Articles | Volume 13, issue 7
Atmos. Meas. Tech., 13, 4035–4049, 2020
https://doi.org/10.5194/amt-13-4035-2020
Atmos. Meas. Tech., 13, 4035–4049, 2020
https://doi.org/10.5194/amt-13-4035-2020

Research article 27 Jul 2020

Research article | 27 Jul 2020

Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion

Yue Li et al.

Related authors

Improvement in tropospheric moisture retrievals from VIIRS through the use of infrared absorption bands constructed from VIIRS and CrIS data fusion
E. Eva Borbas, Elisabeth Weisz, Chris Moeller, W. Paul Menzel, and Bryan A. Baum
Atmos. Meas. Tech., 14, 1191–1203, https://doi.org/10.5194/amt-14-1191-2021,https://doi.org/10.5194/amt-14-1191-2021, 2021
Short summary
Evaluation of VIIRS Neural Network Cloud Detection against Current Operational Cloud Masks
Charles H. White, Andrew K. Heidinger, and Steven A. Ackerman
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-419,https://doi.org/10.5194/amt-2020-419, 2020
Revised manuscript under review for AMT
Short summary
A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid- and far-infrared
Richard J. Bantges, Helen E. Brindley, Jonathan E. Murray, Alan E. Last, Jacqueline E. Russell, Cathryn Fox, Stuart Fox, Chawn Harlow, Sebastian J. O'Shea, Keith N. Bower, Bryan A. Baum, Ping Yang, Hilke Oetjen, and Juliet C. Pickering
Atmos. Chem. Phys., 20, 12889–12903, https://doi.org/10.5194/acp-20-12889-2020,https://doi.org/10.5194/acp-20-12889-2020, 2020
Short summary
Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Robert E. Holz, and Andrew K. Heidinger
Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019,https://doi.org/10.5194/amt-12-6557-2019, 2019
Short summary
Use of spectral cloud emissivities and their related uncertainties to infer ice cloud boundaries: methodology and assessment using CALIPSO cloud products
Hye-Sil Kim, Bryan A. Baum, and Yong-Sang Choi
Atmos. Meas. Tech., 12, 5039–5054, https://doi.org/10.5194/amt-12-5039-2019,https://doi.org/10.5194/amt-12-5039-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving cloud type classification of ground-based images using region covariance descriptors
Yuzhu Tang, Pinglv Yang, Zeming Zhou, Delu Pan, Jianyu Chen, and Xiaofeng Zhao
Atmos. Meas. Tech., 14, 737–747, https://doi.org/10.5194/amt-14-737-2021,https://doi.org/10.5194/amt-14-737-2021, 2021
Short summary
Global cloud property models for real-time triage on board visible–shortwave infrared spectrometers
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, and Winston Olson-Duvall
Atmos. Meas. Tech., 13, 7047–7057, https://doi.org/10.5194/amt-13-7047-2020,https://doi.org/10.5194/amt-13-7047-2020, 2020
Short summary
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020,https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Microwave single-scattering properties of non-spheroidal raindrops
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020,https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary
Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020,https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary

Cited articles

Avery, M. A., Ryan, R. A., Getzewich, B. J., Vaughan, M. A., Winker, D. M., Hu, Y., Garnier, A., Pelon, J., and Verhappen, C. A.: CALIOP V4 Cloud Thermodynamic Phase Assignment and the Impact of Near-Nadir Viewing Angles, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-388, in review, 2020. 
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS cloud top property refinements for Collection 6, J. Appl. Meteorol. Clim., 51, 1145–1163, 2012. 
Heidinger, A. K., Evan, A. T., Foster, M. J., and Walther, A.: A naive Bayesian cloud detection scheme derived from CALIPSO and applied with PATMOS-x, J. Appl. Meteorol. Clim., 51, 1129–1144, 2012. 
Heidinger, A. K., Foster, M. J., Walther, A., and Zhao, X.: The Pathfinder Atmospheres-Extended AVHRR climate dataset, B. Am. Meteorol. Soc., 95, 909–922, https://doi.org/10.1175/BAMS-D-12-00246.1, 2014. 
Heidinger, A. K., Bearson, N., Foster, M. J., Li, Y., Wanzong, S., Ackerman, S., Holz, R. E., Platnick, S., and Meyer, K.: Using Sounder Data to Improve Cirrus Cloud Height Estimation from Satellite Imagers, J. Atmos. Ocean. Tech., 36, 1331–1342, 2019. 
Short summary
Use of VIIRS+CrIS fusion products, which provide VIIRS with MODIS-like IR sounding channels, improves cloud mask, cloud phase, and cloud top height retrievals when compared to those using VIIRS data only. NOAA CLAVR-x cloud retrievals for both S-NPP and NOAA-20 data are evaluated through comparisons to the CALIPSO v4 and MODIS Collection 6.1 cloud products. Cloud height retrievals show significant improvement for semitransparent ice clouds, with a reduction in retrieval uncertainties.