Articles | Volume 13, issue 12
https://doi.org/10.5194/amt-13-6521-2020
https://doi.org/10.5194/amt-13-6521-2020
Research article
 | 
04 Dec 2020
Research article |  | 04 Dec 2020

Tomographic retrieval algorithm of OH concentration profiles using double spatial heterodyne spectrometers

Yuan An, Jinji Ma, Yibo Gao, Wei Xiong, and Xianhua Wang

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
GNSS radio occultation soundings from commercial off-the-shelf receivers on board balloon platforms
Kevin J. Nelson, Feiqin Xie, Bryan C. Chan, Ashish Goel, Jonathan Kosh, Tyler G. R. Reid, Corey R. Snyder, and Paul M. Tarantino
Atmos. Meas. Tech., 16, 941–954, https://doi.org/10.5194/amt-16-941-2023,https://doi.org/10.5194/amt-16-941-2023, 2023
Short summary
Complementarity of wind measurements from co-located X-band weather radar and Doppler lidar
Jenna Ritvanen, Ewan O'Connor, Dmitri Moisseev, Raisa Lehtinen, Jani Tyynelä, and Ludovic Thobois
Atmos. Meas. Tech., 15, 6507–6519, https://doi.org/10.5194/amt-15-6507-2022,https://doi.org/10.5194/amt-15-6507-2022, 2022
Short summary
Evaluation of the New York State Mesonet Profiler Network data
Bhupal Shrestha, Jerald A. Brotzge, and Junhong Wang
Atmos. Meas. Tech., 15, 6011–6033, https://doi.org/10.5194/amt-15-6011-2022,https://doi.org/10.5194/amt-15-6011-2022, 2022
Short summary
Quantification of motion-induced measurement error on floating lidar systems
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 15, 5323–5341, https://doi.org/10.5194/amt-15-5323-2022,https://doi.org/10.5194/amt-15-5323-2022, 2022
Short summary
Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-234,https://doi.org/10.5194/amt-2022-234, 2022
Revised manuscript accepted for AMT
Short summary

Cited articles

Aruga, T. and Igarashi, T.: Vertical distribution of ozone: a new method of determination using satellite measurements, Appl. Optics, 15, 261–272, https://doi.org/10.1364/AO.15.000261, 1976. 
Aruga, T. and Heath, D. F.: An improved method for determining the vertical ozone distribution using satellite measurements, J. Geomagn. Geoelectr., 40, 1339–1363, https://doi.org/10.5636/jgg.40.1339, 1988. 
Cageao, R. P., Blavier, J., Mcguire, J. P., Jiang, Y., Nemtchinov, V., Mills, F. P., and Sander, S. P.: High-resolution Fourier-transform ultraviolet–visible spectrometer for the measurement of atmospheric trace species: application to OH, Appl. Optics, 40, 2024–2030, https://doi.org/10.1364/AO.40.002024, 2001. 
Cheung, R., Li, K. F., Wang, S., Pongetti, T. J., Cageao, R. P., Sander, S. P., and Yung, Y. L.: Atmospheric hydroxyl radical (OH) abundances from ground-based ultraviolet solar spectra: an improved retrieval method, Appl. Optics, 47, 6277–6284, https://doi.org/10.1364/AO.47.006277, 2008. 
Conway, R. R., Stevens, M. H., Brown, C. M., Cardon, J. G., Zasadil, S. E., and Mount, G. H.: Middle Atmosphere High Resolution Spectrograph Investigation, J. Geophys. Res., 104, 16327–16348, https://doi.org/10.1029/1998JD100036, 1999. 
Download
Short summary
The hydroxyl radical (OH) plays a significant role in atmospheric chemical and physical reactions. The superiority and feasibility of a new satellite sensor, which consists of two spatial heterodyne spectrometers in the orthogonal layout to monitor OH in the middle and upper atmosphere, is proved by the forward model. An inversion algorithm to obtain OH concentrations based on the simulated observation data of sensors and the errors in results are also given.