Articles | Volume 12, issue 8
https://doi.org/10.5194/amt-12-4211-2019
https://doi.org/10.5194/amt-12-4211-2019
Research article
 | 
06 Aug 2019
Research article |  | 06 Aug 2019

Evaluating and improving the reliability of gas-phase sensor system calibrations across new locations for ambient measurements and personal exposure monitoring

Sharad Vikram, Ashley Collier-Oxandale, Michael H. Ostertag, Massimiliano Menarini, Camron Chermak, Sanjoy Dasgupta, Tajana Rosing, Michael Hannigan, and William G. Griswold

Cited articles

AQI: Uniform Air Quality Index (AQI) and Daily Reporting, 40 C.F.R. Appendix G to Part 58, 2015. a
Arfire, A., Marjovi, A., and Martinoli, A.: Mitigating Slow Dynamics of Low-Cost Chemical Sensors for Mobile Air Quality Monitoring Sensor Networks, in: Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks, pp. 159–167, Junction Publishing, Graz, 2016. a
Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., and Hueglin, C.: Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application, Atmos. Meas. Tech., 11, 3717–3735, https://doi.org/10.5194/amt-11-3717-2018, 2018. a, b, c, d
Brunekreef, B. and Holgate, S. T.: Air pollution and health, Lancet, 360, 1233–1242, 2002. a
Casey, J., Collier-Oxandale, A., and Hannigan, M.: Performance of artificial neural networks and linear models to quantify 4 trace gas species in an oil and gas production region with low-cost sensors, Sens. Actuators B, submitted, 2018. a
Download
Short summary
Low-cost air quality sensors are enabling people to collect data to better understand their local environment and potential exposures. However, there is some concern regarding how reliable the calibrations of these sensors are in new and different environments. To explore this issue, our team colocated sensors at three different sites with high-quality monitoring instruments to compare to. We explored the transferability of calibration models as well as approaches to improve reliability.
Share