Articles | Volume 13, issue 7
https://doi.org/10.5194/amt-13-4035-2020
https://doi.org/10.5194/amt-13-4035-2020
Research article
 | 
27 Jul 2020
Research article |  | 27 Jul 2020

Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion

Yue Li, Bryan A. Baum, Andrew K. Heidinger, W. Paul Menzel, and Elisabeth Weisz

Related authors

Evaluation of Visible Infrared Imaging Radiometer Suite (VIIRS) neural network cloud detection against current operational cloud masks
Charles H. White, Andrew K. Heidinger, and Steven A. Ackerman
Atmos. Meas. Tech., 14, 3371–3394, https://doi.org/10.5194/amt-14-3371-2021,https://doi.org/10.5194/amt-14-3371-2021, 2021
Short summary
Improvement in tropospheric moisture retrievals from VIIRS through the use of infrared absorption bands constructed from VIIRS and CrIS data fusion
E. Eva Borbas, Elisabeth Weisz, Chris Moeller, W. Paul Menzel, and Bryan A. Baum
Atmos. Meas. Tech., 14, 1191–1203, https://doi.org/10.5194/amt-14-1191-2021,https://doi.org/10.5194/amt-14-1191-2021, 2021
Short summary
A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid- and far-infrared
Richard J. Bantges, Helen E. Brindley, Jonathan E. Murray, Alan E. Last, Jacqueline E. Russell, Cathryn Fox, Stuart Fox, Chawn Harlow, Sebastian J. O'Shea, Keith N. Bower, Bryan A. Baum, Ping Yang, Hilke Oetjen, and Juliet C. Pickering
Atmos. Chem. Phys., 20, 12889–12903, https://doi.org/10.5194/acp-20-12889-2020,https://doi.org/10.5194/acp-20-12889-2020, 2020
Short summary
Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Robert E. Holz, and Andrew K. Heidinger
Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019,https://doi.org/10.5194/amt-12-6557-2019, 2019
Short summary
Use of spectral cloud emissivities and their related uncertainties to infer ice cloud boundaries: methodology and assessment using CALIPSO cloud products
Hye-Sil Kim, Bryan A. Baum, and Yong-Sang Choi
Atmos. Meas. Tech., 12, 5039–5054, https://doi.org/10.5194/amt-12-5039-2019,https://doi.org/10.5194/amt-12-5039-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024,https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024,https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024,https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024,https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024,https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary

Cited articles

Avery, M. A., Ryan, R. A., Getzewich, B. J., Vaughan, M. A., Winker, D. M., Hu, Y., Garnier, A., Pelon, J., and Verhappen, C. A.: CALIOP V4 Cloud Thermodynamic Phase Assignment and the Impact of Near-Nadir Viewing Angles, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-388, in review, 2020. 
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS cloud top property refinements for Collection 6, J. Appl. Meteorol. Clim., 51, 1145–1163, 2012. 
Heidinger, A. K., Evan, A. T., Foster, M. J., and Walther, A.: A naive Bayesian cloud detection scheme derived from CALIPSO and applied with PATMOS-x, J. Appl. Meteorol. Clim., 51, 1129–1144, 2012. 
Heidinger, A. K., Foster, M. J., Walther, A., and Zhao, X.: The Pathfinder Atmospheres-Extended AVHRR climate dataset, B. Am. Meteorol. Soc., 95, 909–922, https://doi.org/10.1175/BAMS-D-12-00246.1, 2014. 
Heidinger, A. K., Bearson, N., Foster, M. J., Li, Y., Wanzong, S., Ackerman, S., Holz, R. E., Platnick, S., and Meyer, K.: Using Sounder Data to Improve Cirrus Cloud Height Estimation from Satellite Imagers, J. Atmos. Ocean. Tech., 36, 1331–1342, 2019. 
Short summary
Use of VIIRS+CrIS fusion products, which provide VIIRS with MODIS-like IR sounding channels, improves cloud mask, cloud phase, and cloud top height retrievals when compared to those using VIIRS data only. NOAA CLAVR-x cloud retrievals for both S-NPP and NOAA-20 data are evaluated through comparisons to the CALIPSO v4 and MODIS Collection 6.1 cloud products. Cloud height retrievals show significant improvement for semitransparent ice clouds, with a reduction in retrieval uncertainties.