Chen, F., Liang, X., and Ma, H.: Application of IVAP-Based Observation Operator in Radar Radial Velocity Assimilation: The Case of Typhoon Fitow, Mon. Weather Rev., 145, 4187–4203,
https://doi.org/10.1175/MWR-D-17-0002.1, 2017.
a
Cheynet, E., Jakobsen, J. B., Snæbjörnsson, J., Mann, J., Courtney, M., Lea, G., and Svardal, B.: Measurements of Surface-Layer Turbulence in a Wide Norwegian Fjord Using Synchronized Long-Range Doppler Wind Lidars, Remote Sens., 9, 977,
https://doi.org/10.3390/rs9100977, 2017.
a
Collier, C. G., Davies, F., Bozier, K. E., Holt, A. R., Middleton, D. R., Pearson, G. N., Siemen, S., Willetts, D. V., Upton, G. J. G., and Young, R. I.: Dual-Doppler Lidar Measurements for Improving Dispersion Models, B. Am. Meteorol. Soc., 86, 825–838,
https://doi.org/10.1175/BAMS-86-6-825, 2005.
a
Courtney, M., Wagner, R., and Lindelöw, P.: Testing and comparison of lidars for profile and turbulence measurements in wind energy, IOP C. Ser. Earth Env., 1, 012021,
https://doi.org/10.1088/1755-1315/1/1/012021, 2008.
a,
b,
c,
d
DJI: Ronin-MX User Manual, available at:
https://dl.djicdn.com/downloads/ronin-mx/en/Ronin-MX_User_Manual_V1.2_en_20160711.pdf
(last access: 28 January 2020), 2016.
a,
b
DJI: D-RTK User manual, available at:
https://dl.djicdn.com/downloads/D-RTK/20171026/D_RTK_User_manual_v1.0_en.pdf
(last access: 28 January 2020), 2017.
a,
b
DJI: Matrice 600 Pro User manual, available at:
https://dl.djicdn.com/downloads/m600 pro/20180417/Matrice_600_Pro_User_Manual_v1.0_EN.pdf (last access: 28 January 2020), 2018.
a,
b
EWEA: Wind energy scenarios for 2030, available at:
https://www.ewea.org/fileadmin/files/library/publications/reports/EWEA-Wind-energy-scenarios-2030.pdf
(last access: 28 January 2020), 2015. a
Fernando, H. J. S., Pardyjak, E. R., Di Sabatino, S., Chow, F. K., De Wekker, S. F. J., Hoch, S. W., Hacker, J., Pace, J. C., Pratt, T., Pu, Z., Steenburgh, W. J., Whiteman, C. D., Wang, Y., Zajic, D., Balsley, B., Dimitrova, R., Emmitt, G. D., Higgins, C. W., Hunt, J. C. R., Knievel, J. C., Lawrence, D., Liu, Y., Nadeau, D. F., Kit, E., Blomquist, B. W., Conry, P., Coppersmith, R. S., Creegan, E., Felton, M., Grachev, A., Gunawardena, N., Hang, C., Hocut, C. M., Huynh, G., Jeglum, M. E., Jensen, D., Kulandaivelu, V., Lehner, M., Leo, L. S., Liberzon, D., Massey, J. D., McEnerney, K., Pal, S., Price, T., Sghiatti, M., Silver, Z., Thompson, M., Zhang, H., and Zsedrovits, T.: The MATERHORN: Unraveling the Intricacies of Mountain Weather, B. Am. Meteorol. Soc., 96, 1945–1967,
https://doi.org/10.1175/BAMS-D-13-00131.1, 2015.
a
Fernando, H. J. S., Mann, J., Palma, J. M. L. M., Lundquist, J. K., Barthelmie, R. J., Belo-Pereira, M., Brown, W. O. J., Chow, F. K., Gerz, T., Hocut, C. M., Klein, P. M., Leo, L. S., Matos, J. C., Oncley, S. P., Pryor, S. C., Bariteau, L., Bell, T. M., Bodini, N., Carney, M. B., Courtney, M. S., Creegan, E. D., Dimitrova, R., Gomes, S., Hagen, M., Hyde, J. O., Kigle, S., Krishnamurthy, R., Lopes, J. C., Mazzaro, L., Neher, J. M. T., Menke, R., Murphy, P., Oswald, L., Otarola-Bustos, S., Pattantyus, A. K., Rodrigues, C. V., Schady, A., Sirin, N., Spuler, S., Svensson, E., Tomaszewski, J., Turner, D. D., van Veen, L., Vasiljević, N., Vassallo, D., Voss, S., Wildmann, N., and Wang, Y.: The Perdigão: Peering into Microscale Details of Mountain Winds, B. Am. Meteorol. Soc., 100, 799–819,
https://doi.org/10.1175/BAMS-D-17-0227.1, 2019.
a
Fleming, P., Annoni, J., Scholbrock, A., Quon, E., Dana, S., Schreck, S., Raach, S., Haizmann, F., and Schlipf, D.: Full-Scale Field Test of Wake Steering, J. Phys. Conf. Ser., 854, 012013,
https://doi.org/10.1088/1742-6596/854/1/012013, 2017.
a
Giebel, G., Schmidt Paulsen, U., Bange, J., La Cour-Harbo, A., Reuder, J., Mayer, S., van der Kroonenberg, A., and Mølgaard, J.: Autonomous Aerial Sensors for Wind Power Meteorology – A Pre-Project, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, 2012. a
Gottschall, J., Gribben, B., Stein, D., and Würth, I.: Floating lidar as an advanced offshore wind speed measurement technique: current technology status and gap analysis in regard to full maturity, WIREs Energy Environ., 6, e250,
https://doi.org/10.1002/wene.250, 2017.
a
Grubišić, V., Doyle, J. D., Kuettner, J., Mobbs, S., Smith, R. B., Whiteman, C. D., Dirks, R., Czyzyk, S., Cohn, S. A., Vosper, S., Weissmann, M., Haimov, S., De Wekker, S. F. J., Pan, L. L., and Chow, F. K.: THE TERRAIN-INDUCED ROTOR EXPERIMENTA: Field Campaign Overview Including Observational Highlights, B. Am. Meteorol. Soc., 89, 1513–1534,
https://doi.org/10.1175/2008BAMS2487.1, 2008.
a
Harris, M., Bryce, D. J., Coffey, A. S., Smith, D. A., Birkemeyer, J., and Knopf, U.: Advance measurement of gusts by laser anemometry, J. Wind Eng. Ind. Aerod., 95, 1637–1647,
https://doi.org/10.1016/j.jweia.2007.02.029, 2007.
a
Held, D. P. and Mann, J.: Comparison of methods to derive radial wind speed from a continuous-wave coherent lidar Doppler spectrum, Atmos. Meas. Tech., 11, 6339–6350,
https://doi.org/10.5194/amt-11-6339-2018, 2018.
a
Herges, T. G., Maniaci, D. C., Naughton, B. T., Mikkelsen, T., and Sjöholm, M.: High resolution wind t
urbine wake measurements with a scanning lidar, J. Phys. Conf. Ser., 854, 012021,
https://doi.org/10.1088/1742-6596/854/1/012021, 2017.
a
Krishnamurthy, R., Choukulkar, A., Calhoun, R., Fine, J., Oliver, A., and Barr, K.: Coherent Doppler lidar for wind farm characterization, Wind Energy, 16, 189–206,
https://doi.org/10.1002/we.539, 2013.
a
Lindelöw, P.: Upwind D1. Uncertainties in wind assessment with LIDAR, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, 2009. a
Lundquist, J. K., Wilczak, J. M., Ashton, R., Bianco, L., Brewer, W. A., Choukulkar, A., Clifton, A., Debnath, M., Delgado, R., Friedrich, K., Gunter, S., Hamidi, A., Iungo, G. V., Kaushik, A., Kosović, B., Langan, P., Lass, A., Lavin, E., Lee, J. C.-Y., McCaffrey, K. L., Newsom, R. K., Noone, D. C., Oncley, S. P., Quelet, P. T., Sandberg, S. P., Schroeder, J. L., Shaw, W. J., Sparling, L., Martin, C. S., Pe, A. S., Strobach, E., Tay, K., Vanderwende, B. J., Weickmann, A., Wolfe, D., and Worsnop, R.: Assessing State-of-the-Art Capabilities for Probing the Atmospheric Boundary Layer: The XPIA Field Campaign, B. Am. Meteorol. Soc., 98, 289–314,
https://doi.org/10.1175/BAMS-D-15-00151.1, 2017.
a
Mann, J., Angelou, N., Arnqvist, J., Callies, D., Cantero, E., Arroyo, R. C., Courtney, M., Cuxart, J., Dellwik, E., Gottschall, J., Ivanell, S., Kühn, P., Lea, G., Matos, J. C., Palma, J. M. L. M., Pauscher, L., Peña, A., Rodrigo, J. S., Söderberg, S., Vasiljevic, N., and Rodrigues, C. V.: Complex terrain experiments in the New European Wind Atlas, Philos. T. Roy. Soc. A, 375, 20160101,
https://doi.org/10.1098/rsta.2016.0101, 2017.
a
McCarthy, J., Wilson, J. W., and Fujita, T. T.: The Joint Airport Weather Studies Project, B. Am. Meteorol. Soc., 63, 15–22,
https://doi.org/10.1175/1520-0477(1982)063<0015:TJAWSP>2.0.CO;2, 1982.
a
Neininger, B.: Trends in airborne atmospheric observations,
presented at: EMS Annual Meeting, September 2017, Dublin, Ireland, available at:
https://presentations.copernicus.org/EMS2017-322_presentation.pdf
(last access: 28 January 2020), 2017. a
Neumann, P. P. and Bartholmai, M.: Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit, Sensor. Actuat. A-Phys., 235, 300–310,
https://doi.org/10.1016/j.sna.2015.09.036, 2015.
a,
b,
c
Newsom, R., Calhoun, R., Ligon, D., and Allwine, J.: Linearly Organized Turbulence Structures Observed Over a Suburban Area by Dual-Doppler Lidar, Bound.-Lay. Meteorol., 127, 111–130,
https://doi.org/10.1007/s10546-007-9243-0, 2008.
a
Nolan, P. J., Pinto, J., González-Rocha, J., Jensen, A., Vezzi, C. N., Bailey, S. C. C., De Boer, G., Diehl, C., Laurence, R., Powers, C. W., Foroutan, H., Ross, S. D., and Schmale, D. G.: Coordinated Unmanned Aircraft System (UAS) and Ground-Based Weather Measurements to Predict Lagrangian Coherent Structures (LCSs), Sensors, 18, 4448,
https://doi.org/10.3390/s18124448, 2018.
a,
b
Palomaki, R. T., Rose, N. T., van den Bossche, M., Sherman, T. J., and De Wekker, S. F. J.: Wind Estimation in the Lower Atmosphere Using Multirotor Aircraft, J. Atmos. Ocean. Tech., 34, 1183–1191,
https://doi.org/10.1175/JTECH-D-16-0177.1, 2017.
a,
b
Pedersen, A. and Courtney, M.: Flywheel Calibration of Coherent Doppler Wind Lidar, poster presnted at European Lidar Conference, 3–5 July 2018, Thessaloniki, Grækenland, ELC 2018: European Lidar Conference 2018, 2018. a
Peña, A., Hasager, C. B., Gryning, S., Courtney, M., Antoniou, I., and Mikkelsen, T.: Offshore wind profiling using light detection and ranging measurements, Wind Energy, 12, 105–124,
https://doi.org/10.1002/we.283, 2008.
a
Rautenberg, A., Graf, M. S., Wildmann, N., Platis, A., and Bange, J.: Reviewing Wind Measurement Approaches for Fixed-Wing Unmanned Aircraft, Atmosphere, 9, 422,
https://doi.org/10.3390/atmos9110422, 2018.
a,
b
Simley, E., Fürst, H., Haizmann, F., and Schlipf, D.: Optimizing Lidars for Wind Turbine Control Applications–Results from the IEA Wind Task 32 Workshop, Remote Sensing, 10, 863,
https://doi.org/10.3390/rs10060863, 2018.
a
Sjöholm, M., Angelou, N., Hansen, P., Hansen, K. H., Mikkelsen, T., Haga, S., Silgjerd, J. A., and Starsmore, N.: Two-Dimensional Rotorcraft Downwash Flow Field Measurements by Lidar-Based Wind Scanners with Agile Beam Steering, J. Atmos. Ocean. Tech., 31, 930–937,
https://doi.org/10.1175/JTECH-D-13-00010.1, 2014.
a
Strauch, R. G., Weber, B. L., Frisch, A. S., Little, C. G., Merritt, D. A., Moran, K. P., and Welsh, D. C.: The Precision and Relative Accuracy of Profiler Wind Measurements, J. Atmos. Ocean. Tech., 4, 563–571,
https://doi.org/10.1175/1520-0426(1987)004<0563:TPARAO>2.0.CO;2, 1987.
a
Vasiljević, N., Lea, G., Courtney, M., Cariou, J.-P., Mann, J., and Mikkelsen, T.: Long-Range WindScanner System, Remote Sens., 88, 896,
https://doi.org/10.3390/rs8110896, 2016.
a,
b
Vasiljević, N., L. M. Palma, J. M., Angelou, N., Carlos Matos, J., Menke, R., Lea, G., Mann, J., Courtney, M., Frölen Ribeiro, L., and M. G. C. Gomes, V. M.: Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments, Atmos. Meas. Tech., 10, 3463–3483,
https://doi.org/10.5194/amt-10-3463-2017, 2017.
a
Vasiljevic, N., Harris, M., Tegtmeier Pedersen, A., Rolighed Thorsen, G., Rassmussen, M., Munk Pedersen, C. B., Hansen, P., and Courtney, M.:
Drone-based wind lidar proof-of-concept measurements, DTU Data,
https://doi.org/10.11583/DTU.11743080, 2020.
a
Wagner, R., Pedersen, T., Courtney, M., Antoniou, I., Davoust, S., and Rivera, R.: Power curve measurement with a nacelle mounted lidar, Wind Energy, 17, 1441–1453,
https://doi.org/10.1002/we.1643, 2014.
a
Wildmann, N., Hofsäß, M., Weimer, F., Joos, A., and Bange, J.: MASC – a small Remotely Piloted Aircraft (RPA) for wind energy research, Adv. Sci. Res., 11, 55–61,
https://doi.org/10.5194/asr-11-55-2014, 2014.
a
WindEurope: Wind in power 2017, available at:
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2017.pdf (last access: 28 January 2020), 2018.
a,
b
Würth, I., Valldecabres, L., Simon, E., Möhrlen, C., Uzunoğlu, B., Gilbert, C., Giebel, G., Schlipf, D., and Kaifel, A.: Minute-Scale Forecasting of Wind Power–Results from the Collaborative Workshop of IEA Wind Task 32 and 36, Energies, 12, 712,
https://doi.org/10.3390/en12040712, 2019.
a