Articles | Volume 13, issue 12
https://doi.org/10.5194/amt-13-6521-2020
https://doi.org/10.5194/amt-13-6521-2020
Research article
 | 
04 Dec 2020
Research article |  | 04 Dec 2020

Tomographic retrieval algorithm of OH concentration profiles using double spatial heterodyne spectrometers

Yuan An, Jinji Ma, Yibo Gao, Wei Xiong, and Xianhua Wang

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances
Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, and Daniel Cummins
Atmos. Meas. Tech., 17, 4757–4775, https://doi.org/10.5194/amt-17-4757-2024,https://doi.org/10.5194/amt-17-4757-2024, 2024
Short summary
Evaluation of the effects of different lightning protection rods on the data quality of C-band weather radars
Cornelius Hald, Maximilian Schaper, Annette Böhm, Michael Frech, Jan Petersen, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 17, 4695–4707, https://doi.org/10.5194/amt-17-4695-2024,https://doi.org/10.5194/amt-17-4695-2024, 2024
Short summary
Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers
Samuel K. Kristoffersen, William E. Ward, and Chris E. Meek
Atmos. Meas. Tech., 17, 3995–4014, https://doi.org/10.5194/amt-17-3995-2024,https://doi.org/10.5194/amt-17-3995-2024, 2024
Short summary
A new dual-frequency stratospheric–tropospheric and meteor radar: system description and first results
Qingchen Xu, Iain Murray Reid, Bing Cai, Christian Adami, Zengmao Zhang, Mingliang Zhao, and Wen Li
Atmos. Meas. Tech., 17, 2957–2975, https://doi.org/10.5194/amt-17-2957-2024,https://doi.org/10.5194/amt-17-2957-2024, 2024
Short summary
The Doppler wind, temperature, and aerosol RMR lidar system at Kühlungsborn, Germany – Part 1: Technical specifications and capabilities
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
Atmos. Meas. Tech., 17, 2789–2809, https://doi.org/10.5194/amt-17-2789-2024,https://doi.org/10.5194/amt-17-2789-2024, 2024
Short summary

Cited articles

Aruga, T. and Igarashi, T.: Vertical distribution of ozone: a new method of determination using satellite measurements, Appl. Optics, 15, 261–272, https://doi.org/10.1364/AO.15.000261, 1976. 
Aruga, T. and Heath, D. F.: An improved method for determining the vertical ozone distribution using satellite measurements, J. Geomagn. Geoelectr., 40, 1339–1363, https://doi.org/10.5636/jgg.40.1339, 1988. 
Cageao, R. P., Blavier, J., Mcguire, J. P., Jiang, Y., Nemtchinov, V., Mills, F. P., and Sander, S. P.: High-resolution Fourier-transform ultraviolet–visible spectrometer for the measurement of atmospheric trace species: application to OH, Appl. Optics, 40, 2024–2030, https://doi.org/10.1364/AO.40.002024, 2001. 
Cheung, R., Li, K. F., Wang, S., Pongetti, T. J., Cageao, R. P., Sander, S. P., and Yung, Y. L.: Atmospheric hydroxyl radical (OH) abundances from ground-based ultraviolet solar spectra: an improved retrieval method, Appl. Optics, 47, 6277–6284, https://doi.org/10.1364/AO.47.006277, 2008. 
Conway, R. R., Stevens, M. H., Brown, C. M., Cardon, J. G., Zasadil, S. E., and Mount, G. H.: Middle Atmosphere High Resolution Spectrograph Investigation, J. Geophys. Res., 104, 16327–16348, https://doi.org/10.1029/1998JD100036, 1999. 
Download
Short summary
The hydroxyl radical (OH) plays a significant role in atmospheric chemical and physical reactions. The superiority and feasibility of a new satellite sensor, which consists of two spatial heterodyne spectrometers in the orthogonal layout to monitor OH in the middle and upper atmosphere, is proved by the forward model. An inversion algorithm to obtain OH concentrations based on the simulated observation data of sensors and the errors in results are also given.