Articles | Volume 11, issue 4
https://doi.org/10.5194/amt-11-2051-2018
https://doi.org/10.5194/amt-11-2051-2018
Research article
 | 
11 Apr 2018
Research article |  | 11 Apr 2018

Evaluating the lower-tropospheric COSMIC GPS radio occultation sounding quality over the Arctic

Xiao Yu, Feiqin Xie, and Chi O. Ao

Related authors

Exploring commercial Global Navigation Satellite System (GNSS) radio occultation (RO) products for planetary boundary layer studies in the Arctic
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025,https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
The Impact of Differences in Retrieval Algorithms between Processing Centers on GNSS Radio Occultation Refractivity Retrievals in the Planetary Boundary Layer
Sara Vannah, Stephen S. Leroy, Chi O. Ao, E. Robert Kursinski, Kevin J. Nelson, Kuo-Nung Wang, and Feiqin Xie
EGUsphere, https://doi.org/10.5194/egusphere-2024-4127,https://doi.org/10.5194/egusphere-2024-4127, 2025
Short summary
The PAZ polarimetric radio occultation research dataset for scientific applications
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan-Peter Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data, 16, 5643–5663, https://doi.org/10.5194/essd-16-5643-2024,https://doi.org/10.5194/essd-16-5643-2024, 2024
Short summary
Assessing the ducting phenomenon and its potential impact on Global Navigation Satellite System (GNSS) radio occultation refractivity retrievals over the northeast Pacific Ocean using radiosondes and global reanalysis
Thomas E. Winning Jr., Feiqin Xie, and Kevin J. Nelson
Atmos. Meas. Tech., 17, 6851–6863, https://doi.org/10.5194/amt-17-6851-2024,https://doi.org/10.5194/amt-17-6851-2024, 2024
Short summary
Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024,https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Solar background radiation temperature calibration of a pure rotational Raman lidar
Vasura Jayaweera, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 18, 1461–1469, https://doi.org/10.5194/amt-18-1461-2025,https://doi.org/10.5194/amt-18-1461-2025, 2025
Short summary
Exploring commercial Global Navigation Satellite System (GNSS) radio occultation (RO) products for planetary boundary layer studies in the Arctic
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025,https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
Research on atmospheric temperature fine measurements from the near surface to 60 km altitude based on an integrated lidar system
Zhangjun Wang, Tiantian Guo, Xianxin Li, Chao Chen, Dong Liu, Luoyuan Qu, Hui Li, and Xiufen Wang
Atmos. Meas. Tech., 18, 1405–1414, https://doi.org/10.5194/amt-18-1405-2025,https://doi.org/10.5194/amt-18-1405-2025, 2025
Short summary
Testing ground-based observations of wave activity in the (lower and upper) atmosphere as possible (complementary) indicators of streamer events
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech., 18, 1373–1388, https://doi.org/10.5194/amt-18-1373-2025,https://doi.org/10.5194/amt-18-1373-2025, 2025
Short summary
Quality assessment of YUNYAO radio occultation data in the neutral atmosphere
Xiaoze Xu, Wei Han, Jincheng Wang, Zhiqiu Gao, Fenghui Li, Yan Cheng, and Naifeng Fu
Atmos. Meas. Tech., 18, 1339–1353, https://doi.org/10.5194/amt-18-1339-2025,https://doi.org/10.5194/amt-18-1339-2025, 2025
Short summary

Cited articles

Ao, C. O., Meehan, T. K., Hajj, G. A., Manucci, A. J., and Beyerle, G.: Lower troposphere refractivity bias in GPS occultation retrievals, J. Geophys. Res., 108, 4577, https://doi.org/10.1029/2002JD003216, 2003.
Ao, C. O., Hajj, G. A., Meehan, T. K., Dong, D., Iijima, B. A., Mannucci, A. J., and Kursinski, E. R.: Rising and setting GPS occupations by use of open-loop tracking, J. Geophys. Res.-Atmos., 114, 1–15, https://doi.org/10.1029/2008JD010483, 2009.
Ao, C. O., Waliser, D. E., Chan, S. K., Li, J. L., Tian, B., Xie, F., and Mannucci, A. J.: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles, J. Geophys. Res.-Atmos., 117, 1–18, https://doi.org/10.1029/2012JD017598, 2012.
Download
Short summary
Atmospheric observations from GPS receiver satellites offer uniform spatial coverage over the Arctic. The GPS profiles sensing deep into the lowest 300 m of the atmosphere only reach 50–60 % in summer but over 70 % in other seasons. The profile uncertainty due to different data centers is within 0.07 % in refractivity, 0.72 K in temperature, and 0.05 g kg-1 in humidity below 10 km. A systematic negative bias of 1 % in refractivity below 2 km is only seen in the summer due to moisture impact.
Share