Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5369-2020
https://doi.org/10.5194/amt-13-5369-2020
Research article
 | 
09 Oct 2020
Research article |  | 09 Oct 2020

Quantification of toxic metals using machine learning techniques and spark emission spectroscopy

Seyyed Ali Davari and Anthony S. Wexler

Related authors

Quantification of major particulate matter species from a single filter type using infrared spectroscopy – application to a large-scale monitoring network
Bruno Debus, Andrew T. Weakley, Satoshi Takahama, Kathryn M. George, Anahita Amiri-Farahani, Bret Schichtel, Scott Copeland, Anthony S. Wexler, and Ann M. Dillner
Atmos. Meas. Tech., 15, 2685–2702, https://doi.org/10.5194/amt-15-2685-2022,https://doi.org/10.5194/amt-15-2685-2022, 2022
Short summary
Conservation laws in a neural network architecture: enforcing the atom balance of a Julia-based photochemical model (v0.2.0)
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 15, 3417–3431, https://doi.org/10.5194/gmd-15-3417-2022,https://doi.org/10.5194/gmd-15-3417-2022, 2022
Short summary
An instrument for direct measurement of emissions: cooling tower example
Christopher D. Wallis, Mason D. Leandro, Patrick Y. Chuang, and Anthony S. Wexler
Atmos. Meas. Tech., 15, 2547–2556, https://doi.org/10.5194/amt-15-2547-2022,https://doi.org/10.5194/amt-15-2547-2022, 2022
Short summary
A mass- and energy-conserving framework for using machine learning to speed computations: a photochemistry example
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 13, 4435–4442, https://doi.org/10.5194/gmd-13-4435-2020,https://doi.org/10.5194/gmd-13-4435-2020, 2020
Short summary
Atmospheric particulate matter characterization by Fourier transform infrared spectroscopy: a review of statistical calibration strategies for carbonaceous aerosol quantification in US measurement networks
Satoshi Takahama, Ann M. Dillner, Andrew T. Weakley, Matteo Reggente, Charlotte Bürki, Mária Lbadaoui-Darvas, Bruno Debus, Adele Kuzmiakova, and Anthony S. Wexler
Atmos. Meas. Tech., 12, 525–567, https://doi.org/10.5194/amt-12-525-2019,https://doi.org/10.5194/amt-12-525-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Characterization of the Vaporization Inlet for Aerosols (VIA) for online measurements of particulate highly oxygenated organic molecules (HOMs)
Jian Zhao, Valter Mickwitz, Yuanyuan Luo, Ella Häkkinen, Frans Graeffe, Jiangyi Zhang, Hilkka Timonen, Manjula Canagaratna, Jordan E. Krechmer, Qi Zhang, Markku Kulmala, Juha Kangasluoma, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 17, 1527–1543, https://doi.org/10.5194/amt-17-1527-2024,https://doi.org/10.5194/amt-17-1527-2024, 2024
Short summary
Development and characterization of a high-performance single-particle aerosol mass spectrometer (HP-SPAMS)
Xubing Du, Qinhui Xie, Qing Huang, Xuan Li, Junlin Yang, Zhihui Hou, Jingjing Wang, Xue Li, Zhen Zhou, Zhengxu Huang, Wei Gao, and Lei Li
Atmos. Meas. Tech., 17, 1037–1050, https://doi.org/10.5194/amt-17-1037-2024,https://doi.org/10.5194/amt-17-1037-2024, 2024
Short summary
Micro-PINGUIN: Microtiter plate-based ice nucleation detection in gallium with an infrared camera
Corina Wieber, Mads Rosenhøj Jeppesen, Kai Finster, Claus Melvad, and Tina Šantl-Temkiv
EGUsphere, https://doi.org/10.1101/2023.09.27.559697,https://doi.org/10.1101/2023.09.27.559697, 2024
Short summary
Quality assurance and quality control of atmospheric organosulfates measured using hydrophilic interaction liquid chromatography (HILIC)
Ping Liu, Xiang Ding, Yu-Qing Zhang, Daniel J. Bryant, and Xin-Ming Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-250,https://doi.org/10.5194/amt-2023-250, 2024
Revised manuscript accepted for AMT
Short summary
Characterization of the planar differential mobility analyzer (DMA P5): resolving power, transmission efficiency and its application to atmospheric relevant cluster measurements
Zhengning Xu, Jian Gao, Zhuanghao Xu, Michel Attoui, Xiangyu Pei, Mario Amo-González, Kewei Zhang, and Zhibin Wang
Atmos. Meas. Tech., 16, 5995–6006, https://doi.org/10.5194/amt-16-5995-2023,https://doi.org/10.5194/amt-16-5995-2023, 2023
Short summary

Cited articles

Abbasi, H., Rauter, G., Guzman, R., Cattin, P. C., and Zam, A.: Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laserosteotomy, J. Biomed. Opt., 23, 071206, https://doi.org/10.1117/1.JBO.23.7.071206, 2018. a
Axente, E., Hermann, J., Socol, G., Mercadier, L., Beldjilali, S. A., Cirisan, M., Luculescu, C. R., Ristoscu, C., Mihailescu, I. N., and Craciun, V.: Accurate analysis of indium–zinc oxide thin films via laser-induced breakdown spectroscopy based on plasma modeling, J. Anal. Atom. Spectrom., 29, 553–564, 2014. a
Baudelet, M., Guyon, L., Yu, J., Wolf, J.-P., Amodeo, T., Fréjafon, E., and Laloi, P.: Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime, J. Appl. Phys., 99, 084701, https://doi.org/10.1063/1.2187107, 2006. a
Boucher, T. F., Ozanne, M. V., Carmosino, M. L., Dyar, M. D., Mahadevan, S., Breves, E. A., Lepore, K. H., and Clegg, S. M.: A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy, Spectrochim. Acta B, 107, 1–10, 2015. a
Braga, J. W. B., Trevizan, L. C., Nunes, L. C., Rufini, I. A., Santos Jr, D., and Krug, F. J.: Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry, Spectrochim. Acta B, 65, 66–74, 2010. a, b
Download
Short summary
Traditional instruments for detection and quantification of toxic metals in the atmosphere are expensive. In this study, we have designed, fabricated, and tested a low-cost instrument, which employs cheap components to detect and quantify toxic metals. Advanced machine learning (ML) techniques have been used to improve the instrument's performance. This study demonstrates how the combination of low-cost sensors with ML can address problems that traditionally have been too expensive to be solved.