Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5369-2020
https://doi.org/10.5194/amt-13-5369-2020
Research article
 | 
09 Oct 2020
Research article |  | 09 Oct 2020

Quantification of toxic metals using machine learning techniques and spark emission spectroscopy

Seyyed Ali Davari and Anthony S. Wexler

Related authors

A novel methodology for assessing the hygroscopicity of aerosol filter samples
Nagendra Raparthi, Anthony S. Wexler, and Ann M. Dillner
Atmos. Meas. Tech., 18, 603–618, https://doi.org/10.5194/amt-18-603-2025,https://doi.org/10.5194/amt-18-603-2025, 2025
Short summary
Quantification of major particulate matter species from a single filter type using infrared spectroscopy – application to a large-scale monitoring network
Bruno Debus, Andrew T. Weakley, Satoshi Takahama, Kathryn M. George, Anahita Amiri-Farahani, Bret Schichtel, Scott Copeland, Anthony S. Wexler, and Ann M. Dillner
Atmos. Meas. Tech., 15, 2685–2702, https://doi.org/10.5194/amt-15-2685-2022,https://doi.org/10.5194/amt-15-2685-2022, 2022
Short summary
Conservation laws in a neural network architecture: enforcing the atom balance of a Julia-based photochemical model (v0.2.0)
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 15, 3417–3431, https://doi.org/10.5194/gmd-15-3417-2022,https://doi.org/10.5194/gmd-15-3417-2022, 2022
Short summary
An instrument for direct measurement of emissions: cooling tower example
Christopher D. Wallis, Mason D. Leandro, Patrick Y. Chuang, and Anthony S. Wexler
Atmos. Meas. Tech., 15, 2547–2556, https://doi.org/10.5194/amt-15-2547-2022,https://doi.org/10.5194/amt-15-2547-2022, 2022
Short summary
A mass- and energy-conserving framework for using machine learning to speed computations: a photochemistry example
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 13, 4435–4442, https://doi.org/10.5194/gmd-13-4435-2020,https://doi.org/10.5194/gmd-13-4435-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
A novel methodology for assessing the hygroscopicity of aerosol filter samples
Nagendra Raparthi, Anthony S. Wexler, and Ann M. Dillner
Atmos. Meas. Tech., 18, 603–618, https://doi.org/10.5194/amt-18-603-2025,https://doi.org/10.5194/amt-18-603-2025, 2025
Short summary
Direct calibration using atmospheric particles and performance evaluation of Particle Size Magnifier (PSM) 2.0 for sub-10 nm particle measurements
Yiliang Liu, Arttu Yli-Kujala, Fabian Schmidt-Ott, Sebastian Holm, Lauri Ahonen, Tommy Chan, Joonas Enroth, Joonas Vanhanen, Runlong Cai, Tuukka Petäjä, Markku Kulmala, Yang Chen, and Juha Kangasluoma
Atmos. Meas. Tech., 18, 431–442, https://doi.org/10.5194/amt-18-431-2025,https://doi.org/10.5194/amt-18-431-2025, 2025
Short summary
Merging holography, fluorescence, and machine learning for in situ continuous characterization and classification of airborne microplastics
Nicholas D. Beres, Julia Burkart, Elias Graf, Yanick Zeder, Lea Ann Dailey, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 6945–6964, https://doi.org/10.5194/amt-17-6945-2024,https://doi.org/10.5194/amt-17-6945-2024, 2024
Short summary
Rapid quantitative analysis of semi-volatile organic compounds in indoor surface film using direct analysis in real time mass spectrometry: a case study on phthalates
Ying Zhou, Longkun He, Jiang Tan, Jiang Zhou, and Yingjun Liu
Atmos. Meas. Tech., 17, 6415–6423, https://doi.org/10.5194/amt-17-6415-2024,https://doi.org/10.5194/amt-17-6415-2024, 2024
Short summary
Determining optimal sampling conditions in the TSI Nanometer Aerosol Sampler 3089
Behnaz Alinaghipour, Sadegh Niazi, Robert Groth, Branka Miljevic, and Zoran Ristovski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2161,https://doi.org/10.5194/egusphere-2024-2161, 2024
Short summary

Cited articles

Abbasi, H., Rauter, G., Guzman, R., Cattin, P. C., and Zam, A.: Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laserosteotomy, J. Biomed. Opt., 23, 071206, https://doi.org/10.1117/1.JBO.23.7.071206, 2018. a
Axente, E., Hermann, J., Socol, G., Mercadier, L., Beldjilali, S. A., Cirisan, M., Luculescu, C. R., Ristoscu, C., Mihailescu, I. N., and Craciun, V.: Accurate analysis of indium–zinc oxide thin films via laser-induced breakdown spectroscopy based on plasma modeling, J. Anal. Atom. Spectrom., 29, 553–564, 2014. a
Baudelet, M., Guyon, L., Yu, J., Wolf, J.-P., Amodeo, T., Fréjafon, E., and Laloi, P.: Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime, J. Appl. Phys., 99, 084701, https://doi.org/10.1063/1.2187107, 2006. a
Boucher, T. F., Ozanne, M. V., Carmosino, M. L., Dyar, M. D., Mahadevan, S., Breves, E. A., Lepore, K. H., and Clegg, S. M.: A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy, Spectrochim. Acta B, 107, 1–10, 2015. a
Braga, J. W. B., Trevizan, L. C., Nunes, L. C., Rufini, I. A., Santos Jr, D., and Krug, F. J.: Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry, Spectrochim. Acta B, 65, 66–74, 2010. a, b
Download
Short summary
Traditional instruments for detection and quantification of toxic metals in the atmosphere are expensive. In this study, we have designed, fabricated, and tested a low-cost instrument, which employs cheap components to detect and quantify toxic metals. Advanced machine learning (ML) techniques have been used to improve the instrument's performance. This study demonstrates how the combination of low-cost sensors with ML can address problems that traditionally have been too expensive to be solved.