based on single-particle measurements.
Cited articles
Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O ∕ C and OM ∕ OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry, Environ. Sci. Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008.
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrom. Rev., 26, 185–222, https://doi.org/10.1002/mas.20115, 2007.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015.
Chen, J. and Griffin, R.: Modeling secondary organic aerosol formation from oxidation of -pinene, -pinene, and -limonene, Atmos. Environ., 39, 7731–7744, https://doi.org/10.1016/j.atmosenv.2005.05.049, 2005.
Cross, E. S., Slowik, J. G., Davidovits, P., Allan, J. D., Worsnop, D. R., Jayne, J. T., Lewis, D. K., Canagaratna, M., and Onasch, T. B.: Laboratory and Ambient Particle Density Determinations using Light Scattering in Conjunction with Aerosol Mass Spectrometry, Aerosol Sci. Tech., 41, 343–359, https://doi.org/10.1080/02786820701199736, 2007.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer, Anal. Chem., 78, 8281–8289, https://doi.org/10.1021/ac061249n, 2006.
de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrom. Rev., 26, 223–257, https://doi.org/10.1002/mas.20119, 2007.
Eichler, P., Müller, M., D'Anna, B., and Wisthaler, A.: A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter, Atmos. Meas. Tech., 8, 1353–1360, https://doi.org/10.5194/amt-8-1353-2015, 2015.
Eichler, P., Müller, M., Rohmann, C., Stengel, B., Orasche, J., Zimmermann, R., and Wisthaler, A.: Lubricating Oil as a Major Constituent of Ship Exhaust Particles, Environ. Sci. Tech. Let., 4, 54–58, https://doi.org/10.1021/acs.estlett.6b00488, 2017.
Goldstein, A. H. and Galbally, I. E.: Known and Unexplored Organic Constituents in the Earth's Atmosphere, Environ. Sci. Technol., 41, 1514–1521, https://doi.org/10.1021/es072476p, 2007.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hohaus, T., Trimborn, D., Kiendler-Scharr, A., Gensch, I., Laumer, W., Kammer, B., Andres, S., Boudries, H., Smith, K. A., Worsnop, D. R., and Jayne, J. T.: A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID, Atmos. Meas. Tech., 3, 1423–1436, https://doi.org/10.5194/amt-3-1423-2010, 2010.
Hohaus, T., Gensch, I., Kimmel, J. R., Worsnop, D. R., and Kiendler-Scharr, A.: Experimental determination of the partitioning coefficient of β-pinene oxidation products in SOAs, Phys. Chem. Chem. Phys., 17, 14796–14804, https://doi.org/10.1039/C5CP01608H, 2015.
Hohaus, T., Kuhn, U., Andres, S., Kaminski, M., Rohrer, F., Tillmann, R., Wahner, A., Wegener, R., Yu, Z., and Kiendler-Scharr, A.: A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR, Atmos. Meas. Tech., 9, 1247–1259, https://doi.org/10.5194/amt-9-1247-2016, 2016.
Holzinger, R.: PTRwid: A new widget tool for processing PTR-TOF-MS data, Atmos. Meas. Tech., 8, 3903–3922, https://doi.org/10.5194/amt-8-3903-2015, 2015.
Holzinger, R., Kasper-Giebl, A., Staudinger, M., Schauer, G., and Röckmann, T.: Analysis of the chemical composition of organic aerosol at the Mt. Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-TD-PTR-MS), Atmos. Chem. Phys., 10, 10111–10128, https://doi.org/10.5194/acp-10-10111-2010, 2010a.
Holzinger, R., Williams, J., Herrmann, F., Lelieveld, J., Donahue, N. M., and Röckmann, T.: Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols, Atmos. Chem. Phys., 10, 2257–2267, https://doi.org/10.5194/acp-10-2257-2010, 2010b.
Holzinger, R., Goldstein, A. H., Hayes, P. L., Jimenez, J. L., and Timkovsky, J.: Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study, Atmos. Chem. Phys., 13, 10125–10141, https://doi.org/10.5194/acp-13-10125-2013, 2013.
Isaacman, G., Kreisberg, N. M., Yee, L. D., Worton, D. R., Chan, A. W. H., Moss, J. A., Hering, S. V., and Goldstein, A. H.: Online derivatization for hourly measurements of gas- and particle-phase semi-volatile oxygenated organic compounds by thermal desorption aerosol gas chromatography (SV-TAG), Atmos. Meas. Tech., 7, 4417–4429, https://doi.org/10.5194/amt-7-4417-2014, 2014.
Jaoui, M., Corse, E., Kleindienst, T. E., Offenberg, J. H., Lewandowski, M., and Edney, E. O.: Analysis of Secondary Organic Aerosol Compounds from the Photooxidation of d-Limonene in the Presence of NOX and their Detection in Ambient PM2.5, Environ. Sci. Technol., 40, 3819–3828, https://doi.org/10.1021/es052566z, 2006.
Jenkin, M. E.: Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3, Atmos. Chem. Phys., 4, 1741–1757, https://doi.org/10.5194/acp-4-1741-2004, 2004.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the Atmosphere, Science, 326, 1525–1529,, https://doi.org/10.1126/science.1180353, 2009.
Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., Schottkowsky, R., Sulzer, P., and Märk, T. D.: A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), Int. J. Mass Spectrom., 286, 122–128, https://doi.org/10.1016/j.ijms.2009.07.005, 2009.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kiendler-Scharr, A., Zhang, Q., Hohaus, T., Kleist, E., Mensah, A., Mentel, T. F., Spindler, C., Uerlings, R., Tillmann, R., and Wildt, J.: Aerosol Mass Spectrometric Features of Biogenic SOA: Observations from a Plant Chamber and in Rural Atmospheric Environments, Environ. Sci. Technol., 43, 8166–8172, https://doi.org/10.1021/es901420b, 2009.
Kreisberg, N. M., Hering, S. V., Williams, B. J., Worton, D. R., and Goldstein, A. H.: Quantification of Hourly Speciated Organic Compounds in Atmospheric Aerosols, Measured by an In-Situ Thermal Desorption Aerosol Gas Chromatograph (TAG), Aerosol Sci. Technol., 43, 38–52, https://doi.org/10.1080/02786820802459583, 2009.
Kundu, S., Fisseha, R., Putman, A. L., Rahn, T. A., and Mazzoleni, L. R.: High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization, Atmos. Chem. Phys., 12, 5523–5536, https://doi.org/10.5194/acp-12-5523-2012, 2012.
Lee, B.-H., Pierce, J. R., Engelhart, G. J., and Pandis, S. N.: Volatility of secondary organic aerosol from the ozonolysis of monoterpenes, Atmos. Environ., 45, 2443–2452, https://doi.org/10.1016/j.atmosenv.2011.02.004, 2011.
Leungsakul, S., Jaoui, M., and Kamens, R. M.: Kinetic Mechanism for Predicting Secondary Organic Aerosol Formation from the Reaction of d-Limonene with Ozone, Environ. Sci. Technol., 39, 9583–9594, https://doi.org/10.1021/es0492687, 2005a.
Leungsakul, S., Jeffries, H. E., and Kamens, R. M.: A kinetic mechanism for predicting secondary aerosol formation from the reactions of d-limonene in the presence of oxides of nitrogen and natural sunlight, Atmos. Environ., 39, 7063–7082, https://doi.org/10.1016/j.atmosenv.2005.08.024, 2005b.
Liu, P., Ziemann, P. J., Kittelson, D. B., and McMurry, P. H.: Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions, Aerosol Sci. Tech., 22, 293–313, https://doi.org/10.1080/02786829408959748, 1995a.
Liu, P., Ziemann, P. J., Kittelson, D. B., and McMurry, P. H.: Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions, Aerosol Sci. Tech., 22, 314–324, https://doi.org/10.1080/02786829408959749, 1995b.
Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, Th. F., Lutz, A., Hallquist, M., Worsnop, D., and Thornton, J. A.: A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO), Atmos. Meas. Tech., 7, 983–1001, https://doi.org/10.5194/amt-7-983-2014, 2014.
Martinez, R. E., Williams, B. J., Zhang, Y., Hagan, D., Walker, M., Kreisberg, N. M., Hering, S. V., Hohaus, T., Jayne, J. T., and Worsnop, D. R.: Development of a volatility and polarity separator (VAPS) for volatility- and polarity-resolved organic aerosol measurement, Aerosol Sci. Tech., 50, 255–271, https://doi.org/10.1080/02786826.2016.1147645, 2016.
Mensah, A. A., Holzinger, R., Otjes, R., Trimborn, A., Mentel, Th. F., ten Brink, H., Henzing, B., and Kiendler-Scharr, A.: Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009, Atmos. Chem. Phys., 12, 4723–4742, https://doi.org/10.5194/acp-12-4723-2012, 2012.
Müller, M., Mikoviny, T., Jud, W., D'Anna, B., and Wisthaler, A.: A new software tool for the analysis of high resolution PTR-TOF mass spectra, Chemometr. Intell. Lab., 127, 158–165, https://doi.org/10.1016/j.chemolab.2013.06.011, 2013.
Praplan, A. P., Schobesberger, S., Bianchi, F., Rissanen, M. P., Ehn, M., Jokinen, T., Junninen, H., Adamov, A., Amorim, A., Dommen, J., Duplissy, J., Hakala, J., Hansel, A., Heinritzi, M., Kangasluoma, J., Kirkby, J., Krapf, M., Kürten, A., Lehtipalo, K., Riccobono, F., Rondo, L., Sarnela, N., Simon, M., Tomé, A., Tröstl, J., Winkler, P. M., Williamson, C., Ye, P., Curtius, J., Baltensperger, U., Donahue, N. M., Kulmala, M., and Worsnop, D. R.: Elemental composition and clustering behaviour of a-pinene oxidation products for different oxidation conditions, Atmos. Chem. Phys., 15, 4145–4159, https://doi.org/10.5194/acp-15-4145-2015, 2015.
Rohrer, F., Bohn, B., Brauers, T., Brüning, D., Johnen, F.-J., Wahner, A., and Kleffmann, J.: Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR, Atmos. Chem. Phys., 5, 2189–2201, https://doi.org/10.5194/acp-5-2189-2005, 2005.
Salvador, C. M., Ho, T. T., Chou, C. C. K., Chen, M. J., Huang, W. R., and Huang, S. H.: Characterization of the organic matter in submicron urban aerosols using a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS), Atmos. Environ., 140, 565–575, https://doi.org/10.1016/j.atmosenv.2016.06.029, 2016.
Seinfeld, J. and Pandis, S.: Atmospheric Chemistry And Physics: From Air Pollution to Climate Change, second edition, Wiley-Interscience Publication, Hoboken, NJ, USA, 2006.
Tillmann, R.: PIMMS SAPHIR secondary organic aerosol formation study, IEK-8, Forschungszentrum Jülich, available at: https://data.eurochamp.org/data-access/chamber-experiments/, last access: 13 March 2018.
Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.
Williams, B. J., Goldstein, A. H., Kreisberg, N. M., and Hering, S. V.: An In-Situ Instrument for Speciated Organic Composition of Atmospheric Aerosols:Thermal DesorptionAerosolGC/MS-FID (TAG), Aerosol Sci. Tech., 40, 627–638, https://doi.org/10.1080/02786820600754631, 2006.
Yu, J., Cocker, D. R., Griffin, R. J., Flagan, R. C., and Seinfeld, J. H.: Gas-Phase Ozone Oxidation of Monoterpenes: Gaseous and Particulate Products, J. Atmos. Chem., 34, 207–258, https://doi.org/10.1023/a:1006254930583, 1999.
Zhao, Y., Kreisberg, N. M., Worton, D. R., Teng, A. P., Hering, S. V., and Goldstein, A. H.: Development of an In SituThermal Desorption Gas Chromatography Instrument for Quantifying Atmospheric Semi-Volatile Organic Compounds, Aerosol Sci. Tech., 47, 258–266, https://doi.org/10.1080/02786826.2012.747673, 2013.
Short summary
This manuscript presents an intercomparison of state-of-the-art online and in situ particle sampling techniques connected to proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). Collection and vaporization of aerosol combined with soft ionization mass spectrometry offers the advantage of detailed chemical characterization of SOA species. The benefits of these techniques are highlighted through their consistency in providing the chemical composition of biogenic SOA.
This manuscript presents an intercomparison of state-of-the-art online and in situ particle...