Articles | Volume 12, issue 7
https://doi.org/10.5194/amt-12-3985-2019
https://doi.org/10.5194/amt-12-3985-2019
Research article
 | 
19 Jul 2019
Research article |  | 19 Jul 2019

Simulating precipitation radar observations from a geostationary satellite

Atsushi Okazaki, Takumi Honda, Shunji Kotsuki, Moeka Yamaji, Takuji Kubota, Riko Oki, Toshio Iguchi, and Takemasa Miyoshi

Related authors

Model Predictive Control with Foreseeing Horizon Designed to Mitigate Extreme Events in Chaotic Dynamical Systems
Fumitoshi Kawasaki, Atsushi Okazaki, Kenta Kurosawa, Tadashi Tsuyuki, and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2025-1785,https://doi.org/10.5194/egusphere-2025-1785, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Observation error estimation in climate proxies with data assimilation and innovation statistics
Atsushi Okazaki, Diego Carrio, Quentin Dalaiden, Jarrah Harrison-Lofthouse, Shunji Kotsuki, and Kei Yoshimura
EGUsphere, https://doi.org/10.5194/egusphere-2025-1389,https://doi.org/10.5194/egusphere-2025-1389, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Bottom–up approach for mitigating extreme events under limited intervention options: a case study with Lorenz 96
Takahito Mitsui, Shunji Kotsuki, Naoya Fujiwara, Atsushi Okazaki, and Keita Tokuda
EGUsphere, https://doi.org/10.5194/egusphere-2025-987,https://doi.org/10.5194/egusphere-2025-987, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Bridging Data Assimilation and Control: Ensemble Model Predictive Control for High-Dimensional Nonlinear Systems
Kenta Kurosawa, Atsushi Okazaki, Fumitoshi Kawasaki, and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2025-595,https://doi.org/10.5194/egusphere-2025-595, 2025
Short summary
Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate natural and anthropogenic changes in oxygen, carbon, and water cycles
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
Atmos. Chem. Phys., 25, 1965–1987, https://doi.org/10.5194/acp-25-1965-2025,https://doi.org/10.5194/acp-25-1965-2025, 2025
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Tracking traveling ionospheric disturbances through Doppler-shifted AM radio transmissions
Claire C. Trop, James LaBelle, Philip J. Erickson, Shun-Rong Zhang, David McGaw, and Terrence Kovacs
Atmos. Meas. Tech., 18, 1909–1925, https://doi.org/10.5194/amt-18-1909-2025,https://doi.org/10.5194/amt-18-1909-2025, 2025
Short summary
Chilean Observation Network De Meteor Radars (CONDOR): multi-static system configuration and wind comparison with co-located lidar
Zishun Qiao, Alan Z. Liu, Gunter Stober, Javier Fuentes, Fabio Vargas, Christian L. Adami, and Iain M. Reid
Atmos. Meas. Tech., 18, 1091–1104, https://doi.org/10.5194/amt-18-1091-2025,https://doi.org/10.5194/amt-18-1091-2025, 2025
Short summary
ScintPi measurements of low-latitude ionospheric irregularity drifts using the spaced-receiver technique and SBAS signals
Josemaria Gomez Socola, Fabiano S. Rodrigues, Isaac G. Wright, Igo Paulino, and Ricardo Buriti
Atmos. Meas. Tech., 18, 909–919, https://doi.org/10.5194/amt-18-909-2025,https://doi.org/10.5194/amt-18-909-2025, 2025
Short summary
Quantitative error analysis of polarimetric phased-array radar weather measurements to reveal radar performance and configuration potential
Junho Ho, Zhe Li, and Guifu Zhang
Atmos. Meas. Tech., 18, 619–638, https://doi.org/10.5194/amt-18-619-2025,https://doi.org/10.5194/amt-18-619-2025, 2025
Short summary
Spectral performance analysis of the Fizeau interferometer onboard ESA's Aeolus wind lidar satellite
Michael Vaughan, Kevin Ridley, Benjamin Witschas, Oliver Lux, Ines Nikolaus, and Oliver Reitebuch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-202,https://doi.org/10.5194/amt-2024-202, 2024
Revised manuscript accepted for AMT
Short summary

Cited articles

Bell, T. L., Abdullah, A., Martin, R. L., and North, G. R.: Sampling errors for satellite-derived tropical rainfall: Monte Carlo study using a space-time stochastic model, J. Geophys. Res., 95, 2195–2205, 1990. 
Bliven, L. F., Sobieski, P. W., and Craeye, C.: Rain generated ring-waves: Measurements and modelling for remote sensing, Int. J. Remote. Sens., 18, 221–228, 1997. 
Braun, N., Gade, M., and Lange, P. A.: Radar backscattering measurements of artificial rain impinging on a water surface at different wind speeds, paper presented at 1999 International Geoscience and Remote Sensing Symposium (IGARSS), Inst. of Elect. and Elect. Eng., New York, 1999. 
Download
Short summary
The JAXA is surveying the feasibility of a potential satellite mission equipped with a precipitation radar on a geostationary orbit, as a successor of the GPM Core Observatory. We investigate what kind of observation data will be available from the radar using simulation techniques. Although the quality of the observation depends on the radar specifications and the position of precipitation systems, the results demonstrate that it would be possible to obtain three-dimensional precipitation data.
Share