Casey, J. G. and Hannigan, M. P.: Testing the performance of field calibration techniques for low-cost gas sensors in new deployment locations: across a county line and across Colorado, Atmos. Meas. Tech., 11, 6351–6378,
https://doi.org/10.5194/amt-11-6351-2018, 2018.
a,
b,
c,
d
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B.,
Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms
contribute to air quality monitoring and exposure estimates?, Environ.
Int., 99, 293–302,
https://doi.org/10.1016/j.envint.2016.12.007, 2017.
a,
b,
c
Chan, C. S., Ostertag, M. H., Akyürek, A. S., and Rosing, T. Š.:
Context-aware system design, in: Micro-and Nanotechnology Sensors, Systems,
and Applications IX, 10194, 101940B, International Society for Optics
and Photonics, Anaheim, 2017. a
Clements, A. L., Griswold, W. G., RS, A., Johnston, J. E., Herting, M. M.,
Thorson, J., Collier-Oxandale, A., and Hannigan, M.: Low-Cost Air Quality
Monitoring Tools: From Research to Practice (A Workshop Summary), Sensors,
17, 11,
https://doi.org/10.3390/s17112478, 2017.
a
Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., and Jayne, J. T.: Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements, Atmos. Meas. Tech., 10, 3575–3588,
https://doi.org/10.5194/amt-10-3575-2017, 2017.
a,
b,
c
De Vito, S., Piga, M., Martinotto, L., and Di Francia, G.: CO,
NO2, and
NOx urban pollution monitoring with on-field calibrated electronic nose by
automatic bayesian regularization, Sensor. Actuat. B-Chem., 143,
182–191,
https://doi.org/10.1016/j.snb.2009.08.041, 2009.
a
English, P. B., Olmedo, L., Bejarano, E., Lugo, H., Murillo, E., Seto, E.,
Wong, M., King, G., Wilkie, A., Meltzer, D., Carvlin, G., Jerrett, M., and Northcross, A.: The Imperial County
Community Air Monitoring Network: a model for community-based environmental
monitoring for public health action, Environ. Health Perspect., 125, 7,
2017.
a,
b
Fonollosa, J., Fernandez, L., Gutiérrez-Gálvez, A., Huerta, R., and
Marco, S.: Calibration transfer and drift counteraction in chemical sensor
arrays using Direct Standardization, Sensor. Actuat. B-Chem., 236,
1044–1053, 2016. a
Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press,
available at:
http://www.deeplearningbook.org (last access: 6 June 2019), 2016.
a,
b
Hagan, D. H., Isaacman-VanWertz, G., Franklin, J. P., Wallace, L. M. M., Kocar, B. D., Heald, C. L., and Kroll, J. H.: Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments, Atmos. Meas. Tech., 11, 315–328, https://doi.org/10.5194/amt-11-315-2018, 2018.
a,
b,
c
Jerrett, M., Donaire-Gonzalez, D., Popoola, O., Jones, R., Cohen, R. C.,
Almanza, E., Nazelle, A. D., Mead, I., Carrasco-Turigas, G., Cole-Hunter, T.,
Trigueromas, M., Seto, E., and Nieuwenhuijsen, M.: Validating novel air
pollution sensors to improve exposure estimates for epidemiological analyses
and citizen science, Environ. Res., 158, 286–294,
https://doi.org/10.1016/j.envres.2017.04.023, 2017.
a
Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N., Kara, L. B., Presto, A. A., and R. Subramanian: Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring, Atmos. Meas. Tech., 12, 903–920,
https://doi.org/10.5194/amt-12-903-2019, 2019.
a,
b,
c
Monn, C., Carabias, V., Junker, M., Waeber, R., Karrer, M., and Wanner, H.-U.:
Small-scale spatial variability of particulate matter
<10 µm (PM
10) and
nitrogen dioxide, Atmos. Environ., 31, 2243–2247, 1997. a
Piedrahita, R., Xiang, Y., Masson, N., Ortega, J., Collier, A., Jiang, Y., Li, K., Dick, R. P., Lv, Q., Hannigan, M., and Shang, L.: The next generation of low-cost personal air quality sensors for quantitative exposure monitoring, Atmos. Meas. Tech., 7, 3325–3336,
https://doi.org/10.5194/amt-7-3325-2014, 2014.
a,
b
Sadighi, K., Coffey, E., Polidori, A., Feenstra, B., Lv, Q., Henze, D. K., and Hannigan, M.: Intra-urban spatial variability of surface ozone in Riverside, CA: viability and validation of low-cost sensors, Atmos. Meas. Tech., 11, 1777–1792,
https://doi.org/10.5194/amt-11-1777-2018, 2018.
a,
b,
c
Shina, D. N. and Canter, A.: Annual Air Quality Monitoring Network Plan 2016,
available at:
https://www.sdapcd.org/content/dam/sdc/apcd/monitoring/2016_Network_Plan.pdf (last access: 6 June 2019),
2016.
a,
b,
c,
d
SJVAPCD Website: Shafter
| Valley Air District,
available at:
http://community.valleyair.org/selected-communities/shafter/,
last access: 5 June 2019. a
Smith, K. R., Edwards, P. M., Evans, M. J., Lee, J. D., Shaw, M. D., Squires,
F., Wilde, S., and Lewis, A. C.: Clustering approaches to improve the
performance of low cost air pollution sensors, Faraday Discuss.s, 200,
621–637, 2017. a
Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W.,
Hagler, G. S., Shelow, D., Hindin, D. A., Kilaru, V. J., and Preuss, P. W.:
The changing paradigm of air pollution monitoring, Environ. Sci. Technol., 47, 11369, 2013. a
Solórzano, A., Rodriguez-Perez, R., Padilla, M., Graunke, T., Fernandez,
L., Marco, S., and Fonollosa, J.: Multi-unit calibration rejects inherent
device variability of chemical sensor arrays, Sensor. Actuat. B-Chem., 265, 142–154, 2018. a
Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola,
F.: Calibration of a cluster of low-cost sensors for the measurement of air
pollution in ambient air, Sensors, 21–24, 2014.
a,
b
Spinelle, L., Gerboles, M., and Aleixandre, M.: Performance Evaluation of
Amperometric Sensors for the Monitoring of
O3 and
NO2 in Ambient Air at ppb
Level, Procedia Engineer., 120, 480–483,
https://doi.org/10.1016/j.proeng.2015.08.676, 2015a.
a
Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola,
F.: Field calibration of a cluster of low-cost available sensors for air
quality monitoring, Part A: Ozone and nitrogen dioxide, Sensor. Actuat.
B-Chem., 215, 249–257, 2015b.
a,
b,
c,
d
Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola,
F.: Field calibration of a cluster of low-cost commercially available sensors
for air quality monitoring, Part B: NO, CO and
CO2, Sensor. Actuat. B-Chem., 238, 706–715,
https://doi.org/10.1016/j.snb.2016.07.036,
2017.
a,
b,
c,
d
Wheeler, A. J., Smith-Doiron, M., Xu, X., Gilbert, N. L., and Brook, J. R.:
Intra-urban variability of air pollution in Windsor, Ontario—measurement
and modeling for human exposure assessment, Environ. Res., 106,
7–16, 2008. a
Wilson, J. G., Kingham, S., Pearce, J., and Sturman, A. P.: A review of
intraurban variations in particulate air pollution: Implications for
epidemiological research, Atmos. Environ., 39, 6444–6462, 2005. a
Wu, X., Fan, Z., Zhu, X., Jung, K., Ohman-Strickland, P., Weisel, C., and Lioy,
P.: Exposures to volatile organic compounds (VOCs) and associated health
risks of socio-economically disadvantaged population in a “hot spot” in
Camden, New Jersey, Atmos. Environ., 57, 72–79, 2012. a
Yan, K. and Zhang, D.: Improving the transfer ability of prediction models for
electronic noses, Sensor. Actuat. B-Chem., 220, 115–124, 2015. a
Zhang, L., Tian, F., Kadri, C., Xiao, B., Li, H., Pan, L., and Zhou, H.:
On-line sensor calibration transfer among electronic nose instruments for
monitoring volatile organic chemicals in indoor air quality, Sensor.
Actuat. B-Chem., 160, 899–909, 2011. a
Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., and R. Subramanian: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, Atmos. Meas. Tech., 11, 291–313,
https://doi.org/10.5194/amt-11-291-2018, 2018.
a,
b,
c,
d,
e,
f,
g