Articles | Volume 13, issue 1
https://doi.org/10.5194/amt-13-73-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-73-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stability of halocarbons in air samples stored in stainless- steel canisters
Tanja J. Schuck
CORRESPONDING AUTHOR
Goethe University Frankfurt, Institute for Atmospheric and Environmental Sciences, Frankfurt, Germany
Ann-Katrin Blank
Goethe University Frankfurt, Institute for Atmospheric and Environmental Sciences, Frankfurt, Germany
Elisa Rittmeier
Goethe University Frankfurt, Institute for Atmospheric and Environmental Sciences, Frankfurt, Germany
Jonathan Williams
Max Planck Institute for Chemistry, Mainz, Germany
Carl A. M. Brenninkmeijer
Max Planck Institute for Chemistry, Mainz, Germany
Andreas Engel
Goethe University Frankfurt, Institute for Atmospheric and Environmental Sciences, Frankfurt, Germany
Andreas Zahn
Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany
Related authors
Johannes C. Laube, Tanja J. Schuck, Huilin Chen, Markus Geldenhuys, Steven van Heuven, Timo Keber, Maria Elena Popa, Elinor Tuffnell, Bärbel Vogel, Thomas Wagenhäuser, Alessandro Zanchetta, and Andreas Engel
EGUsphere, https://doi.org/10.5194/egusphere-2024-4034, https://doi.org/10.5194/egusphere-2024-4034, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A large balloon was launched in summer 2021 in the Arctic to carry instruments for trace gas measurements up to 32 km, above the reach of aircraft. The main aims were to evaluate different techniques and atmospheric processes. We focus on halogenated greenhouse gases and ozone-depleting substances. For this, air was collected with the AirCore technique and a cryogenic air sampler and measured after the flight. A companion paper reports observations of major greenhouse gases.
Markus Jesswein, Valentin Lauther, Nicolas Emig, Peter Hoor, Timo Keber, Hans-Christoph Lachnitt, Linda Ort, Tanja Schuck, Johannes Strobel, Ronja Van Luijt, C. Michael Volk, Franziska Weyland, and Andreas Engel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3946, https://doi.org/10.5194/egusphere-2024-3946, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The study investigates transport within the Asian Summer Monsoon, focussing on how CH2Cl2 reaches the subarctic tropopause region. Using data from the PHILEAS campaign in 2023, events with increased mixing ratios were detected. Their origin, the transport paths to the tropopause region and the potential entry into the stratosphere were analysed. The East Asian Summer Monsoon was identified as the main transport pathway, with only a small contribution to the stratosphere in the following days.
Tanja J. Schuck, Johannes Degen, Timo Keber, Katharina Meixner, Thomas Wagenhäuser, Mélanie Ghysels, Georges Durry, Nadir Amarouche, Alessandro Zanchetta, Steven van Heuven, Huilin Chen, Johannes C. Laube, Sophie Baartman, Carina van der Veen, Maria Elena Popa, and Andreas Engel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3279, https://doi.org/10.5194/egusphere-2024-3279, 2024
Short summary
Short summary
A balloon was launched in 2021 in the Arctic to carry instruments for trace gase measurements up to 32 km. One purpose was to compare measurement techniques. We focus on the major greenhouse gases. To measure these, air was sampled with the AirCore technique and with flask sampling and analysed after the flight. In flight, observations were done with an optical method. In a companion paper we report on observations of chlorine and bromine containing trace gases.
Felicia Kolonjari, Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, David A. Plummer, Andreas Engel, Stephen A. Montzka, David E. Oram, Tanja Schuck, Gabriele P. Stiller, and Geoffrey C. Toon
Atmos. Meas. Tech., 17, 2429–2449, https://doi.org/10.5194/amt-17-2429-2024, https://doi.org/10.5194/amt-17-2429-2024, 2024
Short summary
Short summary
The Canadian Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) satellite instrument is currently providing the only vertically resolved chlorodifluoromethane (HCFC-22) measurements from space. This study assesses the most current ACE-FTS HCFC-22 data product in the upper troposphere and lower stratosphere, as well as modelled HCFC-22 from a 39-year run of the Canadian Middle Atmosphere Model (CMAM39) in the same region.
Tanja J. Schuck, Johannes Degen, Eric Hintsa, Peter Hoor, Markus Jesswein, Timo Keber, Daniel Kunkel, Fred Moore, Florian Obersteiner, Matt Rigby, Thomas Wagenhäuser, Luke M. Western, Andreas Zahn, and Andreas Engel
Atmos. Chem. Phys., 24, 689–705, https://doi.org/10.5194/acp-24-689-2024, https://doi.org/10.5194/acp-24-689-2024, 2024
Short summary
Short summary
We study the interhemispheric gradient of sulfur hexafluoride (SF6), a strong long-lived greenhouse gas. Its emissions are stronger in the Northern Hemisphere; therefore, mixing ratios in the Southern Hemisphere lag behind. Comparing the observations to a box model, the model predicts air in the Southern Hemisphere to be older. For a better agreement, the emissions used as model input need to be increased (and their spatial pattern changed), and we need to modify north–south transport.
Ioannis Katharopoulos, Dominique Rust, Martin K. Vollmer, Dominik Brunner, Stefan Reimann, Simon J. O'Doherty, Dickon Young, Kieran M. Stanley, Tanja Schuck, Jgor Arduini, Lukas Emmenegger, and Stephan Henne
Atmos. Chem. Phys., 23, 14159–14186, https://doi.org/10.5194/acp-23-14159-2023, https://doi.org/10.5194/acp-23-14159-2023, 2023
Short summary
Short summary
The effectiveness of climate change mitigation needs to be scrutinized by monitoring greenhouse gas (GHG) emissions. Countries report their emissions to the UN in a bottom-up manner. By combining atmospheric observations and transport models someone can independently validate emission estimates in a top-down fashion. We report Swiss emissions of synthetic GHGs based on kilometer-scale transport and inverse modeling, highlighting the role of appropriate resolution in complex terrain.
Thomas Wagenhäuser, Markus Jesswein, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 23, 3887–3903, https://doi.org/10.5194/acp-23-3887-2023, https://doi.org/10.5194/acp-23-3887-2023, 2023
Short summary
Short summary
A common assumption to derive mean age from trace gas observations is that all air enters the stratosphere through the tropical tropopause. Using SF6 as an age tracer, this leads to negative mean age values close to the Northern Hemispheric extra-tropical tropopause. Our improved method also considers extra-tropical input into the stratosphere. More realistic values are derived using this method. Interhemispheric differences in mean age are found when comparing data from two aircraft campaigns.
Markus Jesswein, Rafael P. Fernandez, Lucas Berná, Alfonso Saiz-Lopez, Jens-Uwe Grooß, Ryan Hossaini, Eric C. Apel, Rebecca S. Hornbrook, Elliot L. Atlas, Donald R. Blake, Stephen Montzka, Timo Keber, Tanja Schuck, Thomas Wagenhäuser, and Andreas Engel
Atmos. Chem. Phys., 22, 15049–15070, https://doi.org/10.5194/acp-22-15049-2022, https://doi.org/10.5194/acp-22-15049-2022, 2022
Short summary
Short summary
This study presents the global and seasonal distribution of the two major brominated short-lived substances CH2Br2 and CHBr3 in the upper troposphere and lower stratosphere based on observations from several aircraft campaigns. They show similar seasonality for both hemispheres, except in the respective hemispheric autumn lower stratosphere. A comparison with the TOMCAT and CAM-Chem models shows good agreement in the annual mean but larger differences in the seasonal consideration.
Luke M. Western, Alison L. Redington, Alistair J. Manning, Cathy M. Trudinger, Lei Hu, Stephan Henne, Xuekun Fang, Lambert J. M. Kuijpers, Christina Theodoridi, David S. Godwin, Jgor Arduini, Bronwyn Dunse, Andreas Engel, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Michela Maione, Jens Mühle, Simon O'Doherty, Hyeri Park, Sunyoung Park, Stefan Reimann, Peter K. Salameh, Daniel Say, Roland Schmidt, Tanja Schuck, Carolina Siso, Kieran M. Stanley, Isaac Vimont, Martin K. Vollmer, Dickon Young, Ronald G. Prinn, Ray F. Weiss, Stephen A. Montzka, and Matthew Rigby
Atmos. Chem. Phys., 22, 9601–9616, https://doi.org/10.5194/acp-22-9601-2022, https://doi.org/10.5194/acp-22-9601-2022, 2022
Short summary
Short summary
The production of ozone-destroying gases is being phased out. Even though production of one of the main ozone-depleting gases, called HCFC-141b, has been declining for many years, the amount that is being released to the atmosphere has been increasing since 2017. We do not know for sure why this is. A possible explanation is that HCFC-141b that was used to make insulating foams many years ago is only now escaping to the atmosphere, or a large part of its production is not being reported.
Markus Jesswein, Heiko Bozem, Hans-Christoph Lachnitt, Peter Hoor, Thomas Wagenhäuser, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 21, 17225–17241, https://doi.org/10.5194/acp-21-17225-2021, https://doi.org/10.5194/acp-21-17225-2021, 2021
Short summary
Short summary
This study presents and compares inorganic chlorine (Cly) derived from observations with the HALO research aircraft in the Antarctic late winter–early fall 2019 and the Arctic winter 2015–2016. Trend-corrected correlations from the Northern Hemisphere show excellent agreement with those from the Southern Hemisphere. After observation allocation inside and outside the vortex based on N2O measurements, results of the two campaigns reveal substantial differences in Cly within the respective vortex.
Meike K. Rotermund, Vera Bense, Martyn P. Chipperfield, Andreas Engel, Jens-Uwe Grooß, Peter Hoor, Tilman Hüneke, Timo Keber, Flora Kluge, Benjamin Schreiner, Tanja Schuck, Bärbel Vogel, Andreas Zahn, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 15375–15407, https://doi.org/10.5194/acp-21-15375-2021, https://doi.org/10.5194/acp-21-15375-2021, 2021
Short summary
Short summary
Airborne total bromine (Brtot) and tracer measurements suggest Brtot-rich air masses persistently protruded into the lower stratosphere (LS), creating a high Brtot region over the North Atlantic in fall 2017. The main source is via isentropic transport by the Asian monsoon and to a lesser extent transport across the extratropical tropopause as quantified by a Lagrange model. The transport of Brtot via Central American hurricanes is also observed. Lastly, the impact of Brtot on LS O3 is assessed.
Alistair J. Manning, Alison L. Redington, Daniel Say, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Martin K. Vollmer, Jens Mühle, Jgor Arduini, Gerard Spain, Adam Wisher, Michela Maione, Tanja J. Schuck, Kieran Stanley, Stefan Reimann, Andreas Engel, Paul B. Krummel, Paul J. Fraser, Christina M. Harth, Peter K. Salameh, Ray F. Weiss, Ray Gluckman, Peter N. Brown, John D. Watterson, and Tim Arnold
Atmos. Chem. Phys., 21, 12739–12755, https://doi.org/10.5194/acp-21-12739-2021, https://doi.org/10.5194/acp-21-12739-2021, 2021
Short summary
Short summary
This paper estimates UK emissions of important greenhouse gases (hydrofluorocarbons (HFCs)) using high-quality atmospheric observations and atmospheric modelling. We compare these estimates with those submitted by the UK to the United Nations. We conclude that global concentrations of these gases are still increasing. Our estimates for the UK are 73 % of those reported and that the UK emissions are now falling, demonstrating an impact of UK government policy.
Fides Lefrancois, Markus Jesswein, Markus Thoma, Andreas Engel, Kieran Stanley, and Tanja Schuck
Atmos. Meas. Tech., 14, 4669–4687, https://doi.org/10.5194/amt-14-4669-2021, https://doi.org/10.5194/amt-14-4669-2021, 2021
Short summary
Short summary
Synthetic halocarbons can contribute to stratospheric ozone depletion or to climate change. In many applications they have been replaced over the last years. The presented non-target analysis shows an application approach to quantify those replacements retrospectively, using recorded data of air measurements with gas chromatography coupled to time-of-flight mass spectrometry. We focus on the retrospective analysis of the fourth-generation halocarbons, detected at Taunus Observatory in Germany.
Marius Hauck, Harald Bönisch, Peter Hoor, Timo Keber, Felix Ploeger, Tanja J. Schuck, and Andreas Engel
Atmos. Chem. Phys., 20, 8763–8785, https://doi.org/10.5194/acp-20-8763-2020, https://doi.org/10.5194/acp-20-8763-2020, 2020
Short summary
Short summary
This study features an extended inversion method that includes transport across the extratropical tropopause to derive age spectra in the lowermost stratosphere from in situ trace gas measurements. The refined method is validated in a model setup and applied to data gained with the HALO research aircraft. Results are congruent with the findings of previous studies so that the method provides a promising toolset for the analysis of stratospheric dynamics based on observations in the future.
Timo Keber, Harald Bönisch, Carl Hartick, Marius Hauck, Fides Lefrancois, Florian Obersteiner, Akima Ringsdorf, Nils Schohl, Tanja Schuck, Ryan Hossaini, Phoebe Graf, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 20, 4105–4132, https://doi.org/10.5194/acp-20-4105-2020, https://doi.org/10.5194/acp-20-4105-2020, 2020
Short summary
Short summary
In this paper we summarize observations of short-lived halocarbons in the tropopause region. We show that, especially during winter, the levels of short-lived bromine gases at the extratropical tropopause are higher than at the tropical tropopause. We discuss the impact of the distributions on stratospheric bromine levels and compare our observations to two models with four different emission scenarios.
Tanja J. Schuck, Fides Lefrancois, Franziska Gallmann, Danrong Wang, Markus Jesswein, Jesica Hoker, Harald Bönisch, and Andreas Engel
Atmos. Chem. Phys., 18, 16553–16569, https://doi.org/10.5194/acp-18-16553-2018, https://doi.org/10.5194/acp-18-16553-2018, 2018
Short summary
Short summary
We present the first results of regular halocarbon measurements at Taunus Observatory, Germany. Halogenated gases contribute to stratospheric ozone depletion and to radiative forcing. Time-of-flight mass spectrometry allows one to assess a large number of compounds; the measurements are expected to provide better constraints for European emission estimates. CFC-11 and CFC-12 show small unexpected differences regarding outlier occurrence and seasonality, indicating ongoing emissions of CFC-11.
Armin Rauthe-Schöch, Angela K. Baker, Tanja J. Schuck, Carl A. M. Brenninkmeijer, Andreas Zahn, Markus Hermann, Greta Stratmann, Helmut Ziereis, Peter F. J. van Velthoven, and Jos Lelieveld
Atmos. Chem. Phys., 16, 3609–3629, https://doi.org/10.5194/acp-16-3609-2016, https://doi.org/10.5194/acp-16-3609-2016, 2016
Short summary
Short summary
The flying laboratory CARIBIC onboard a passenger aircraft measured trace gases and aerosol particles in the upper tropospheric Indian summer monsoon anticyclone in summer 2008. We used the measurements together with meteorological analyses to investigate the chemical signature of the northern and southern part of the monsoon, the source regions from where the air was entrained into the monsoon and which parts of the world received polluted air that had been chemically processed in the monsoon.
C. Dyroff, A. Zahn, S. Sanati, E. Christner, A. Rauthe-Schöch, and T. J. Schuck
Atmos. Meas. Tech., 7, 743–755, https://doi.org/10.5194/amt-7-743-2014, https://doi.org/10.5194/amt-7-743-2014, 2014
C. Crevoisier, D. Nobileau, R. Armante, L. Crépeau, T. Machida, Y. Sawa, H. Matsueda, T. Schuck, T. Thonat, J. Pernin, N. A. Scott, and A. Chédin
Atmos. Chem. Phys., 13, 4279–4289, https://doi.org/10.5194/acp-13-4279-2013, https://doi.org/10.5194/acp-13-4279-2013, 2013
Johannes C. Laube, Tanja J. Schuck, Huilin Chen, Markus Geldenhuys, Steven van Heuven, Timo Keber, Maria Elena Popa, Elinor Tuffnell, Bärbel Vogel, Thomas Wagenhäuser, Alessandro Zanchetta, and Andreas Engel
EGUsphere, https://doi.org/10.5194/egusphere-2024-4034, https://doi.org/10.5194/egusphere-2024-4034, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A large balloon was launched in summer 2021 in the Arctic to carry instruments for trace gas measurements up to 32 km, above the reach of aircraft. The main aims were to evaluate different techniques and atmospheric processes. We focus on halogenated greenhouse gases and ozone-depleting substances. For this, air was collected with the AirCore technique and a cryogenic air sampler and measured after the flight. A companion paper reports observations of major greenhouse gases.
Markus Jesswein, Valentin Lauther, Nicolas Emig, Peter Hoor, Timo Keber, Hans-Christoph Lachnitt, Linda Ort, Tanja Schuck, Johannes Strobel, Ronja Van Luijt, C. Michael Volk, Franziska Weyland, and Andreas Engel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3946, https://doi.org/10.5194/egusphere-2024-3946, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The study investigates transport within the Asian Summer Monsoon, focussing on how CH2Cl2 reaches the subarctic tropopause region. Using data from the PHILEAS campaign in 2023, events with increased mixing ratios were detected. Their origin, the transport paths to the tropopause region and the potential entry into the stratosphere were analysed. The East Asian Summer Monsoon was identified as the main transport pathway, with only a small contribution to the stratosphere in the following days.
Herman G.J. Smit, Torben Galle, Romain Blot, Florian Obersteiner, Philippe Nédélec, Andreas Zahn, Jean-Marc Cousin, Ulrich Bundke, Andreas Petzold, Valerie Thouret, and Hannah Clark
EGUsphere, https://doi.org/10.5194/egusphere-2024-3760, https://doi.org/10.5194/egusphere-2024-3760, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The two ozone instruments of IAGOS (In-service Aircraft for a Global Observation System) have been compared with the Ozone PhotoMeter (OPM) of the World Calibration Center of Ozone Sondes (WCCOS) in an atmospheric simulation chamber under realistic flight conditions of pressure, temperature, and ozone concentrations. The two IAGOS-instruments showed good agreement with the OPM within 5–6 %. The observed differences are small but systematic and reproducible during the intercomparison.
Rodrigo J. Seguel, Charlie Opazo, Yann Cohen, Owen R. Cooper, Laura Gallardo, Björn-Martin Sinnhuber, Florian Obersteiner, Andreas Zahn, Peter Hoor, and Susanne Rohs
EGUsphere, https://doi.org/10.5194/egusphere-2024-3719, https://doi.org/10.5194/egusphere-2024-3719, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We explored differences in ozone levels between the Northern and Southern Hemispheres in the Stratosphere-troposphere exchange region. Using unique data from a research aircraft, we found significantly lower ozone levels (with stratospheric character) in the Southern Hemisphere, especially during years of severe ozone depletion. A Sudden Stratospheric Warming event in 2019 increased Southern Hemisphere ozone levels, highlighting the relationship between atmospheric events and ozone distribution.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024, https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
Short summary
Anthropogenic emissions are a major source of precursors of tropospheric ozone. As ozone formation is highly non-linear, we apply a global–regional chemistry–climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. Our analysis shows that the contribution of European anthropogenic emissions largely increases during large ozone periods, indicating that emissions from these sectors drive ozone values.
Tanja J. Schuck, Johannes Degen, Timo Keber, Katharina Meixner, Thomas Wagenhäuser, Mélanie Ghysels, Georges Durry, Nadir Amarouche, Alessandro Zanchetta, Steven van Heuven, Huilin Chen, Johannes C. Laube, Sophie Baartman, Carina van der Veen, Maria Elena Popa, and Andreas Engel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3279, https://doi.org/10.5194/egusphere-2024-3279, 2024
Short summary
Short summary
A balloon was launched in 2021 in the Arctic to carry instruments for trace gase measurements up to 32 km. One purpose was to compare measurement techniques. We focus on the major greenhouse gases. To measure these, air was sampled with the AirCore technique and with flask sampling and analysed after the flight. In flight, observations were done with an optical method. In a companion paper we report on observations of chlorine and bromine containing trace gases.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Randall Chiu, Florian Obersteiner, Alessandro Franchin, Teresa Campos, Adriana Bailey, Christopher Webster, Andreas Zahn, and Rainer Volkamer
Atmos. Meas. Tech., 17, 5731–5746, https://doi.org/10.5194/amt-17-5731-2024, https://doi.org/10.5194/amt-17-5731-2024, 2024
Short summary
Short summary
The ozone sink into oceans and marine clouds is seldom studied and highly uncertain. Calculations suggest O3 destruction at aqueous surfaces (ocean, droplets) may be strongly accelerated, but field evidence is missing. Here we compare three fast airborne O3 instruments to measure eddy covariance fluxes of O3 over the remote ocean, in clear and cloudy air. We find O3 fluxes below clouds are consistently directed into clouds, while O3 fluxes into oceans are much smaller and spatially variable.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Patrick Konjari, Christian Rolf, Michaela Imelda Hegglin, Susanne Rohs, Yun Li, Andreas Zahn, Harald Bönisch, Martina Krämer, and Andreas Petzold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2360, https://doi.org/10.5194/egusphere-2024-2360, 2024
Short summary
Short summary
This study introduces a new method to deriving adjusted water vapor (H2O) climatologies for the upper tropopshere and lower statosphere (UT/LS) using data from 60,000 flights under the IAGOS program. Biases in the IAGOS water vapor dataset are adjusted, based on the more accurate IAGOS-CARIBIC data. The resulting highly resolved H2O climatologies will contribute to a better understanding of the H2O variability in the UT/LS and its connection to various transport and mixing processes.
Yann Cohen, Didier Hauglustaine, Nicolas Bellouin, Marianne Tronstad Lund, Sigrun Matthes, Agnieszka Skowron, Robin Thor, Ulrich Bundke, Andreas Petzold, Susanne Rohs, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2208, https://doi.org/10.5194/egusphere-2024-2208, 2024
Short summary
Short summary
The chemical composition of the atmosphere near the tropopause is a key parameter for evaluating the climate impact of subsonic aviation pollutants. This study uses in-situ data on board passenger aircraft to assess the ability of 5 chemistry-climate models to reproduce (bi-)decadal climatologies in ozone, carbon monoxide, water vapour, and reactive nitrogen in this region. The models reproduce well the very distinct ozone seasonality in the upper troposphere and in the lower stratosphere.
Laura N. Saunders, Kaley A. Walker, Gabriele P. Stiller, Thomas von Clarmann, Florian Haenel, Hella Garny, Harald Bönisch, Chris D. Boone, Ariana E. Castillo, Andreas Engel, Johannes C. Laube, Marianna Linz, Felix Ploeger, David A. Plummer, Eric A. Ray, and Patrick E. Sheese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2117, https://doi.org/10.5194/egusphere-2024-2117, 2024
Short summary
Short summary
We present a 17-year stratospheric age of air dataset derived from ACE-FTS satellite measurements of sulfur hexafluoride. This is the longest continuous, global, and vertically resolved age of air time series available to date. In this paper, we show that this dataset agrees well with age of air datasets based on measurements from other instruments. We also present trends in the midlatitude lower stratosphere that indicate changes in the global circulation that are predicted by climate models.
Philipp Joppe, Johannes Schneider, Katharina Kaiser, Horst Fischer, Peter Hoor, Daniel Kunkel, Hans-Christoph Lachnitt, Andreas Marsing, Lenard Röder, Hans Schlager, Laura Tomsche, Christiane Voigt, Andreas Zahn, and Stephan Borrmann
Atmos. Chem. Phys., 24, 7499–7522, https://doi.org/10.5194/acp-24-7499-2024, https://doi.org/10.5194/acp-24-7499-2024, 2024
Short summary
Short summary
From aircraft measurements in the upper troposphere/lower stratosphere, we find a correlation between the ozone and particulate sulfate in the lower stratosphere. The correlation exhibits some variability over the measurement period exceeding the background sulfate-to-ozone correlation. From our analysis, we conclude that gas-to-particle conversion of volcanic sulfur dioxide leads to observed enhanced sulfate aerosol mixing ratios.
Felicia Kolonjari, Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, David A. Plummer, Andreas Engel, Stephen A. Montzka, David E. Oram, Tanja Schuck, Gabriele P. Stiller, and Geoffrey C. Toon
Atmos. Meas. Tech., 17, 2429–2449, https://doi.org/10.5194/amt-17-2429-2024, https://doi.org/10.5194/amt-17-2429-2024, 2024
Short summary
Short summary
The Canadian Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) satellite instrument is currently providing the only vertically resolved chlorodifluoromethane (HCFC-22) measurements from space. This study assesses the most current ACE-FTS HCFC-22 data product in the upper troposphere and lower stratosphere, as well as modelled HCFC-22 from a 39-year run of the Canadian Middle Atmosphere Model (CMAM39) in the same region.
Tanja J. Schuck, Johannes Degen, Eric Hintsa, Peter Hoor, Markus Jesswein, Timo Keber, Daniel Kunkel, Fred Moore, Florian Obersteiner, Matt Rigby, Thomas Wagenhäuser, Luke M. Western, Andreas Zahn, and Andreas Engel
Atmos. Chem. Phys., 24, 689–705, https://doi.org/10.5194/acp-24-689-2024, https://doi.org/10.5194/acp-24-689-2024, 2024
Short summary
Short summary
We study the interhemispheric gradient of sulfur hexafluoride (SF6), a strong long-lived greenhouse gas. Its emissions are stronger in the Northern Hemisphere; therefore, mixing ratios in the Southern Hemisphere lag behind. Comparing the observations to a box model, the model predicts air in the Southern Hemisphere to be older. For a better agreement, the emissions used as model input need to be increased (and their spatial pattern changed), and we need to modify north–south transport.
Yann Cohen, Didier Hauglustaine, Bastien Sauvage, Susanne Rohs, Patrick Konjari, Ulrich Bundke, Andreas Petzold, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 23, 14973–15009, https://doi.org/10.5194/acp-23-14973-2023, https://doi.org/10.5194/acp-23-14973-2023, 2023
Short summary
Short summary
The upper troposphere–lower stratosphere (UTLS) is a key region regarding the lower atmospheric composition. This study consists of a comprehensive evaluation of an up-to-date chemistry–climate model in this layer, using regular in situ measurements based on passenger aircraft. For this purpose, a specific software (Interpol-IAGOS) has been updated and made publicly available. The model reproduces the carbon monoxide peaks due to biomass burning over the continental tropics particularly well.
Ioannis Katharopoulos, Dominique Rust, Martin K. Vollmer, Dominik Brunner, Stefan Reimann, Simon J. O'Doherty, Dickon Young, Kieran M. Stanley, Tanja Schuck, Jgor Arduini, Lukas Emmenegger, and Stephan Henne
Atmos. Chem. Phys., 23, 14159–14186, https://doi.org/10.5194/acp-23-14159-2023, https://doi.org/10.5194/acp-23-14159-2023, 2023
Short summary
Short summary
The effectiveness of climate change mitigation needs to be scrutinized by monitoring greenhouse gas (GHG) emissions. Countries report their emissions to the UN in a bottom-up manner. By combining atmospheric observations and transport models someone can independently validate emission estimates in a top-down fashion. We report Swiss emissions of synthetic GHGs based on kilometer-scale transport and inverse modeling, highlighting the role of appropriate resolution in complex terrain.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Eliane Gomes Alves, Raoni Aquino Santana, Cléo Quaresma Dias-Júnior, Santiago Botía, Tyeen Taylor, Ana Maria Yáñez-Serrano, Jürgen Kesselmeier, Efstratios Bourtsoukidis, Jonathan Williams, Pedro Ivo Lembo Silveira de Assis, Giordane Martins, Rodrigo de Souza, Sérgio Duvoisin Júnior, Alex Guenther, Dasa Gu, Anywhere Tsokankunku, Matthias Sörgel, Bruce Nelson, Davieliton Pinto, Shujiro Komiya, Diogo Martins Rosa, Bettina Weber, Cybelli Barbosa, Michelle Robin, Kenneth J. Feeley, Alvaro Duque, Viviana Londoño Lemos, Maria Paula Contreras, Alvaro Idarraga, Norberto López, Chad Husby, Brett Jestrow, and Iván Mauricio Cely Toro
Atmos. Chem. Phys., 23, 8149–8168, https://doi.org/10.5194/acp-23-8149-2023, https://doi.org/10.5194/acp-23-8149-2023, 2023
Short summary
Short summary
Isoprene is emitted mainly by plants and can influence atmospheric chemistry and air quality. But, there are uncertainties in model emission estimates and follow-up atmospheric processes. In our study, with long-term observational datasets of isoprene and biological and environmental factors from central Amazonia, we show that isoprene emission estimates could be improved when biological processes were mechanistically incorporated into the model.
Midhun George, Maria Dolores Andrés Hernández, Vladyslav Nenakhov, Yangzhuoran Liu, John Philip Burrows, Birger Bohn, Eric Förster, Florian Obersteiner, Andreas Zahn, Theresa Harlaß, Helmut Ziereis, Hans Schlager, Benjamin Schreiner, Flora Kluge, Katja Bigge, and Klaus Pfeilsticker
Atmos. Chem. Phys., 23, 7799–7822, https://doi.org/10.5194/acp-23-7799-2023, https://doi.org/10.5194/acp-23-7799-2023, 2023
Short summary
Short summary
The applicability of photostationary steady-state (PSS) assumptions to estimate the amount of the sum of peroxy radicals (RO2*) during the EMeRGe airborne observations from the known radical chemistry and onboard measurements of RO2* precursors, photolysis frequencies, and other trace gases such as NOx and O3 was investigated. The comparison of the calculated RO2* with the actual measurements provides an insight into the main processes controlling their concentration in the air masses measured.
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023, https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geophysically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.
Thomas Wagenhäuser, Markus Jesswein, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 23, 3887–3903, https://doi.org/10.5194/acp-23-3887-2023, https://doi.org/10.5194/acp-23-3887-2023, 2023
Short summary
Short summary
A common assumption to derive mean age from trace gas observations is that all air enters the stratosphere through the tropical tropopause. Using SF6 as an age tracer, this leads to negative mean age values close to the Northern Hemispheric extra-tropical tropopause. Our improved method also considers extra-tropical input into the stratosphere. More realistic values are derived using this method. Interhemispheric differences in mean age are found when comparing data from two aircraft campaigns.
Lisa Ernle, Monika Akima Ringsdorf, and Jonathan Williams
Atmos. Meas. Tech., 16, 1179–1194, https://doi.org/10.5194/amt-16-1179-2023, https://doi.org/10.5194/amt-16-1179-2023, 2023
Short summary
Short summary
Atmospheric ozone can induce artefacts in volatile organic compound measurements. Laboratory tests were made using GC-MS and PTR-MS aircraft systems under tropospheric and stratospheric conditions of humidity and ozone, with and without sodium thiosulfate filter scrubbers. Ozone in dry air produces some carbonyls and degrades alkenes. The scrubber lifetime depends on ozone concentration, flow rate and humidity. For the troposphere with scrubber, no significant artefacts were found over 14 d.
Eric Förster, Harald Bönisch, Marco Neumaier, Florian Obersteiner, Andreas Zahn, Andreas Hilboll, Anna B. Kalisz Hedegaard, Nikos Daskalakis, Alexandros Panagiotis Poulidis, Mihalis Vrekoussis, Michael Lichtenstern, and Peter Braesicke
Atmos. Chem. Phys., 23, 1893–1918, https://doi.org/10.5194/acp-23-1893-2023, https://doi.org/10.5194/acp-23-1893-2023, 2023
Short summary
Short summary
The airborne megacity campaign EMeRGe provided an unprecedented amount of trace gas measurements. We combine measured volatile organic compounds (VOCs) with trajectory-modelled emission uptakes to identify potential source regions of pollution. We also characterise the chemical fingerprints (e.g. biomass burning and anthropogenic signatures) of the probed air masses to corroborate the contributing source regions. Our approach is the first large-scale study of VOCs originating from megacities.
Denis Leppla, Nora Zannoni, Leslie Kremper, Jonathan Williams, Christopher Pöhlker, Marta Sá, Maria Christina Solci, and Thorsten Hoffmann
Atmos. Chem. Phys., 23, 809–820, https://doi.org/10.5194/acp-23-809-2023, https://doi.org/10.5194/acp-23-809-2023, 2023
Short summary
Short summary
Chiral chemodiversity plays a critical role in biochemical processes such as insect and plant communication. Here we report on the measurement of chiral-specified secondary organic aerosol in the Amazon rainforest. The results show that the chiral ratio is mainly determined by large-scale emission processes. Characteristic emissions of chiral aerosol precursors from different forest ecosystems can thus provide large-scale information on different biogenic sources via chiral particle analysis.
Laura Tomsche, Andreas Marsing, Tina Jurkat-Witschas, Johannes Lucke, Stefan Kaufmann, Katharina Kaiser, Johannes Schneider, Monika Scheibe, Hans Schlager, Lenard Röder, Horst Fischer, Florian Obersteiner, Andreas Zahn, Martin Zöger, Jos Lelieveld, and Christiane Voigt
Atmos. Chem. Phys., 22, 15135–15151, https://doi.org/10.5194/acp-22-15135-2022, https://doi.org/10.5194/acp-22-15135-2022, 2022
Short summary
Short summary
The detection of sulfur compounds in the upper troposphere (UT) and lower stratosphere (LS) is a challenge. In-flight measurements of SO2 and sulfate aerosol were performed during the BLUESKY mission in spring 2020 under exceptional atmospheric conditions. Reduced sinks in the dry UTLS and lower but still significant air traffic influenced the enhanced SO2 in the UT, and aged volcanic plumes enhanced the LS sulfate aerosol impacting the atmospheric radiation budget and global climate.
Markus Jesswein, Rafael P. Fernandez, Lucas Berná, Alfonso Saiz-Lopez, Jens-Uwe Grooß, Ryan Hossaini, Eric C. Apel, Rebecca S. Hornbrook, Elliot L. Atlas, Donald R. Blake, Stephen Montzka, Timo Keber, Tanja Schuck, Thomas Wagenhäuser, and Andreas Engel
Atmos. Chem. Phys., 22, 15049–15070, https://doi.org/10.5194/acp-22-15049-2022, https://doi.org/10.5194/acp-22-15049-2022, 2022
Short summary
Short summary
This study presents the global and seasonal distribution of the two major brominated short-lived substances CH2Br2 and CHBr3 in the upper troposphere and lower stratosphere based on observations from several aircraft campaigns. They show similar seasonality for both hemispheres, except in the respective hemispheric autumn lower stratosphere. A comparison with the TOMCAT and CAM-Chem models shows good agreement in the annual mean but larger differences in the seasonal consideration.
Paul Konopka, Mengchu Tao, Marc von Hobe, Lars Hoffmann, Corinna Kloss, Fabrizio Ravegnani, C. Michael Volk, Valentin Lauther, Andreas Zahn, Peter Hoor, and Felix Ploeger
Geosci. Model Dev., 15, 7471–7487, https://doi.org/10.5194/gmd-15-7471-2022, https://doi.org/10.5194/gmd-15-7471-2022, 2022
Short summary
Short summary
Pure trajectory-based transport models driven by meteorology derived from reanalysis products (ERA5) take into account only the resolved, advective part of transport. That means neither mixing processes nor unresolved subgrid-scale advective processes like convection are included. The Chemical Lagrangian Model of the Stratosphere (CLaMS) includes these processes. We show that isentropic mixing dominates unresolved transport. The second most important transport process is unresolved convection.
Mengze Li, Andrea Pozzer, Jos Lelieveld, and Jonathan Williams
Earth Syst. Sci. Data, 14, 4351–4364, https://doi.org/10.5194/essd-14-4351-2022, https://doi.org/10.5194/essd-14-4351-2022, 2022
Short summary
Short summary
We present a northern hemispheric airborne measurement dataset of atmospheric ethane, propane and methane and temporal trends for the time period 2006–2016 in the upper troposphere and lower stratosphere. The growth rates of ethane, methane, and propane in the upper troposphere are -2.24, 0.33, and -0.78 % yr-1, respectively, and in the lower stratosphere they are -3.27, 0.26, and -4.91 % yr-1, respectively, in 2006–2016.
Therese S. Carter, Colette L. Heald, Jesse H. Kroll, Eric C. Apel, Donald Blake, Matthew Coggon, Achim Edtbauer, Georgios Gkatzelis, Rebecca S. Hornbrook, Jeff Peischl, Eva Y. Pfannerstill, Felix Piel, Nina G. Reijrink, Akima Ringsdorf, Carsten Warneke, Jonathan Williams, Armin Wisthaler, and Lu Xu
Atmos. Chem. Phys., 22, 12093–12111, https://doi.org/10.5194/acp-22-12093-2022, https://doi.org/10.5194/acp-22-12093-2022, 2022
Short summary
Short summary
Fires emit many gases which can contribute to smog and air pollution. However, the amount and properties of these chemicals are not well understood, so this work updates and expands their representation in a global atmospheric model, including by adding new chemicals. We confirm that this updated representation generally matches measurements taken in several fire regions. We then show that fires provide ~15 % of atmospheric reactivity globally and more than 75 % over fire source regions.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Luke M. Western, Alison L. Redington, Alistair J. Manning, Cathy M. Trudinger, Lei Hu, Stephan Henne, Xuekun Fang, Lambert J. M. Kuijpers, Christina Theodoridi, David S. Godwin, Jgor Arduini, Bronwyn Dunse, Andreas Engel, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Michela Maione, Jens Mühle, Simon O'Doherty, Hyeri Park, Sunyoung Park, Stefan Reimann, Peter K. Salameh, Daniel Say, Roland Schmidt, Tanja Schuck, Carolina Siso, Kieran M. Stanley, Isaac Vimont, Martin K. Vollmer, Dickon Young, Ronald G. Prinn, Ray F. Weiss, Stephen A. Montzka, and Matthew Rigby
Atmos. Chem. Phys., 22, 9601–9616, https://doi.org/10.5194/acp-22-9601-2022, https://doi.org/10.5194/acp-22-9601-2022, 2022
Short summary
Short summary
The production of ozone-destroying gases is being phased out. Even though production of one of the main ozone-depleting gases, called HCFC-141b, has been declining for many years, the amount that is being released to the atmosphere has been increasing since 2017. We do not know for sure why this is. A possible explanation is that HCFC-141b that was used to make insulating foams many years ago is only now escaping to the atmosphere, or a large part of its production is not being reported.
Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, Akima Ringsdorf, Achim Edtbauer, Horst Fischer, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 7051–7069, https://doi.org/10.5194/acp-22-7051-2022, https://doi.org/10.5194/acp-22-7051-2022, 2022
Short summary
Short summary
We measured the gas-phase reactivity of the NO3 radical on the summit (825 m a.s.l.) of a semi-rural mountain in southwestern Germany in July 2021. The impact of VOC-induced NO3 losses (mostly monoterpenes) competing with a loss by reaction with NO and photolysis throughout the diel cycle was estimated. Besides chemistry, boundary layer dynamics and plant-physiological processes presumably have a great impact on our observations, which were compared to previous NO3 measurements at the same site.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Clara M. Nussbaumer, John N. Crowley, Jan Schuladen, Jonathan Williams, Sascha Hafermann, Andreas Reiffs, Raoul Axinte, Hartwig Harder, Cheryl Ernest, Anna Novelli, Katrin Sala, Monica Martinez, Chinmay Mallik, Laura Tomsche, Christian Plass-Dülmer, Birger Bohn, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 18413–18432, https://doi.org/10.5194/acp-21-18413-2021, https://doi.org/10.5194/acp-21-18413-2021, 2021
Short summary
Short summary
HCHO is an important atmospheric trace gas influencing the photochemical processes in the Earth’s atmosphere, including the budget of HOx and the abundance of tropospheric O3. This research presents the photochemical calculations of HCHO and O3 based on three field campaigns across Europe. We show that HCHO production via the oxidation of only four volatile organic compound precursors, i.e., CH4, CH3CHO, C5H8 and CH3OH, can balance the observed loss at all sites well.
Dirk Dienhart, John N. Crowley, Efstratios Bourtsoukidis, Achim Edtbauer, Philipp G. Eger, Lisa Ernle, Hartwig Harder, Bettina Hottmann, Monica Martinez, Uwe Parchatka, Jean-Daniel Paris, Eva Y. Pfannerstill, Roland Rohloff, Jan Schuladen, Christof Stönner, Ivan Tadic, Sebastian Tauer, Nijing Wang, Jonathan Williams, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 17373–17388, https://doi.org/10.5194/acp-21-17373-2021, https://doi.org/10.5194/acp-21-17373-2021, 2021
Short summary
Short summary
We present the first ship-based in situ measurements of formaldehyde (HCHO), hydroxyl radicals (OH) and the OH reactivity around the Arabian Peninsula. Regression analysis of the HCHO production rate and the related OH chemistry revealed the regional HCHO yield αeff, which represents the different chemical regimes encountered. Highest values were found for the Arabian Gulf (also known as the Persian Gulf), which highlights this region as a hotspot of photochemical air pollution.
Markus Jesswein, Heiko Bozem, Hans-Christoph Lachnitt, Peter Hoor, Thomas Wagenhäuser, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 21, 17225–17241, https://doi.org/10.5194/acp-21-17225-2021, https://doi.org/10.5194/acp-21-17225-2021, 2021
Short summary
Short summary
This study presents and compares inorganic chlorine (Cly) derived from observations with the HALO research aircraft in the Antarctic late winter–early fall 2019 and the Arctic winter 2015–2016. Trend-corrected correlations from the Northern Hemisphere show excellent agreement with those from the Southern Hemisphere. After observation allocation inside and outside the vortex based on N2O measurements, results of the two campaigns reveal substantial differences in Cly within the respective vortex.
Paul D. Hamer, Virginie Marécal, Ryan Hossaini, Michel Pirre, Gisèle Krysztofiak, Franziska Ziska, Andreas Engel, Stephan Sala, Timo Keber, Harald Bönisch, Elliot Atlas, Kirstin Krüger, Martyn Chipperfield, Valery Catoire, Azizan A. Samah, Marcel Dorf, Phang Siew Moi, Hans Schlager, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 16955–16984, https://doi.org/10.5194/acp-21-16955-2021, https://doi.org/10.5194/acp-21-16955-2021, 2021
Short summary
Short summary
Bromoform is a stratospheric ozone-depleting gas released by seaweed and plankton transported to the stratosphere via convection in the tropics. We study the chemical interactions of bromoform and its derivatives within convective clouds using a cloud-scale model and observations. Our findings are that soluble bromine gases are efficiently washed out and removed within the convective clouds and that most bromine is transported vertically to the upper troposphere in the form of bromoform.
Yu-Wen Chen, Yi-Chun Chen, Charles C.-K. Chou, Hui-Ming Hung, Shih-Yu Chang, Lisa Eirenschmalz, Michael Lichtenstern, Helmut Ziereis, Hans Schlager, Greta Stratmann, Katharina Kaiser, Johannes Schneider, Stephan Borrmann, Florian Obersteiner, Eric Förster, Andreas Zahn, Wei-Nai Chen, Po-Hsiung Lin, Shuenn-Chin Chang, Maria Dolores Andrés Hernández, Pao-Kuan Wang, and John P. Burrows
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-788, https://doi.org/10.5194/acp-2021-788, 2021
Preprint withdrawn
Short summary
Short summary
By presenting an approach using EMeRGe-Asia airborne field measurements and surface observations, this study shows that the fraction of OH reactivity due to SO2-OH reaction has a significant correlation with the sulfate concentration. Approximately 30 % of sulfate is produced by SO2-OH reaction. Our results underline the importance of SO2-OH gas-phase oxidation in sulfate formation, and demonstrate that the method can be applied to other regions and under different meteorological conditions.
Meike K. Rotermund, Vera Bense, Martyn P. Chipperfield, Andreas Engel, Jens-Uwe Grooß, Peter Hoor, Tilman Hüneke, Timo Keber, Flora Kluge, Benjamin Schreiner, Tanja Schuck, Bärbel Vogel, Andreas Zahn, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 15375–15407, https://doi.org/10.5194/acp-21-15375-2021, https://doi.org/10.5194/acp-21-15375-2021, 2021
Short summary
Short summary
Airborne total bromine (Brtot) and tracer measurements suggest Brtot-rich air masses persistently protruded into the lower stratosphere (LS), creating a high Brtot region over the North Atlantic in fall 2017. The main source is via isentropic transport by the Asian monsoon and to a lesser extent transport across the extratropical tropopause as quantified by a Lagrange model. The transport of Brtot via Central American hurricanes is also observed. Lastly, the impact of Brtot on LS O3 is assessed.
Philipp G. Eger, Luc Vereecken, Rolf Sander, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Ville Vakkari, Tuukka Petäjä, Jos Lelieveld, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 21, 14333–14349, https://doi.org/10.5194/acp-21-14333-2021, https://doi.org/10.5194/acp-21-14333-2021, 2021
Short summary
Short summary
We determine the impact of pyruvic acid photolysis on the formation of acetaldehyde and peroxy radicals during summer and autumn in the Finnish boreal forest using a data-constrained box model. Our results are dependent on the chosen scenario in which the overall quantum yield and the photolysis products are varied. We highlight that pyruvic acid photolysis can be an important contributor to acetaldehyde and peroxy radical formation in remote, forested regions.
Alistair J. Manning, Alison L. Redington, Daniel Say, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Martin K. Vollmer, Jens Mühle, Jgor Arduini, Gerard Spain, Adam Wisher, Michela Maione, Tanja J. Schuck, Kieran Stanley, Stefan Reimann, Andreas Engel, Paul B. Krummel, Paul J. Fraser, Christina M. Harth, Peter K. Salameh, Ray F. Weiss, Ray Gluckman, Peter N. Brown, John D. Watterson, and Tim Arnold
Atmos. Chem. Phys., 21, 12739–12755, https://doi.org/10.5194/acp-21-12739-2021, https://doi.org/10.5194/acp-21-12739-2021, 2021
Short summary
Short summary
This paper estimates UK emissions of important greenhouse gases (hydrofluorocarbons (HFCs)) using high-quality atmospheric observations and atmospheric modelling. We compare these estimates with those submitted by the UK to the United Nations. We conclude that global concentrations of these gases are still increasing. Our estimates for the UK are 73 % of those reported and that the UK emissions are now falling, demonstrating an impact of UK government policy.
James Weber, Scott Archer-Nicholls, Nathan Luke Abraham, Youngsub M. Shin, Thomas J. Bannan, Carl J. Percival, Asan Bacak, Paulo Artaxo, Michael Jenkin, M. Anwar H. Khan, Dudley E. Shallcross, Rebecca H. Schwantes, Jonathan Williams, and Alex T. Archibald
Geosci. Model Dev., 14, 5239–5268, https://doi.org/10.5194/gmd-14-5239-2021, https://doi.org/10.5194/gmd-14-5239-2021, 2021
Short summary
Short summary
The new mechanism CRI-Strat 2 features state-of-the-art isoprene chemistry not previously available in UKCA and improves UKCA's ability to reproduce observed concentrations of isoprene, monoterpenes, and OH in tropical regions. The enhanced ability to model isoprene, the most widely emitted non-methane volatile organic compound (VOC), will allow understanding of how isoprene and other biogenic VOCs affect atmospheric composition and, through biosphere–atmosphere feedbacks, climate change.
Jean-Daniel Paris, Aurélie Riandet, Efstratios Bourtsoukidis, Marc Delmotte, Antoine Berchet, Jonathan Williams, Lisa Ernle, Ivan Tadic, Hartwig Harder, and Jos Lelieveld
Atmos. Chem. Phys., 21, 12443–12462, https://doi.org/10.5194/acp-21-12443-2021, https://doi.org/10.5194/acp-21-12443-2021, 2021
Short summary
Short summary
We measured atmospheric methane and CO2 by ship in the Middle East. We probe the origin of methane with a combination of light alkane measurements and modeling. We find strong influence from nearby oil and gas production over the Arabian Gulf. Comparing our data to inventories indicates that inventories overestimate sources from the upstream gas industry but underestimate emissions from oil extraction and processing. The Red Sea was under a complex mixture of sources due to human activity.
Lukas Krasauskas, Jörn Ungermann, Peter Preusse, Felix Friedl-Vallon, Andreas Zahn, Helmut Ziereis, Christian Rolf, Felix Plöger, Paul Konopka, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 21, 10249–10272, https://doi.org/10.5194/acp-21-10249-2021, https://doi.org/10.5194/acp-21-10249-2021, 2021
Short summary
Short summary
A Rossby wave (RW) breaking event was observed over the North Atlantic during the WISE measurement campaign in October 2017. Infrared limb sounding measurements of trace gases in the lower stratosphere, including high-resolution 3-D tomographic reconstruction, revealed complex spatial structures in stratospheric tracers near the polar jet related to previous RW breaking events. Backward-trajectory analysis and tracer correlations were used to study mixing and stratosphere–troposphere exchange.
Fides Lefrancois, Markus Jesswein, Markus Thoma, Andreas Engel, Kieran Stanley, and Tanja Schuck
Atmos. Meas. Tech., 14, 4669–4687, https://doi.org/10.5194/amt-14-4669-2021, https://doi.org/10.5194/amt-14-4669-2021, 2021
Short summary
Short summary
Synthetic halocarbons can contribute to stratospheric ozone depletion or to climate change. In many applications they have been replaced over the last years. The presented non-target analysis shows an application approach to quantify those replacements retrospectively, using recorded data of air measurements with gas chromatography coupled to time-of-flight mass spectrometry. We focus on the retrospective analysis of the fourth-generation halocarbons, detected at Taunus Observatory in Germany.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Thomas Wagenhäuser, Andreas Engel, and Robert Sitals
Atmos. Meas. Tech., 14, 3923–3934, https://doi.org/10.5194/amt-14-3923-2021, https://doi.org/10.5194/amt-14-3923-2021, 2021
Short summary
Short summary
AirCore samplers are increasingly deployed to weather balloons to collect continuous atmospheric samples. We introduce a technique that can be used in situ to evaluate different data processing methods that are required to derive vertical trace gas profiles from AirCore measurements after sample recovery. Results from two test flights with a specific AirCore configuration provide evidence for systematic deviations in altitude attribution for the upper levels, which can be empirically corrected.
Romain Blot, Philippe Nedelec, Damien Boulanger, Pawel Wolff, Bastien Sauvage, Jean-Marc Cousin, Gilles Athier, Andreas Zahn, Florian Obersteiner, Dieter Scharffe, Hervé Petetin, Yasmine Bennouna, Hannah Clark, and Valérie Thouret
Atmos. Meas. Tech., 14, 3935–3951, https://doi.org/10.5194/amt-14-3935-2021, https://doi.org/10.5194/amt-14-3935-2021, 2021
Short summary
Short summary
A lack of information about temporal changes in measurement uncertainties is an area of concern for long-term trend studies of the key compounds which have a direct or indirect impact on climate change. The IAGOS program has measured O3 and CO within the troposphere and lower stratosphere for more than 25 years. In this study, we demonstrated that the IAGOS database can be treated as one continuous program and is therefore appropriate for studies of long-term trends.
Clara M. Nussbaumer, Ivan Tadic, Dirk Dienhart, Nijing Wang, Achim Edtbauer, Lisa Ernle, Jonathan Williams, Florian Obersteiner, Isidoro Gutiérrez-Álvarez, Hartwig Harder, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 7933–7945, https://doi.org/10.5194/acp-21-7933-2021, https://doi.org/10.5194/acp-21-7933-2021, 2021
Short summary
Short summary
Lightning over continental and coastal areas is frequent and accompanied by deep convection, while lightning over marine areas and particularly in tropical cyclones is rare. This research presents in situ observations of the tropical storm Florence 2018 near Cabo Verde. We show the absence of lightning in the tropical storm despite the occurrence of deep convective processes by atmospheric trace gas measurements of O3, NO, CO, H2O2, DMS and CH2I.
Nils Friedrich, Philipp Eger, Justin Shenolikar, Nicolas Sobanski, Jan Schuladen, Dirk Dienhart, Bettina Hottmann, Ivan Tadic, Horst Fischer, Monica Martinez, Roland Rohloff, Sebastian Tauer, Hartwig Harder, Eva Y. Pfannerstill, Nijing Wang, Jonathan Williams, James Brooks, Frank Drewnick, Hang Su, Guo Li, Yafang Cheng, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 21, 7473–7498, https://doi.org/10.5194/acp-21-7473-2021, https://doi.org/10.5194/acp-21-7473-2021, 2021
Short summary
Short summary
This paper uses NOx and NOz measurements from the 2017 AQABA ship campaign in the Mediterranean Sea and around the Arabian Peninsula to examine the influence e.g. of emissions from shipping and oil and gas production. Night-time losses of NOx dominated in the Arabian Gulf and in the Red Sea, whereas daytime losses were more important in the Mediterranean Sea. Nitric acid and organic nitrates were the most prevalent components of NOz.
Eva Y. Pfannerstill, Nina G. Reijrink, Achim Edtbauer, Akima Ringsdorf, Nora Zannoni, Alessandro Araújo, Florian Ditas, Bruna A. Holanda, Marta O. Sá, Anywhere Tsokankunku, David Walter, Stefan Wolff, Jošt V. Lavrič, Christopher Pöhlker, Matthias Sörgel, and Jonathan Williams
Atmos. Chem. Phys., 21, 6231–6256, https://doi.org/10.5194/acp-21-6231-2021, https://doi.org/10.5194/acp-21-6231-2021, 2021
Short summary
Short summary
Tropical forests are globally significant for atmospheric chemistry. However, the mixture of reactive organic gases emitted by these ecosystems is poorly understood. By comprehensive observations at an Amazon forest site, we show that oxygenated species were previously underestimated in their contribution to the tropical-forest reactant mix. Our results show rain and temperature effects and have implications for models and the understanding of ozone and particle formation above tropical forests.
Wenjie Wang, Jipeng Qi, Jun Zhou, Bin Yuan, Yuwen Peng, Sihang Wang, Suxia Yang, Jonathan Williams, Vinayak Sinha, and Min Shao
Atmos. Meas. Tech., 14, 2285–2298, https://doi.org/10.5194/amt-14-2285-2021, https://doi.org/10.5194/amt-14-2285-2021, 2021
Short summary
Short summary
We designed a new reactor for measurements of OH reactivity (i.e., OH radical loss frequency) based on the comparative reactivity method under
high-NOx conditions, such as in cities. We performed a series of laboratory tests to evaluate the new reactor. The new reactor was used in the field and performed well in measuring OH reactivity in air influenced by upwind cities.
Einar Karu, Mengze Li, Lisa Ernle, Carl A. M. Brenninkmeijer, Jos Lelieveld, and Jonathan Williams
Atmos. Meas. Tech., 14, 1817–1831, https://doi.org/10.5194/amt-14-1817-2021, https://doi.org/10.5194/amt-14-1817-2021, 2021
Short summary
Short summary
A gas measurement device was developed to measure trace gases (ppt level) in the air based on an atomic emission detector. It combines a cryogenic pre-concentrator (CryoTrap), a gas chromatograph (GC), and a new high-resolution atomic emission detector (AED). The CryoTrap–GC–AED instrumental setup, limits of detection, and elemental performance are presented and discussed. Two measurement case studies are reported: one in a Finnish boreal forest and the other based on an aircraft campaign.
Johannes Schneider, Ralf Weigel, Thomas Klimach, Antonis Dragoneas, Oliver Appel, Andreas Hünig, Sergej Molleker, Franziska Köllner, Hans-Christian Clemen, Oliver Eppers, Peter Hoppe, Peter Hoor, Christoph Mahnke, Martina Krämer, Christian Rolf, Jens-Uwe Grooß, Andreas Zahn, Florian Obersteiner, Fabrizio Ravegnani, Alexey Ulanovsky, Hans Schlager, Monika Scheibe, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Martin Zöger, and Stephan Borrmann
Atmos. Chem. Phys., 21, 989–1013, https://doi.org/10.5194/acp-21-989-2021, https://doi.org/10.5194/acp-21-989-2021, 2021
Short summary
Short summary
During five aircraft missions, we detected aerosol particles containing meteoric material in the lower stratosphere. The stratospheric measurements span a latitude range from 15 to 68° N, and we find that at potential temperature levels of more than 40 K above the tropopause; particles containing meteoric material occur at similar abundance fractions across latitudes and seasons. We conclude that meteoric material is efficiently distributed between high and low latitudes by isentropic mixing.
Bettina Hottmann, Sascha Hafermann, Laura Tomsche, Daniel Marno, Monica Martinez, Hartwig Harder, Andrea Pozzer, Marco Neumaier, Andreas Zahn, Birger Bohn, Greta Stratmann, Helmut Ziereis, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 20, 12655–12673, https://doi.org/10.5194/acp-20-12655-2020, https://doi.org/10.5194/acp-20-12655-2020, 2020
Short summary
Short summary
During OMO we observed enhanced mixing ratios of hydroperoxides (ROOH) in the Asian monsoon anticyclone (AMA) relative to the background. The observed mixing ratios are higher than steady-state calculations and EMAC simulations, especially in the AMA, indicating atmospheric transport of ROOH. Uncertainties in the scavenging efficiencies likely cause deviations from EMAC. Longitudinal gradients indicate a pool of ROOH towards the center of the AMA associated with upwind convection over India.
Nijing Wang, Achim Edtbauer, Christof Stönner, Andrea Pozzer, Efstratios Bourtsoukidis, Lisa Ernle, Dirk Dienhart, Bettina Hottmann, Horst Fischer, Jan Schuladen, John N. Crowley, Jean-Daniel Paris, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 20, 10807–10829, https://doi.org/10.5194/acp-20-10807-2020, https://doi.org/10.5194/acp-20-10807-2020, 2020
Short summary
Short summary
Carbonyl compounds were measured on a ship travelling around the Arabian Peninsula in summer 2017, crossing both highly polluted and extremely clean regions of the marine boundary layer. We investigated the sources and sinks of carbonyls. The results from a global model showed a significant model underestimation for acetaldehyde, a molecule that can influence regional air chemistry. By adding a diurnal oceanic source, the model estimation was highly improved.
Johannes C. Laube, Emma C. Leedham Elvidge, Karina E. Adcock, Bianca Baier, Carl A. M. Brenninkmeijer, Huilin Chen, Elise S. Droste, Jens-Uwe Grooß, Pauli Heikkinen, Andrew J. Hind, Rigel Kivi, Alexander Lojko, Stephen A. Montzka, David E. Oram, Steve Randall, Thomas Röckmann, William T. Sturges, Colm Sweeney, Max Thomas, Elinor Tuffnell, and Felix Ploeger
Atmos. Chem. Phys., 20, 9771–9782, https://doi.org/10.5194/acp-20-9771-2020, https://doi.org/10.5194/acp-20-9771-2020, 2020
Short summary
Short summary
We demonstrate that AirCore technology, which is based on small low-cost balloons, can provide access to trace gas measurements such as CFCs at ultra-low abundances. This is a new way to quantify ozone-depleting, and related, substances in the stratosphere, which is largely inaccessible to aircraft. We show two potential uses: (a) tracking the stratospheric circulation, which is predicted to change, and (b) assessing three common meteorological reanalyses driving a global stratospheric model.
Marius Hauck, Harald Bönisch, Peter Hoor, Timo Keber, Felix Ploeger, Tanja J. Schuck, and Andreas Engel
Atmos. Chem. Phys., 20, 8763–8785, https://doi.org/10.5194/acp-20-8763-2020, https://doi.org/10.5194/acp-20-8763-2020, 2020
Short summary
Short summary
This study features an extended inversion method that includes transport across the extratropical tropopause to derive age spectra in the lowermost stratosphere from in situ trace gas measurements. The refined method is validated in a model setup and applied to data gained with the HALO research aircraft. Results are congruent with the findings of previous studies so that the method provides a promising toolset for the analysis of stratospheric dynamics based on observations in the future.
Frauke Fritsch, Hella Garny, Andreas Engel, Harald Bönisch, and Roland Eichinger
Atmos. Chem. Phys., 20, 8709–8725, https://doi.org/10.5194/acp-20-8709-2020, https://doi.org/10.5194/acp-20-8709-2020, 2020
Short summary
Short summary
We test two methods to derive age of air as a diagnostic of the Brewer–Dobson circulation from non-linear increasing trace gases such as SF6 using a chemistry-climate model and observations. Both the model and the observations show systematic variation of the age of air trend dependent on the chosen assumptions that are required when deriving age of air from measurements. This provides insight into the differences in age of air trends of observations and models.
Achim Edtbauer, Christof Stönner, Eva Y. Pfannerstill, Matias Berasategui, David Walter, John N. Crowley, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 20, 6081–6094, https://doi.org/10.5194/acp-20-6081-2020, https://doi.org/10.5194/acp-20-6081-2020, 2020
Short summary
Short summary
Marine regions where deep nutrient-rich water is pushed towards the surface are called upwelling regions. In these nutrient-rich waters large algal blooms form which are the basis of the marine food web. We measured methane sulfonamide, a molecule containing sulfur and nitrogen, for the first time in ambient air and could show that the origin of this emission is an algal bloom near the Somalia upwelling. Sulfur-containing compounds from algae can promote particle formation over the oceans.
Peter H. Zimmermann, Carl A. M. Brenninkmeijer, Andrea Pozzer, Patrick Jöckel, Franziska Winterstein, Andreas Zahn, Sander Houweling, and Jos Lelieveld
Atmos. Chem. Phys., 20, 5787–5809, https://doi.org/10.5194/acp-20-5787-2020, https://doi.org/10.5194/acp-20-5787-2020, 2020
Short summary
Short summary
The atmospheric abundance of the greenhouse gas methane is determined by interacting emission sources and sinks in a dynamic global environment. In this study, its global budget from 1997 to 2016 is simulated with a general circulation model using emission estimates of 11 source categories. The model results are evaluated against 17 ground station and 320 intercontinental flight observation series. Deviations are used to re-scale the emission quantities with the aim of matching observations.
Timo Keber, Harald Bönisch, Carl Hartick, Marius Hauck, Fides Lefrancois, Florian Obersteiner, Akima Ringsdorf, Nils Schohl, Tanja Schuck, Ryan Hossaini, Phoebe Graf, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 20, 4105–4132, https://doi.org/10.5194/acp-20-4105-2020, https://doi.org/10.5194/acp-20-4105-2020, 2020
Short summary
Short summary
In this paper we summarize observations of short-lived halocarbons in the tropopause region. We show that, especially during winter, the levels of short-lived bromine gases at the extratropical tropopause are higher than at the tropical tropopause. We discuss the impact of the distributions on stratospheric bromine levels and compare our observations to two models with four different emission scenarios.
Philipp G. Eger, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Matthieu Riva, Qiaozhi Zha, Mikael Ehn, Lauriane L. J. Quéléver, Simon Schallhart, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 3697–3711, https://doi.org/10.5194/acp-20-3697-2020, https://doi.org/10.5194/acp-20-3697-2020, 2020
Short summary
Short summary
Pyruvic acid, CH3C(O)C(O)OH, is an organic acid of biogenic origin that plays a crucial role in plant metabolism, is present in tropospheric air in both gas-phase and aerosol-phase, and is implicated in the formation of secondary organic aerosols. From the first gas-phase measurements of pyruvic acid in the Finnish boreal forest in September 2016 we derive its source strength and discuss potential sources and sinks, with a focus on the relevance of gas-phase pyruvic acid for radical chemistry.
Matias Berasategui, Damien Amedro, Achim Edtbauer, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 2695–2707, https://doi.org/10.5194/acp-20-2695-2020, https://doi.org/10.5194/acp-20-2695-2020, 2020
Short summary
Short summary
We have determined the rate coefficient and mechanism for the reaction of the OH radical with methane sulphonamide, a trace gas which has recently been found in the atmosphere. The rate coefficient is 1.4 × 10−13 cm3 molec.−1 s−1, which indicates a tropospheric lifetime of > 2 months. The observation of CO, CO2, SO2, HNO3, HCOOH, and N2O products enabled us to derive a detailed reaction mechanism for the reaction, which proceeds predominantly by H abstraction from the CH3 group.
Eva Y. Pfannerstill, Nijing Wang, Achim Edtbauer, Efstratios Bourtsoukidis, John N. Crowley, Dirk Dienhart, Philipp G. Eger, Lisa Ernle, Horst Fischer, Bettina Hottmann, Jean-Daniel Paris, Christof Stönner, Ivan Tadic, David Walter, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 19, 11501–11523, https://doi.org/10.5194/acp-19-11501-2019, https://doi.org/10.5194/acp-19-11501-2019, 2019
Short summary
Short summary
The Arabian Peninsula is a global hot spot of ozone pollution. Our measurements, made on a ship in summer 2017, indicate underlying reasons. Despite being at sea, we observed ozone-forming reactive trace gases (measured as so-called total OH reactivity) comparable to highly populated urban regions in amount and composition. This is due to strong emissions from oil extraction and ship traffic. These emissions were quickly converted to ozone due to intense solar irradiation and high temperatures.
Andreas Marsing, Tina Jurkat-Witschas, Jens-Uwe Grooß, Stefan Kaufmann, Romy Heller, Andreas Engel, Peter Hoor, Jens Krause, and Christiane Voigt
Atmos. Chem. Phys., 19, 10757–10772, https://doi.org/10.5194/acp-19-10757-2019, https://doi.org/10.5194/acp-19-10757-2019, 2019
Short summary
Short summary
We study the partitioning of inorganic chlorine into active (ozone-depleting) and reservoir species in the lowermost stratosphere of the Arctic polar vortex, using novel in situ aircraft measurements in winter 2015/2016. We observe a change in recovery pathways of the reservoirs HCl and ClONO2 with increasing potential temperature. A comparison with the CLaMS model relates the observations to the vortex-wide evolution and confirms unresolved discrepancies in the mid-winter HCl distribution.
Jonathan Liebmann, Nicolas Sobanski, Jan Schuladen, Einar Karu, Heidi Hellén, Hannele Hakola, Qiaozhi Zha, Mikael Ehn, Matthieu Riva, Liine Heikkinen, Jonathan Williams, Horst Fischer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 19, 10391–10403, https://doi.org/10.5194/acp-19-10391-2019, https://doi.org/10.5194/acp-19-10391-2019, 2019
Short summary
Short summary
The formation of alkyl nitrates in the boreal forest was dominated by reactions of the NO3 radical with terpenes, both during the day and the night, with fewer contributions from OH and ozone. The alkyl nitrates formed had lifetimes on the order of 2 h, reflecting efficient loss via uptake to aerosol and deposition.
Efstratios Bourtsoukidis, Lisa Ernle, John N. Crowley, Jos Lelieveld, Jean-Daniel Paris, Andrea Pozzer, David Walter, and Jonathan Williams
Atmos. Chem. Phys., 19, 7209–7232, https://doi.org/10.5194/acp-19-7209-2019, https://doi.org/10.5194/acp-19-7209-2019, 2019
Short summary
Short summary
We report on results that demonstrate the utility of non-methane hydrocarbons as source/sink identification tracers while providing their mixing ratios around the Arabian Peninsula. By introducing novel data-analysis approaches, we establish a new method for separating associated and non-associated (with liquids) gases. We formulate a relationship between hydrocarbon oxidative pairs that can be used to evaluate the relative abundance of the hydroxyl and chlorine radicals in the troposphere.
Ralph Dlugi, Martina Berger, Chinmay Mallik, Anywhere Tsokankunku, Michael Zelger, Otávio C. Acevedo, Efstratios Bourtsoukidis, Andreas Hofzumahaus, Jürgen Kesselmeier, Gerhard Kramm, Daniel Marno, Monica Martinez, Anke C. Nölscher, Huug Ouwersloot, Eva Y. Pfannerstill, Franz Rohrer, Sebastian Tauer, Jonathan Williams, Ana-Maria Yáñez-Serrano, Meinrat O. Andreae, Hartwig Harder, and Matthias Sörgel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1325, https://doi.org/10.5194/acp-2018-1325, 2019
Publication in ACP not foreseen
Short summary
Short summary
Incomplete mixing (segregation) results in reduced chemical reaction rates compared to those expected from mean values and rate constants. Segregation has been suggested to cause discrepancies between modelled and measured OH radical concentrations. In this work, we summarize the intensities of segregation for the reaction of OH and isoprene for different field and modelling studies and compare those to our results from measurements in a pristine environment.
Felix Ploeger, Bernard Legras, Edward Charlesworth, Xiaolu Yan, Mohamadou Diallo, Paul Konopka, Thomas Birner, Mengchu Tao, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 19, 6085–6105, https://doi.org/10.5194/acp-19-6085-2019, https://doi.org/10.5194/acp-19-6085-2019, 2019
Short summary
Short summary
We analyse the change in the circulation of the middle atmosphere based on current generation meteorological reanalysis data sets. We find that long-term changes from 1989 to 2015 are similar for the chosen reanalyses, mainly resembling the forced response in climate model simulations to climate change. For shorter periods circulation changes are less robust, and the representation of decadal variability appears to be a major uncertainty for modelling the circulation of the middle atmosphere.
Marius Hauck, Frauke Fritsch, Hella Garny, and Andreas Engel
Atmos. Chem. Phys., 19, 5269–5291, https://doi.org/10.5194/acp-19-5269-2019, https://doi.org/10.5194/acp-19-5269-2019, 2019
Short summary
Short summary
The paper presents a modified method to invert mixing ratios of chemically active tracers into stratospheric age spectra. It features an imposed seasonal cycle to include transport seasonality into the spectra. An idealized set of tracers from a model is used as proof of concept and results are in good agreement with the model reference, except for the lowermost stratosphere. Applicability is studied with focus on number of tracers and error tolerance, providing a starting point for future work.
Guo Li, Yafang Cheng, Uwe Kuhn, Rongjuan Xu, Yudong Yang, Hannah Meusel, Zhibin Wang, Nan Ma, Yusheng Wu, Meng Li, Jonathan Williams, Thorsten Hoffmann, Markus Ammann, Ulrich Pöschl, Min Shao, and Hang Su
Atmos. Chem. Phys., 19, 2209–2232, https://doi.org/10.5194/acp-19-2209-2019, https://doi.org/10.5194/acp-19-2209-2019, 2019
Short summary
Short summary
VOCs play a key role in atmospheric chemistry. Emission and deposition on soil have been suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube system to investigate the long-term variability of bidirectional air–soil exchange of 13 VOCs at ambient air conditions of an urban background site in Beijing.
Johannes Eckstein, Roland Ruhnke, Stephan Pfahl, Emanuel Christner, Christopher Diekmann, Christoph Dyroff, Daniel Reinert, Daniel Rieger, Matthias Schneider, Jennifer Schröter, Andreas Zahn, and Peter Braesicke
Geosci. Model Dev., 11, 5113–5133, https://doi.org/10.5194/gmd-11-5113-2018, https://doi.org/10.5194/gmd-11-5113-2018, 2018
Short summary
Short summary
We present ICON-ART-Iso, an extension to the global circulation model ICON, which allows for the simulation of the stable isotopologues of water. The main advantage over other isotope-enabled models is its flexible design with respect to the number of tracers simulated. We compare the results of several simulations to measurements of different scale. ICON-ART-Iso is able to reasonably reproduce the measurements. It is a promising tool to aid in the investigation of the atmospheric water cycle.
Tanja J. Schuck, Fides Lefrancois, Franziska Gallmann, Danrong Wang, Markus Jesswein, Jesica Hoker, Harald Bönisch, and Andreas Engel
Atmos. Chem. Phys., 18, 16553–16569, https://doi.org/10.5194/acp-18-16553-2018, https://doi.org/10.5194/acp-18-16553-2018, 2018
Short summary
Short summary
We present the first results of regular halocarbon measurements at Taunus Observatory, Germany. Halogenated gases contribute to stratospheric ozone depletion and to radiative forcing. Time-of-flight mass spectrometry allows one to assess a large number of compounds; the measurements are expected to provide better constraints for European emission estimates. CFC-11 and CFC-12 show small unexpected differences regarding outlier occurrence and seasonality, indicating ongoing emissions of CFC-11.
Simon Chabrillat, Corinne Vigouroux, Yves Christophe, Andreas Engel, Quentin Errera, Daniele Minganti, Beatriz M. Monge-Sanz, Arjo Segers, and Emmanuel Mahieu
Atmos. Chem. Phys., 18, 14715–14735, https://doi.org/10.5194/acp-18-14715-2018, https://doi.org/10.5194/acp-18-14715-2018, 2018
Short summary
Short summary
Mean age of stratospheric air is computed for the period 1989–2015 with a kinematic transport model which uses surface pressure and wind fields from five reanalyses: ERA-I, MERRA-2, MERRA, CFSR, JRA-55. The spread between the resulting datasets is as large as in climate model intercomparisons; the age trends have large disagreement and depend strongly on the considered period. We highlight the need for similar studies using diabatic transport models which also use temperature and heating rates.
John N. Crowley, Nicolas Pouvesle, Gavin J. Phillips, Raoul Axinte, Horst Fischer, Tuukka Petäjä, Anke Nölscher, Jonathan Williams, Korbinian Hens, Hartwig Harder, Monica Martinez-Harder, Anna Novelli, Dagmar Kubistin, Birger Bohn, and Jos Lelieveld
Atmos. Chem. Phys., 18, 13457–13479, https://doi.org/10.5194/acp-18-13457-2018, https://doi.org/10.5194/acp-18-13457-2018, 2018
Short summary
Short summary
Simultaneous observations of PAA, PAN and H2O2 are used to provide insight into processes influencing the HOx chemistry of the boreal forest, including two biomass-burning-impacted periods. A significant contribution from photolytic HOx sources was included in a box model analysis to align model predictions with measurements. The model predicts high levels of organic peroxy radicals, also at night-time.
Franz Slemr, Andreas Weigelt, Ralf Ebinghaus, Johannes Bieser, Carl A. M. Brenninkmeijer, Armin Rauthe-Schöch, Markus Hermann, Bengt G. Martinsson, Peter van Velthoven, Harald Bönisch, Marco Neumaier, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 12329–12343, https://doi.org/10.5194/acp-18-12329-2018, https://doi.org/10.5194/acp-18-12329-2018, 2018
Short summary
Short summary
Total and elemental mercury were measured in the upper troposphere and lower stratosphere onboard a passenger aircraft. Their concentrations in the upper troposphere were comparable implying low concentrations of oxidized mercury in this region. Large scale seasonally dependent influence of emissions from biomass burning was also observed. Their distributions in the lower stratosphere implies a long stratospheric lifetime, which precludes significant mercury oxidation by ozone.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Chinmay Mallik, Laura Tomsche, Efstratios Bourtsoukidis, John N. Crowley, Bettina Derstroff, Horst Fischer, Sascha Hafermann, Imke Hüser, Umar Javed, Stephan Keßel, Jos Lelieveld, Monica Martinez, Hannah Meusel, Anna Novelli, Gavin J. Phillips, Andrea Pozzer, Andreas Reiffs, Rolf Sander, Domenico Taraborrelli, Carina Sauvage, Jan Schuladen, Hang Su, Jonathan Williams, and Hartwig Harder
Atmos. Chem. Phys., 18, 10825–10847, https://doi.org/10.5194/acp-18-10825-2018, https://doi.org/10.5194/acp-18-10825-2018, 2018
Short summary
Short summary
OH and HO2 control the transformation of air pollutants and O3 formation. Their implication for air quality over the climatically sensitive Mediterranean region was studied during a field campaign in Cyprus. Production of OH, HO2, and recycled OH was lower in aged marine air masses. Box model simulations of OH and HO2 agreed with measurements except at high terpene concentrations when model RO2 due to terpenes caused large HO2 loss. Autoxidation schemes for RO2 improved the agreement.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 18, 9831–9843, https://doi.org/10.5194/acp-18-9831-2018, https://doi.org/10.5194/acp-18-9831-2018, 2018
Short summary
Short summary
Using the observational data on 13C (CO) and 13C (CH4) from the extra-tropical Southern Hemisphere (ETSH) and EMAC model we (1) provide an independent, observation-based evaluation of Cl atom concentration variations in the ETSH throughout 1994–2000, (2) show that the role of tropospheric Cl as a sink of CH4 is seriously overestimated in the literature, (3) demonstrate that the 13C/12C ratio of CO is a sensitive indicator for the isotopic composition of reacted CH4 and therefore for its sources.
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Short summary
We present tracer measurements of CO and N2O measured during the POLSTRACC aircraft campaign in winter 2015–2016. We found enhanced CO values relative to N2O in the polar lower stratosphere in addition to the ageing of this region during winter. By using model simulations it was possible to link this enhancement to an increased mixing of the tropical tropopause. We thus conclude that the polar lower stratosphere in late winter is strongly influenced by quasi-isentropic mixing from the tropics.
Klaus-Dirk Gottschaldt, Hans Schlager, Robert Baumann, Duy Sinh Cai, Veronika Eyring, Phoebe Graf, Volker Grewe, Patrick Jöckel, Tina Jurkat-Witschas, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 5655–5675, https://doi.org/10.5194/acp-18-5655-2018, https://doi.org/10.5194/acp-18-5655-2018, 2018
Short summary
Short summary
This study places aircraft trace gas measurements from within the Asian summer monsoon anticyclone into the context of regional, intra- and interannual variability. We find that the processes reflected in the measurements are present throughout multiple simulated monsoon seasons. Dynamical instabilities, photochemical ozone production, lightning and entrainments from the lower troposphere and from the tropopause region determine the distinct composition of the anticyclone and its outflow.
Karina E. Adcock, Claire E. Reeves, Lauren J. Gooch, Emma C. Leedham Elvidge, Matthew J. Ashfold, Carl A. M. Brenninkmeijer, Charles Chou, Paul J. Fraser, Ray L. Langenfelds, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Siew Moi Phang, Azizan Abu Samah, Thomas Röckmann, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 18, 4737–4751, https://doi.org/10.5194/acp-18-4737-2018, https://doi.org/10.5194/acp-18-4737-2018, 2018
Jonathan Liebmann, Einar Karu, Nicolas Sobanski, Jan Schuladen, Mikael Ehn, Simon Schallhart, Lauriane Quéléver, Heidi Hellen, Hannele Hakola, Thorsten Hoffmann, Jonathan Williams, Horst Fischer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 18, 3799–3815, https://doi.org/10.5194/acp-18-3799-2018, https://doi.org/10.5194/acp-18-3799-2018, 2018
Short summary
Short summary
Using a newly developed experimental setup, we have made the first direct measurements (during autumn 2016) of NO3 reactivity in the Finnish boreal forest. The NO3 reactivity was generally very high (maximum value of 0.94/s) so that daytime reaction with organics was a substantial fraction of the NO3 loss. Observations of biogenic hydrocarbons (BVOCs) suggested a dominant role for monoterpenes in determining the NO3 reactivity, which displayed a strong vertical gradient between 8.5 and 25 m.
Emma C. Leedham Elvidge, Harald Bönisch, Carl A. M. Brenninkmeijer, Andreas Engel, Paul J. Fraser, Eileen Gallacher, Ray Langenfelds, Jens Mühle, David E. Oram, Eric A. Ray, Anna R. Ridley, Thomas Röckmann, William T. Sturges, Ray F. Weiss, and Johannes C. Laube
Atmos. Chem. Phys., 18, 3369–3385, https://doi.org/10.5194/acp-18-3369-2018, https://doi.org/10.5194/acp-18-3369-2018, 2018
Short summary
Short summary
Chemical species measured in stratospheric air can be used as proxies for stratospheric circulation changes which cannot be measured directly. A range of tracers is important to understand changing stratospheric dynamics. We demonstrate the suitability of PFCs and HFCs as tracers and support recent work that reduces the current stratospheric lifetime of SF6. Updates to policy-relevant parameters (e.g. stratospheric lifetime) linked to this change are provided for O3-depleting substances.
Ana María Yáñez-Serrano, Anke Christine Nölscher, Efstratios Bourtsoukidis, Eliane Gomes Alves, Laurens Ganzeveld, Boris Bonn, Stefan Wolff, Marta Sa, Marcia Yamasoe, Jonathan Williams, Meinrat O. Andreae, and Jürgen Kesselmeier
Atmos. Chem. Phys., 18, 3403–3418, https://doi.org/10.5194/acp-18-3403-2018, https://doi.org/10.5194/acp-18-3403-2018, 2018
Short summary
Short summary
This study shows the measurements of concentration of different monoterpene species in terms of height, time of day and season. Speciation seems similar during the dry seasons but changes with season. Furthermore, reactivity with the different oxidants demonstrated that a higher abundance of a monoterpene species does not automatically imply higher reactivity and that the most abundant monoterpene may not be the most atmospheric chemically relevant compound.
Taku Umezawa, Carl A. M. Brenninkmeijer, Thomas Röckmann, Carina van der Veen, Stanley C. Tyler, Ryo Fujita, Shinji Morimoto, Shuji Aoki, Todd Sowers, Jochen Schmitt, Michael Bock, Jonas Beck, Hubertus Fischer, Sylvia E. Michel, Bruce H. Vaughn, John B. Miller, James W. C. White, Gordon Brailsford, Hinrich Schaefer, Peter Sperlich, Willi A. Brand, Michael Rothe, Thomas Blunier, David Lowry, Rebecca E. Fisher, Euan G. Nisbet, Andrew L. Rice, Peter Bergamaschi, Cordelia Veidt, and Ingeborg Levin
Atmos. Meas. Tech., 11, 1207–1231, https://doi.org/10.5194/amt-11-1207-2018, https://doi.org/10.5194/amt-11-1207-2018, 2018
Short summary
Short summary
Isotope measurements are useful for separating different methane sources. However, the lack of widely accepted standards and calibration methods for stable carbon and hydrogen isotopic ratios of methane in air has caused significant measurement offsets among laboratories. We conducted worldwide interlaboratory comparisons, surveyed the literature and assessed them systematically. This study may be of help in future attempts to harmonize data sets of isotopic composition of atmospheric methane.
Andreas Engel, Harald Bönisch, Jennifer Ostermöller, Martyn P. Chipperfield, Sandip Dhomse, and Patrick Jöckel
Atmos. Chem. Phys., 18, 601–619, https://doi.org/10.5194/acp-18-601-2018, https://doi.org/10.5194/acp-18-601-2018, 2018
Short summary
Short summary
We present a new method to derive equivalent effective stratospheric chlorine (EESC), which is based on an improved formulation of the propagation of trends of species with chemical loss from the troposphere to the stratosphere. EESC calculated with the new method shows much better agreement with model-derived ESC. Based on this new formulation, we expect the halogen impact on midlatitude stratospheric ozone to return to 1980 values about 10 years later, then using the current formulation.
Efstratios Bourtsoukidis, Frank Helleis, Laura Tomsche, Horst Fischer, Rolf Hofmann, Jos Lelieveld, and Jonathan Williams
Atmos. Meas. Tech., 10, 5089–5105, https://doi.org/10.5194/amt-10-5089-2017, https://doi.org/10.5194/amt-10-5089-2017, 2017
Tilman Hüneke, Oliver-Alex Aderhold, Jannik Bounin, Marcel Dorf, Eric Gentry, Katja Grossmann, Jens-Uwe Grooß, Peter Hoor, Patrick Jöckel, Mareike Kenntner, Marvin Knapp, Matthias Knecht, Dominique Lörks, Sabrina Ludmann, Sigrun Matthes, Rasmus Raecke, Marcel Reichert, Jannis Weimar, Bodo Werner, Andreas Zahn, Helmut Ziereis, and Klaus Pfeilsticker
Atmos. Meas. Tech., 10, 4209–4234, https://doi.org/10.5194/amt-10-4209-2017, https://doi.org/10.5194/amt-10-4209-2017, 2017
Short summary
Short summary
This paper describes a novel instrument for the aircraft-borne remote sensing of trace gases and liquid and solid water. Until recently, such measurements could only be evaluated under clear-sky conditions. We present a characterization and error assessment of the novel "scaling method", which allows for the retrieval of absolute trace gas concentrations under all sky conditions, significantly expanding the applicability of such measurements to study atmospheric photochemistry.
Hendrik Fuchs, Anna Novelli, Michael Rolletter, Andreas Hofzumahaus, Eva Y. Pfannerstill, Stephan Kessel, Achim Edtbauer, Jonathan Williams, Vincent Michoud, Sebastien Dusanter, Nadine Locoge, Nora Zannoni, Valerie Gros, Francois Truong, Roland Sarda-Esteve, Danny R. Cryer, Charlotte A. Brumby, Lisa K. Whalley, Daniel Stone, Paul W. Seakins, Dwayne E. Heard, Coralie Schoemaecker, Marion Blocquet, Sebastien Coudert, Sebastien Batut, Christa Fittschen, Alexander B. Thames, William H. Brune, Cheryl Ernest, Hartwig Harder, Jennifer B. A. Muller, Thomas Elste, Dagmar Kubistin, Stefanie Andres, Birger Bohn, Thorsten Hohaus, Frank Holland, Xin Li, Franz Rohrer, Astrid Kiendler-Scharr, Ralf Tillmann, Robert Wegener, Zhujun Yu, Qi Zou, and Andreas Wahner
Atmos. Meas. Tech., 10, 4023–4053, https://doi.org/10.5194/amt-10-4023-2017, https://doi.org/10.5194/amt-10-4023-2017, 2017
Short summary
Short summary
Hydroxyl radical reactivity (k(OH)) is closely related to processes that lead to the formation of oxidised, secondary pollutants such as ozone and aerosol. In order to compare the performances of instruments measuring k(OH), experiments were conducted in the simulation chamber SAPHIR. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. Overall, the results show that instruments are capable of measuring k(OH).
David E. Oram, Matthew J. Ashfold, Johannes C. Laube, Lauren J. Gooch, Stephen Humphrey, William T. Sturges, Emma C. Leedham Elvidge, Grant L. Forster, Neil R. P. Harris, Mohammed Iqbal Mead, Azizan Abu Samah, Siew Moi Phang, Chang-Feng Ou-Yang, Neng-Huei Lin, Jia-Lin Wang, Angela K. Baker, Carl A. M. Brenninkmeijer, and David Sherry
Atmos. Chem. Phys., 17, 11929–11941, https://doi.org/10.5194/acp-17-11929-2017, https://doi.org/10.5194/acp-17-11929-2017, 2017
Short summary
Short summary
We have observed large amounts of man-made chlorine compounds in E and SE Asia and in the upper tropical troposphere. These relatively short-lived compounds are not controlled by the Montreal Protocol, but if significant quantities were able to reach the stratosphere, the long-term recovery of stratospheric ozone would be delayed. We have also identified an important atmospheric transport mechanism that can rapidly transport these chemicals from E Asia to the upper troposphere via the tropics.
Heiko Bozem, Andrea Pozzer, Hartwig Harder, Monica Martinez, Jonathan Williams, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 17, 11835–11848, https://doi.org/10.5194/acp-17-11835-2017, https://doi.org/10.5194/acp-17-11835-2017, 2017
Short summary
Short summary
We present a case study of deep convection over Germany in July 2007 within the framework of the HOOVER II project. Airborne in situ measurements within the in- and outflow regions of an isolated thunderstorm provide a unique data set to study the influence of deep convection on the transport efficiency of soluble and insoluble trace gases. Despite their high solubility HCHO and H2O2 show enhanced concentrations in the outflow presumably due to degassing from cloud droplets during freezing.
Bengt G. Martinsson, Johan Friberg, Oscar S. Sandvik, Markus Hermann, Peter F. J. van Velthoven, and Andreas Zahn
Atmos. Chem. Phys., 17, 10937–10953, https://doi.org/10.5194/acp-17-10937-2017, https://doi.org/10.5194/acp-17-10937-2017, 2017
Short summary
Short summary
We find that the aerosol of the lowermost stratosphere has a considerable climate forcing. The upper tropospheric (UT) particulate sulfur is strongly influenced by stratospheric sources the first half of the year, whereas tropospheric sources dominate in fall; 50 % of the UT particulate sulfur (S) was found to be stratospheric at background condition, and 70 % under moderate influence from volcanism. The Asian monsoon is found to be an important tropospheric source of S in the NH extratropical UT.
Bettina Derstroff, Imke Hüser, Efstratios Bourtsoukidis, John N. Crowley, Horst Fischer, Sergey Gromov, Hartwig Harder, Ruud H. H. Janssen, Jürgen Kesselmeier, Jos Lelieveld, Chinmay Mallik, Monica Martinez, Anna Novelli, Uwe Parchatka, Gavin J. Phillips, Rolf Sander, Carina Sauvage, Jan Schuladen, Christof Stönner, Laura Tomsche, and Jonathan Williams
Atmos. Chem. Phys., 17, 9547–9566, https://doi.org/10.5194/acp-17-9547-2017, https://doi.org/10.5194/acp-17-9547-2017, 2017
Short summary
Short summary
The aim of the study was to examine aged air masses being transported from the European continent towards Cyprus. Longer-lived oxygenated volatile organic compounds (OVOCs) such as methanol were mainly impacted by long-distance transport and showed higher values in air masses from eastern Europe than in a flow regime from the west. The impact of the transport through the marine boundary layer as well as the influence of the residual layer/free troposphere on OVOCs were studied.
Ellen Eckert, Thomas von Clarmann, Alexandra Laeng, Gabriele P. Stiller, Bernd Funke, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Arne Babenhauserheide, Gerald Wetzel, Christopher Boone, Andreas Engel, Jeremy J. Harrison, Patrick E. Sheese, Kaley A. Walker, and Peter F. Bernath
Atmos. Meas. Tech., 10, 2727–2743, https://doi.org/10.5194/amt-10-2727-2017, https://doi.org/10.5194/amt-10-2727-2017, 2017
Short summary
Short summary
We retrieved vertical profiles of CCl4 from MIPAS Envisat IMK/IAA data. A detailed description of all characteristics is included in the paper as well as comparisons with historical measurements and comparisons with collocated measurements of instruments covering the same time span as MIPAS Envisat. A particular focus also lies on the usage of a new CCl4 spectroscopic dataset introduced recently, which leads to more realistic CCl4 volume mixing ratios.
Stephan Keßel, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri, John N. Crowley, Andrea Pozzer, Christof Stönner, Luc Vereecken, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 17, 8789–8804, https://doi.org/10.5194/acp-17-8789-2017, https://doi.org/10.5194/acp-17-8789-2017, 2017
Short summary
Short summary
In this study we identify an often overlooked stable oxide of carbon, namely carbon suboxide (C3O2), in ambient air. We have made C3O2 and in the laboratory determined its absorption cross section data and the rate of reaction with two important atmospheric oxidants, OH and O3. By incorporating known sources and sinks in a global model we have generated a first global picture of the distribution of this species in the atmosphere.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 17, 8525–8552, https://doi.org/10.5194/acp-17-8525-2017, https://doi.org/10.5194/acp-17-8525-2017, 2017
Short summary
Short summary
We revisit the proxies/uncertainties for the 13C/12C ratios of emissions of reactive C into the atmosphere. Our main findings are (i) a factor of 2 less uncertain estimate of tropospheric CO surface sources δ13C, (ii) a confirmed disagreement between the bottom-up and top-down 13CO-inclusive emission estimates, and (iii) a novel estimate of the δ13C signatures of a range of NMHCs/VOCs to be used in modelling studies. Results are based on the EMAC model emission set-up evaluated for 2000.
Anna Novelli, Korbinian Hens, Cheryl Tatum Ernest, Monica Martinez, Anke C. Nölscher, Vinayak Sinha, Pauli Paasonen, Tuukka Petäjä, Mikko Sipilä, Thomas Elste, Christian Plass-Dülmer, Gavin J. Phillips, Dagmar Kubistin, Jonathan Williams, Luc Vereecken, Jos Lelieveld, and Hartwig Harder
Atmos. Chem. Phys., 17, 7807–7826, https://doi.org/10.5194/acp-17-7807-2017, https://doi.org/10.5194/acp-17-7807-2017, 2017
Short summary
Short summary
The ambient concentration of stabilised Criegee intermediates (SCIs) was estimated for two
environments using field data. The low concentrations predicted indicate that SCIs are
unlikely to have a large impact on atmospheric chemistry. Concurrent measurements of an OH background signal using the Mainz IPI-LIF-FAGE instrument were found to be consistent with the chemistry of SCIs during the measurement campaigns.
Yudong Yang, Min Shao, Stephan Keßel, Yue Li, Keding Lu, Sihua Lu, Jonathan Williams, Yuanhang Zhang, Liming Zeng, Anke C. Nölscher, Yusheng Wu, Xuemei Wang, and Junyu Zheng
Atmos. Chem. Phys., 17, 7127–7142, https://doi.org/10.5194/acp-17-7127-2017, https://doi.org/10.5194/acp-17-7127-2017, 2017
Short summary
Short summary
Total OH reactivity is an important parameter to evaluate understanding of atmospheric chemistry, especially the VOC contribution to air pollution. Measured by comparative reactivity methods, total OH reactivity in Beijing and Heshan revealed significant differences between measured and calculated results, such as missing reactivity, which were related to unmeasured primary or secondary species. This missing reactivity would introduce a 21–30 % underestimation for ozone production efficiency.
Johannes Bieser, Franz Slemr, Jesse Ambrose, Carl Brenninkmeijer, Steve Brooks, Ashu Dastoor, Francesco DeSimone, Ralf Ebinghaus, Christian N. Gencarelli, Beate Geyer, Lynne E. Gratz, Ian M. Hedgecock, Daniel Jaffe, Paul Kelley, Che-Jen Lin, Lyatt Jaegle, Volker Matthias, Andrei Ryjkov, Noelle E. Selin, Shaojie Song, Oleg Travnikov, Andreas Weigelt, Winston Luke, Xinrong Ren, Andreas Zahn, Xin Yang, Yun Zhu, and Nicola Pirrone
Atmos. Chem. Phys., 17, 6925–6955, https://doi.org/10.5194/acp-17-6925-2017, https://doi.org/10.5194/acp-17-6925-2017, 2017
Short summary
Short summary
We conducted a multi model study to investigate our ability to reproduce the vertical distribution of mercury in the atmosphere. For this, we used observational data from over 40 aircraft flights in EU and US. We compared observations to the results of seven chemistry transport models and found that the models are able to reproduce vertical gradients of total and elemental Hg. Finally, we found that different chemical reactions seem responsible for the oxidation of Hg depending on altitude.
Olivier Membrive, Cyril Crevoisier, Colm Sweeney, François Danis, Albert Hertzog, Andreas Engel, Harald Bönisch, and Laurence Picon
Atmos. Meas. Tech., 10, 2163–2181, https://doi.org/10.5194/amt-10-2163-2017, https://doi.org/10.5194/amt-10-2163-2017, 2017
Short summary
Short summary
A new high-resolution AirCore system is presented. This system flown with stratospheric balloons allows us to sample atmospheric air during the descent. The analysis of trace gases (CO2 and CH4 in this case) in the collected air sample provides information on the vertical distribution along the atmospheric column. The continuous vertical profiles retrieved may contribute to several research topics concerning the observation of greenhouse gases and, more generally, carbon cycle studies.
Andreas Engel, Harald Bönisch, Markus Ullrich, Robert Sitals, Olivier Membrive, Francois Danis, and Cyril Crevoisier
Atmos. Chem. Phys., 17, 6825–6838, https://doi.org/10.5194/acp-17-6825-2017, https://doi.org/10.5194/acp-17-6825-2017, 2017
Short summary
Short summary
AirCore is new technique for sampling stratospheric air. We present new observations of CO2 and CH4 using AirCore and derive stratospheric transport time, called the mean age of air. The purpose of using AirCore is to provide a cost-effective tool for deriving mean age. Mean age may serve as a proxy to investigate changes in stratospheric circulation. We show that there is no statistically significant trend in our 40-year time series of mean age, which is now extended using AirCore.
Klaus-D. Gottschaldt, Hans Schlager, Robert Baumann, Heiko Bozem, Veronika Eyring, Peter Hoor, Patrick Jöckel, Tina Jurkat, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 17, 6091–6111, https://doi.org/10.5194/acp-17-6091-2017, https://doi.org/10.5194/acp-17-6091-2017, 2017
Short summary
Short summary
We present upper-tropospheric trace gas measurements in the Asian summer monsoon anticyclone, obtained with the HALO research aircraft in September 2012. The anticyclone is one of the largest atmospheric features on Earth, but many aspects of it are not well understood. With the help of model simulations we find that entrainments from the tropopause region and the lower troposphere, combined with photochemistry and dynamical instabilities, can explain the observations.
Liang Feng, Paul I. Palmer, Hartmut Bösch, Robert J. Parker, Alex J. Webb, Caio S. C. Correia, Nicholas M. Deutscher, Lucas G. Domingues, Dietrich G. Feist, Luciana V. Gatti, Emanuel Gloor, Frank Hase, Rigel Kivi, Yi Liu, John B. Miller, Isamu Morino, Ralf Sussmann, Kimberly Strong, Osamu Uchino, Jing Wang, and Andreas Zahn
Atmos. Chem. Phys., 17, 4781–4797, https://doi.org/10.5194/acp-17-4781-2017, https://doi.org/10.5194/acp-17-4781-2017, 2017
Short summary
Short summary
We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4:XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. Our results show that assimilation of GOSAT data significantly reduced the posterior uncertainty and changed the a priori spatial distribution of CH4 emissions.
Nicolas Sobanski, Jim Thieser, Jan Schuladen, Carina Sauvage, Wei Song, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 17, 4115–4130, https://doi.org/10.5194/acp-17-4115-2017, https://doi.org/10.5194/acp-17-4115-2017, 2017
Short summary
Short summary
We investigated the formation of gas-phase organic nitrates at a forested semi-urban site. This work constitutes the first detailed analysis of the sum of organic nitrate mixing ratios measured by thermal dissociation cavity ring-down spectroscopy in continental Europe. Day (OH-initiated) and night-time (NO3-initiated) production of alkyl nitrates proceed at similar rates.
Mohamadou Diallo, Bernard Legras, Eric Ray, Andreas Engel, and Juan A. Añel
Atmos. Chem. Phys., 17, 3861–3878, https://doi.org/10.5194/acp-17-3861-2017, https://doi.org/10.5194/acp-17-3861-2017, 2017
Short summary
Short summary
We construct a new monthly zonal mean CO2 distribution from the upper troposphere to the stratosphere over the 2000–2010 period. The main features of the CO2 distribution are consistent with expected variability due to the transport of long-lived trace gases by the Brewer–Dobson circulation. The method used to construct this CO2 product is unique and should be useful for model and satellite validation in the upper troposphere and stratosphere.
Jennifer Ostermöller, Harald Bönisch, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 17, 3785–3797, https://doi.org/10.5194/acp-17-3785-2017, https://doi.org/10.5194/acp-17-3785-2017, 2017
Short summary
Short summary
We analysed the temporal evolution of fractional release factors (FRFs) from EMAC model simulations for several halocarbons and nitrous oxide. The current formulation of FRFs yields values that depend on the tropospheric trend of the species. This is a problematic issue for the application of FRF in the calculation of steady-state quantities (e.g. ODP). Including a loss term in the calculation, we develop a new formulation of FRF and find that the time dependence can almost be compensated.
Johannes Eckstein, Roland Ruhnke, Andreas Zahn, Marco Neumaier, Ole Kirner, and Peter Braesicke
Atmos. Chem. Phys., 17, 2775–2794, https://doi.org/10.5194/acp-17-2775-2017, https://doi.org/10.5194/acp-17-2775-2017, 2017
Short summary
Short summary
Data on atmospheric trace gases have been collected with instruments on-board a commercial airliner for more than 10 years in the CARIBIC project. We investigate which species in the dataset can be used for a representative climatology, by comparing data from the chemistry–climate model EMAC along the flight paths to a larger set of model data. We find that long-lived species are captured quite well by the CARIBIC sample while this is not the case for more variable, shorter-lived species.
Garlich Fischbeck, Harald Bönisch, Marco Neumaier, Carl A. M. Brenninkmeijer, Johannes Orphal, Joel Brito, Julia Becker, Detlev Sprung, Peter F. J. van Velthoven, and Andreas Zahn
Atmos. Chem. Phys., 17, 1985–2008, https://doi.org/10.5194/acp-17-1985-2017, https://doi.org/10.5194/acp-17-1985-2017, 2017
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
Johannes C. Laube, Norfazrin Mohd Hanif, Patricia Martinerie, Eileen Gallacher, Paul J. Fraser, Ray Langenfelds, Carl A. M. Brenninkmeijer, Jakob Schwander, Emmanuel Witrant, Jia-Lin Wang, Chang-Feng Ou-Yang, Lauren J. Gooch, Claire E. Reeves, William T. Sturges, and David E. Oram
Atmos. Chem. Phys., 16, 15347–15358, https://doi.org/10.5194/acp-16-15347-2016, https://doi.org/10.5194/acp-16-15347-2016, 2016
Hannah Meusel, Uwe Kuhn, Andreas Reiffs, Chinmay Mallik, Hartwig Harder, Monica Martinez, Jan Schuladen, Birger Bohn, Uwe Parchatka, John N. Crowley, Horst Fischer, Laura Tomsche, Anna Novelli, Thorsten Hoffmann, Ruud H. H. Janssen, Oscar Hartogensis, Michael Pikridas, Mihalis Vrekoussis, Efstratios Bourtsoukidis, Bettina Weber, Jos Lelieveld, Jonathan Williams, Ulrich Pöschl, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 16, 14475–14493, https://doi.org/10.5194/acp-16-14475-2016, https://doi.org/10.5194/acp-16-14475-2016, 2016
Short summary
Short summary
There are many studies which show discrepancies between modeled and measured nitrous acid (HONO, precursor of OH radical) in the troposphere but with no satisfactory explanation. Ideal conditions to study the unknown sources of HONO were found on Cyprus, a remote Mediterranean island. Budget analysis of trace gas measurements indicates a common source of NO and HONO, which is not related to anthropogenic activity and is most likely derived from biologic activity in soils and subsequent emission.
Florian Obersteiner, Harald Bönisch, Timo Keber, Simon O'Doherty, and Andreas Engel
Atmos. Meas. Tech., 9, 5265–5279, https://doi.org/10.5194/amt-9-5265-2016, https://doi.org/10.5194/amt-9-5265-2016, 2016
Short summary
Short summary
The analysis of trace gases in ambient air requires a preconcentration technique, in many cases to make the species of interest detectable and quantifiable. In this paper, such a preconcentration set-up is presented. Target species are trapped on adsorptive material cooled by a Stirling cooler which allows for a very low adsorption temperature but only requires electrical power. A simple and lightweight mechanical design guarantees very good suitability for remote-site field operation.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
Stefan Müller, Peter Hoor, Heiko Bozem, Ellen Gute, Bärbel Vogel, Andreas Zahn, Harald Bönisch, Timo Keber, Martina Krämer, Christian Rolf, Martin Riese, Hans Schlager, and Andreas Engel
Atmos. Chem. Phys., 16, 10573–10589, https://doi.org/10.5194/acp-16-10573-2016, https://doi.org/10.5194/acp-16-10573-2016, 2016
Short summary
Short summary
In situ airborne measurements performed during TACTS/ESMVal 2012 were analysed to investigate the chemical compostion of the upper troposphere and lower stratosphere. N2O, CO and O3 data show an increase in tropospherically affected air masses within the extratropical stratosphere from August to September 2012, which originate from the Asian monsoon region. Thus, the Asian monsoon anticyclone significantly affected the chemical composition of the extratropical stratosphere during summer 2012.
Jan Zörner, Marloes Penning de Vries, Steffen Beirle, Holger Sihler, Patrick R. Veres, Jonathan Williams, and Thomas Wagner
Atmos. Chem. Phys., 16, 9457–9487, https://doi.org/10.5194/acp-16-9457-2016, https://doi.org/10.5194/acp-16-9457-2016, 2016
Short summary
Short summary
We present a top-down approach to infer and quantify rain-induced emission pulses of nitrogen oxides from soils using satellite-borne measurements of NO2. We found strong enhancements of NO2 induced by the first intense precipitation after prolonged droughts in many semi-arid regions of the world, in particular in the Sahel. Apart from the clear first-day peak, NO2 VCDs are moderately enhanced compared to background over the following 2 weeks suggesting potential further emissions.
E. Eckert, A. Laeng, S. Lossow, S. Kellmann, G. Stiller, T. von Clarmann, N. Glatthor, M. Höpfner, M. Kiefer, H. Oelhaf, J. Orphal, B. Funke, U. Grabowski, F. Haenel, A. Linden, G. Wetzel, W. Woiwode, P. F. Bernath, C. Boone, G. S. Dutton, J. W. Elkins, A. Engel, J. C. Gille, F. Kolonjari, T. Sugita, G. C. Toon, and K. A. Walker
Atmos. Meas. Tech., 9, 3355–3389, https://doi.org/10.5194/amt-9-3355-2016, https://doi.org/10.5194/amt-9-3355-2016, 2016
Short summary
Short summary
We investigate the accuracy, precision and long-term stability of the MIPAS Envisat IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) products.
For comparisons we use several data products from satellite, airplane and balloon-borne instruments as well as ground-based data.
MIPAS Envisat CFC-11 has a slight high bias at the lower end of the profile.
CFC-12 agrees well with other data products.
The temporal stability is good up to ~ 30 km, but still leaves room for improvement.
R. Hossaini, P. K. Patra, A. A. Leeson, G. Krysztofiak, N. L. Abraham, S. J. Andrews, A. T. Archibald, J. Aschmann, E. L. Atlas, D. A. Belikov, H. Bönisch, L. J. Carpenter, S. Dhomse, M. Dorf, A. Engel, W. Feng, S. Fuhlbrügge, P. T. Griffiths, N. R. P. Harris, R. Hommel, T. Keber, K. Krüger, S. T. Lennartz, S. Maksyutov, H. Mantle, G. P. Mills, B. Miller, S. A. Montzka, F. Moore, M. A. Navarro, D. E. Oram, K. Pfeilsticker, J. A. Pyle, B. Quack, A. D. Robinson, E. Saikawa, A. Saiz-Lopez, S. Sala, B.-M. Sinnhuber, S. Taguchi, S. Tegtmeier, R. T. Lidster, C. Wilson, and F. Ziska
Atmos. Chem. Phys., 16, 9163–9187, https://doi.org/10.5194/acp-16-9163-2016, https://doi.org/10.5194/acp-16-9163-2016, 2016
Franz Slemr, Andreas Weigelt, Ralf Ebinghaus, Hans H. Kock, Jan Bödewadt, Carl A. M. Brenninkmeijer, Armin Rauthe-Schöch, Stefan Weber, Markus Hermann, Julia Becker, Andreas Zahn, and Bengt Martinsson
Atmos. Meas. Tech., 9, 2291–2302, https://doi.org/10.5194/amt-9-2291-2016, https://doi.org/10.5194/amt-9-2291-2016, 2016
Short summary
Short summary
The goal of CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrumented Container) is to carry out regular and detailed observations of atmospheric chemistry at 9–12 km altitude. Mercury has been measured since May 2005 during intercontinental flights between Europe and South and North America, Africa, and Asia. Here we describe the instrument modifications, the post-flight processing of the raw instrument signal, and the fractionation experiments.
Markus Hermann, Andreas Weigelt, Denise Assmann, Sascha Pfeifer, Thomas Müller, Thomas Conrath, Jens Voigtländer, Jost Heintzenberg, Alfred Wiedensohler, Bengt G. Martinsson, Terry Deshler, Carl A. M. Brenninkmeijer, and Andreas Zahn
Atmos. Meas. Tech., 9, 2179–2194, https://doi.org/10.5194/amt-9-2179-2016, https://doi.org/10.5194/amt-9-2179-2016, 2016
Short summary
Short summary
Aerosol particles are an important component of the Earth's atmosphere. Here we describe the composition and characterization of a new optical particle size spectrometer (OPSS) for aircraft-borne measurements of the aerosol particle size distribution (how many particles there are with a certain size) in the 140–1050 nm size range. The OPSS was characterized throughout concerning its measurement capabilities (response, pressure dependence, coincidence) and validated versus balloon measurement.
N. Sobanski, M. J. Tang, J. Thieser, G. Schuster, D. Pöhler, H. Fischer, W. Song, C. Sauvage, J. Williams, J. Fachinger, F. Berkes, P. Hoor, U. Platt, J. Lelieveld, and J. N. Crowley
Atmos. Chem. Phys., 16, 4867–4883, https://doi.org/10.5194/acp-16-4867-2016, https://doi.org/10.5194/acp-16-4867-2016, 2016
Short summary
Short summary
The nitrate radical (NO3) is an important nocturnal oxidant. By measuring NO3, its precursors (nitrogen dioxide and ozone) and several trace gases with which it reacts, we examined the chemical and meteorological factors influencing the lifetime of NO3 at a semi-rural mountain site. Unexpectedly long lifetimes, approaching 1 h, were observed on several nights and were associated with a low-lying residual layer. We discuss the role of other reactions that convert NO2 to NO3.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
Andreas Weigelt, Ralf Ebinghaus, Nicola Pirrone, Johannes Bieser, Jan Bödewadt, Giulio Esposito, Franz Slemr, Peter F. J. van Velthoven, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 16, 4135–4146, https://doi.org/10.5194/acp-16-4135-2016, https://doi.org/10.5194/acp-16-4135-2016, 2016
Short summary
Short summary
We show the first mercury profile measurements over Europe since 1996. Besides gaseous elemental mercury (GEM) and total gaseous mercury (TGM), the gases CO, SO2, NOx, and O3 were measured from aboard a research aircraft over four European locations. Compared to the boundary layer, the concentration of GEM and TGM in the free troposphere was 10–30% lower. Inside the individual layers no vertical gradient was apparent. Combined with CARIBIC data, a unique profile from 0.4 to 10.5 km is provided.
Armin Rauthe-Schöch, Angela K. Baker, Tanja J. Schuck, Carl A. M. Brenninkmeijer, Andreas Zahn, Markus Hermann, Greta Stratmann, Helmut Ziereis, Peter F. J. van Velthoven, and Jos Lelieveld
Atmos. Chem. Phys., 16, 3609–3629, https://doi.org/10.5194/acp-16-3609-2016, https://doi.org/10.5194/acp-16-3609-2016, 2016
Short summary
Short summary
The flying laboratory CARIBIC onboard a passenger aircraft measured trace gases and aerosol particles in the upper tropospheric Indian summer monsoon anticyclone in summer 2008. We used the measurements together with meteorological analyses to investigate the chemical signature of the northern and southern part of the monsoon, the source regions from where the air was entrained into the monsoon and which parts of the world received polluted air that had been chemically processed in the monsoon.
M. Chirkov, G. P. Stiller, A. Laeng, S. Kellmann, T. von Clarmann, C. D. Boone, J. W. Elkins, A. Engel, N. Glatthor, U. Grabowski, C. M. Harth, M. Kiefer, F. Kolonjari, P. B. Krummel, A. Linden, C. R. Lunder, B. R. Miller, S. A. Montzka, J. Mühle, S. O'Doherty, J. Orphal, R. G. Prinn, G. Toon, M. K. Vollmer, K. A. Walker, R. F. Weiss, A. Wiegele, and D. Young
Atmos. Chem. Phys., 16, 3345–3368, https://doi.org/10.5194/acp-16-3345-2016, https://doi.org/10.5194/acp-16-3345-2016, 2016
Short summary
Short summary
HCFC-22 global distributions from MIPAS measurements for 2005 to 2012 are presented. Tropospheric trends are in good agreement with ground-based observations. A layer of enhanced HCFC-22 in the upper tropospheric tropics and northern subtropics is identified to come from Asian sources uplifted in the Asian monsoon. Stratospheric distributions provide show seasonal, semi-annual, and QBO-related variations. Hemispheric asymmetries of trends hint towards a change in the stratospheric circulation.
Andreas Engel, Harald Bönisch, Tim Schwarzenberger, Hans-Peter Haase, Katja Grunow, Jana Abalichin, and Stephan Sala
Atmos. Meas. Tech., 9, 1051–1062, https://doi.org/10.5194/amt-9-1051-2016, https://doi.org/10.5194/amt-9-1051-2016, 2016
Short summary
Short summary
We present a validation of MIPAS-ENVISAT vertical profiles (ESA operational retrieval version 6.0) of N2O, CH4, CFC-12, and CFC-11. The geophysical validation is performed using data from a balloon-borne cryogenic whole air sampler and trajectory matching. We show that the validation results are different for the period prior to 2005 compared to the post 2005 period. N2O, CH4, and CFC-12 show partly good agreement while CFC-11 data from this retrieval cannot be used for scientific studies.
Narendra Ojha, Andrea Pozzer, Armin Rauthe-Schöch, Angela K. Baker, Jongmin Yoon, Carl A. M. Brenninkmeijer, and Jos Lelieveld
Atmos. Chem. Phys., 16, 3013–3032, https://doi.org/10.5194/acp-16-3013-2016, https://doi.org/10.5194/acp-16-3013-2016, 2016
Short summary
Short summary
We compare simulations of ozone and carbon monoxide using a regional chemistry transport model (WRF-Chem) with aircraft observations from CARIBIC program over India during monsoon period. Sensitivity simulations are conducted to assess the influences of regional emissions and long-range transport.
F. Obersteiner, H. Bönisch, and A. Engel
Atmos. Meas. Tech., 9, 179–194, https://doi.org/10.5194/amt-9-179-2016, https://doi.org/10.5194/amt-9-179-2016, 2016
Short summary
Short summary
We present the characterization and application of a new gas chromatography time-of-flight mass spectrometry instrument, with focus on quantitative analysis of halocarbons in air samples. The applicability of the TOFMS technique, e.g. to form the basis of a "digital air archieve", is supported by the findings of this work: very high sensitivity, high measurement precision, a large dynamical range and an open data format which allows in-depth analysis of the data.
A. Laeng, J. Plieninger, T. von Clarmann, U. Grabowski, G. Stiller, E. Eckert, N. Glatthor, F. Haenel, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, L. Deaver, A. Engel, M. Hervig, I. Levin, M. McHugh, S. Noël, G. Toon, and K. Walker
Atmos. Meas. Tech., 8, 5251–5261, https://doi.org/10.5194/amt-8-5251-2015, https://doi.org/10.5194/amt-8-5251-2015, 2015
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
X. Lin, N. K. Indira, M. Ramonet, M. Delmotte, P. Ciais, B. C. Bhatt, M. V. Reddy, D. Angchuk, S. Balakrishnan, S. Jorphail, T. Dorjai, T. T. Mahey, S. Patnaik, M. Begum, C. Brenninkmeijer, S. Durairaj, R. Kirubagaran, M. Schmidt, P. S. Swathi, N. V. Vinithkumar, C. Yver Kwok, and V. K. Gaur
Atmos. Chem. Phys., 15, 9819–9849, https://doi.org/10.5194/acp-15-9819-2015, https://doi.org/10.5194/acp-15-9819-2015, 2015
Short summary
Short summary
We present 5-year flask measurements (2007–2011) of greenhouse gases (GHGs) at three atmospheric stations in India. The results suggest significant sources of CO2, CH4, N2O, CO, and H2 over S and NE India, while SF6 sources are weak. The seasonal cycles for each species reflect the seasonality of sources/sinks and influences of the Indian monsoon circulations. The data show potential to infer regional patterns of GHG fluxes and atmospheric transport over this under-documented region.
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
J. Ungermann, J. Blank, M. Dick, A. Ebersoldt, F. Friedl-Vallon, A. Giez, T. Guggenmoser, M. Höpfner, T. Jurkat, M. Kaufmann, S. Kaufmann, A. Kleinert, M. Krämer, T. Latzko, H. Oelhaf, F. Olchewski, P. Preusse, C. Rolf, J. Schillings, O. Suminska-Ebersoldt, V. Tan, N. Thomas, C. Voigt, A. Zahn, M. Zöger, and M. Riese
Atmos. Meas. Tech., 8, 2473–2489, https://doi.org/10.5194/amt-8-2473-2015, https://doi.org/10.5194/amt-8-2473-2015, 2015
Short summary
Short summary
The GLORIA sounder is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the TACTS and ESMVAL campaigns in summer 2012. This paper describes the retrieval of temperature, as well as H2O, HNO3, and O3 cross sections from GLORIA dynamics mode spectra. A high correlation is achieved between the remote sensing and the in situ trace gas measurements.
K. Violaki, J. Sciare, J. Williams, A. R. Baker, M. Martino, and N. Mihalopoulos
Biogeosciences, 12, 3131–3140, https://doi.org/10.5194/bg-12-3131-2015, https://doi.org/10.5194/bg-12-3131-2015, 2015
J. Hoker, F. Obersteiner, H. Bönisch, and A. Engel
Atmos. Meas. Tech., 8, 2195–2206, https://doi.org/10.5194/amt-8-2195-2015, https://doi.org/10.5194/amt-8-2195-2015, 2015
C. Dyroff, S. Sanati, E. Christner, A. Zahn, M. Balzer, H. Bouquet, J. B. McManus, Y. González-Ramos, and M. Schneider
Atmos. Meas. Tech., 8, 2037–2049, https://doi.org/10.5194/amt-8-2037-2015, https://doi.org/10.5194/amt-8-2037-2015, 2015
D. Mogensen, R. Gierens, J. N. Crowley, P. Keronen, S. Smolander, A. Sogachev, A. C. Nölscher, L. Zhou, M. Kulmala, M. J. Tang, J. Williams, and M. Boy
Atmos. Chem. Phys., 15, 3909–3932, https://doi.org/10.5194/acp-15-3909-2015, https://doi.org/10.5194/acp-15-3909-2015, 2015
A. M. Yáñez-Serrano, A. C. Nölscher, J. Williams, S. Wolff, E. Alves, G. A. Martins, E. Bourtsoukidis, J. Brito, K. Jardine, P. Artaxo, and J. Kesselmeier
Atmos. Chem. Phys., 15, 3359–3378, https://doi.org/10.5194/acp-15-3359-2015, https://doi.org/10.5194/acp-15-3359-2015, 2015
Emma C. Leedham Elvidge, D. E. Oram, J. C. Laube, A. K. Baker, S. A. Montzka, S. Humphrey, D. A. O'Sullivan, and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 15, 1939–1958, https://doi.org/10.5194/acp-15-1939-2015, https://doi.org/10.5194/acp-15-1939-2015, 2015
S. Gromov and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 15, 1901–1912, https://doi.org/10.5194/acp-15-1901-2015, https://doi.org/10.5194/acp-15-1901-2015, 2015
Short summary
Short summary
We present observational data on δ18O(O3) from the UT/LMS, the region to date not covered by the ozone isotope composition measurements. It is to bridge the gap between the tropospheric (mostly surface) and stratospheric measurement data.
We demonstrate an approach suitable for isotope mass-balance calculations (“Keeling plot”) in intricate cases, i.e. admixing of the (unknown) source in question to the reservoirs with (unknown) variable starting compositions.
E. Mesarchaki, C. Kräuter, K. E. Krall, M. Bopp, F. Helleis, J. Williams, and B. Jähne
Ocean Sci., 11, 121–138, https://doi.org/10.5194/os-11-121-2015, https://doi.org/10.5194/os-11-121-2015, 2015
Short summary
Short summary
Our article presents successful gas exchange measurements obtained in a large-scale wind-wave tank. The adopted box model methodology, experimental produce and instrumentation are described in detail. For the first time, parallel measurements of total transfer velocities for 14 individual gases within a wide range of solubility have been achieved. Various wind speed conditions and the effect of surfactant layers have been investigated providing exciting results.
R. Oswald, M. Ermel, K. Hens, A. Novelli, H. G. Ouwersloot, P. Paasonen, T. Petäjä, M. Sipilä, P. Keronen, J. Bäck, R. Königstedt, Z. Hosaynali Beygi, H. Fischer, B. Bohn, D. Kubistin, H. Harder, M. Martinez, J. Williams, T. Hoffmann, I. Trebs, and M. Sörgel
Atmos. Chem. Phys., 15, 799–813, https://doi.org/10.5194/acp-15-799-2015, https://doi.org/10.5194/acp-15-799-2015, 2015
Short summary
Short summary
Nitrous acid (HONO) is a key species in atmospheric photochemistry since the photolysis leads to the important hydroxyl radical (OH). Although the importance of HONO as a precursor of OH is known, the formation pathways of HONO, especially during daytime, are a major challenge in atmospheric science. We present a detailed analysis of sources and sinks for HONO in the atmosphere for a field measurement campaign in the boreal forest in Finland and wonder if there is really a source term missing.
C. E. Stockwell, P. R. Veres, J. Williams, and R. J. Yokelson
Atmos. Chem. Phys., 15, 845–865, https://doi.org/10.5194/acp-15-845-2015, https://doi.org/10.5194/acp-15-845-2015, 2015
Short summary
Short summary
We used a high-resolution proton-transfer-reaction time-of-flight mass spectrometer to measure emissions from peat, crop residue, cooking fires, etc. We assigned > 80% of the mass of gas-phase organic compounds and much of it was secondary organic aerosol precursors. The open cooking emissions were much larger than from advanced cookstoves. Little-studied N-containing organic compounds accounted for 0.1-8.7% of the fuel N and may influence new particle formation.
M. Kaufmann, J. Blank, T. Guggenmoser, J. Ungermann, A. Engel, M. Ern, F. Friedl-Vallon, D. Gerber, J. U. Grooß, G. Guenther, M. Höpfner, A. Kleinert, E. Kretschmer, Th. Latzko, G. Maucher, T. Neubert, H. Nordmeyer, H. Oelhaf, F. Olschewski, J. Orphal, P. Preusse, H. Schlager, H. Schneider, D. Schuettemeyer, F. Stroh, O. Suminska-Ebersoldt, B. Vogel, C. M. Volk, W. Woiwode, and M. Riese
Atmos. Meas. Tech., 8, 81–95, https://doi.org/10.5194/amt-8-81-2015, https://doi.org/10.5194/amt-8-81-2015, 2015
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, P. Hoor, M. Krämer, S. Müller, A. Zahn, and M. Riese
Atmos. Chem. Phys., 14, 12745–12762, https://doi.org/10.5194/acp-14-12745-2014, https://doi.org/10.5194/acp-14-12745-2014, 2014
Short summary
Short summary
Enhanced tropospheric trace gases (e.g. pollutants) were measured in situ in
the lowermost stratosphere over Northern Europe on 26 September 2012
during the TACTS aircraft campaign. We found that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is a novel fast transport pathway
that may carry boundary emissions from Southeast
Asia/western Pacific within approximately 5 weeks to the lowermost
stratosphere in Northern Europe.
C. Warneke, F. Geiger, P. M. Edwards, W. Dube, G. Pétron, J. Kofler, A. Zahn, S. S. Brown, M. Graus, J. B. Gilman, B. M. Lerner, J. Peischl, T. B. Ryerson, J. A. de Gouw, and J. M. Roberts
Atmos. Chem. Phys., 14, 10977–10988, https://doi.org/10.5194/acp-14-10977-2014, https://doi.org/10.5194/acp-14-10977-2014, 2014
T. Behrendt, P. R. Veres, F. Ashuri, G. Song, M. Flanz, B. Mamtimin, M. Bruse, J. Williams, and F. X. Meixner
Biogeosciences, 11, 5463–5492, https://doi.org/10.5194/bg-11-5463-2014, https://doi.org/10.5194/bg-11-5463-2014, 2014
A. Tilgner, L. Schöne, P. Bräuer, D. van Pinxteren, E. Hoffmann, G. Spindler, S. A. Styler, S. Mertes, W. Birmili, R. Otto, M. Merkel, K. Weinhold, A. Wiedensohler, H. Deneke, R. Schrödner, R. Wolke, J. Schneider, W. Haunold, A. Engel, A. Wéber, and H. Herrmann
Atmos. Chem. Phys., 14, 9105–9128, https://doi.org/10.5194/acp-14-9105-2014, https://doi.org/10.5194/acp-14-9105-2014, 2014
H. Bozem, H. Fischer, C. Gurk, C. L. Schiller, U. Parchatka, R. Koenigstedt, A. Stickler, M. Martinez, H. Harder, D. Kubistin, J. Williams, G. Eerdekens, and J. Lelieveld
Atmos. Chem. Phys., 14, 8917–8931, https://doi.org/10.5194/acp-14-8917-2014, https://doi.org/10.5194/acp-14-8917-2014, 2014
K. Hens, A. Novelli, M. Martinez, J. Auld, R. Axinte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C. Nölscher, R. Oswald, P. Paasonen, T. Petäjä, E. Regelin, R. Sander, V. Sinha, M. Sipilä, D. Taraborrelli, C. Tatum Ernest, J. Williams, J. Lelieveld, and H. Harder
Atmos. Chem. Phys., 14, 8723–8747, https://doi.org/10.5194/acp-14-8723-2014, https://doi.org/10.5194/acp-14-8723-2014, 2014
B. G. Martinsson, J. Friberg, S. M. Andersson, A. Weigelt, M. Hermann, D. Assmann, J. Voigtländer, C. A. M. Brenninkmeijer, P. J. F. van Velthoven, and A. Zahn
Atmos. Meas. Tech., 7, 2581–2596, https://doi.org/10.5194/amt-7-2581-2014, https://doi.org/10.5194/amt-7-2581-2014, 2014
P. R. Veres, T. Behrendt, A. Klapthor, F. X. Meixner, and J. Williams
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-12009-2014, https://doi.org/10.5194/bgd-11-12009-2014, 2014
Revised manuscript not accepted
S. Sala, H. Bönisch, T. Keber, D. E. Oram, G. Mills, and A. Engel
Atmos. Chem. Phys., 14, 6903–6923, https://doi.org/10.5194/acp-14-6903-2014, https://doi.org/10.5194/acp-14-6903-2014, 2014
E. Bourtsoukidis, J. Williams, J. Kesselmeier, S. Jacobi, and B. Bonn
Atmos. Chem. Phys., 14, 6495–6510, https://doi.org/10.5194/acp-14-6495-2014, https://doi.org/10.5194/acp-14-6495-2014, 2014
K.-P. Heue, H. Riede, D. Walter, C. A. M. Brenninkmeijer, T. Wagner, U. Frieß, U. Platt, A. Zahn, G. Stratmann, and H. Ziereis
Atmos. Chem. Phys., 14, 6621–6642, https://doi.org/10.5194/acp-14-6621-2014, https://doi.org/10.5194/acp-14-6621-2014, 2014
A. Wisher, D. E. Oram, J. C. Laube, G. P. Mills, P. van Velthoven, A. Zahn, and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 14, 3557–3570, https://doi.org/10.5194/acp-14-3557-2014, https://doi.org/10.5194/acp-14-3557-2014, 2014
W. Song, M. Staudt, I. Bourgeois, and J. Williams
Biogeosciences, 11, 1435–1447, https://doi.org/10.5194/bg-11-1435-2014, https://doi.org/10.5194/bg-11-1435-2014, 2014
C. Dyroff, A. Zahn, S. Sanati, E. Christner, A. Rauthe-Schöch, and T. J. Schuck
Atmos. Meas. Tech., 7, 743–755, https://doi.org/10.5194/amt-7-743-2014, https://doi.org/10.5194/amt-7-743-2014, 2014
J. E. Williams, G. Le Bras, A. Kukui, H. Ziereis, and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 14, 2363–2382, https://doi.org/10.5194/acp-14-2363-2014, https://doi.org/10.5194/acp-14-2363-2014, 2014
J. A. Adame, M. Martínez, M. Sorribas, P. J. Hidalgo, H. Harder, J.-M. Diesch, F. Drewnick, W. Song, J. Williams, V. Sinha, M. A. Hernández-Ceballos, J. Vilà-Guerau de Arellano, R. Sander, Z. Hosaynali-Beygi, H. Fischer, J. Lelieveld, and B. De la Morena
Atmos. Chem. Phys., 14, 2325–2342, https://doi.org/10.5194/acp-14-2325-2014, https://doi.org/10.5194/acp-14-2325-2014, 2014
A. L. Corrigan, L. M. Russell, S. Takahama, M. Äijälä, M. Ehn, H. Junninen, J. Rinne, T. Petäjä, M. Kulmala, A. L. Vogel, T. Hoffmann, C. J. Ebben, F. M. Geiger, P. Chhabra, J. H. Seinfeld, D. R. Worsnop, W. Song, J. Auld, and J. Williams
Atmos. Chem. Phys., 13, 12233–12256, https://doi.org/10.5194/acp-13-12233-2013, https://doi.org/10.5194/acp-13-12233-2013, 2013
S. Tegtmeier, K. Krüger, B. Quack, E. Atlas, D. R. Blake, H. Boenisch, A. Engel, H. Hepach, R. Hossaini, M. A. Navarro, S. Raimund, S. Sala, Q. Shi, and F. Ziska
Atmos. Chem. Phys., 13, 11869–11886, https://doi.org/10.5194/acp-13-11869-2013, https://doi.org/10.5194/acp-13-11869-2013, 2013
R. Hossaini, H. Mantle, M. P. Chipperfield, S. A. Montzka, P. Hamer, F. Ziska, B. Quack, K. Krüger, S. Tegtmeier, E. Atlas, S. Sala, A. Engel, H. Bönisch, T. Keber, D. Oram, G. Mills, C. Ordóñez, A. Saiz-Lopez, N. Warwick, Q. Liang, W. Feng, F. Moore, B. R. Miller, V. Marécal, N. A. D. Richards, M. Dorf, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 11819–11838, https://doi.org/10.5194/acp-13-11819-2013, https://doi.org/10.5194/acp-13-11819-2013, 2013
E. V. Berezina, N. F. Elansky, K. B. Moiseenko, I. B. Belikov, R. A. Shumsky, A. N. Safronov, and C. A. M Brenninkmeijer
Atmos. Chem. Phys., 13, 11695–11708, https://doi.org/10.5194/acp-13-11695-2013, https://doi.org/10.5194/acp-13-11695-2013, 2013
A. L. Vogel, M. Äijälä, A. L. Corrigan, H. Junninen, M. Ehn, T. Petäjä, D. R. Worsnop, M. Kulmala, L. M. Russell, J. Williams, and T. Hoffmann
Atmos. Chem. Phys., 13, 10933–10950, https://doi.org/10.5194/acp-13-10933-2013, https://doi.org/10.5194/acp-13-10933-2013, 2013
P. D. Hamer, V. Marécal, R. Hossaini, M. Pirre, N. Warwick, M. Chipperfield, A. A. Samah, N. Harris, A. Robinson, B. Quack, A. Engel, K. Krüger, E. Atlas, K. Subramaniam, D. Oram, Emma C. Leedham Elvidge, G. Mills, K. Pfeilsticker, S. Sala, T. Keber, H. Bönisch, L. K. Peng, M. S. M. Nadzir, P. T. Lim, A. Mujahid, A. Anton, H. Schlager, V. Catoire, G. Krysztofiak, S. Fühlbrügge, M. Dorf, and W. T. Sturges
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-20611-2013, https://doi.org/10.5194/acpd-13-20611-2013, 2013
Revised manuscript not accepted
A.C. Nölscher, E. Bourtsoukidis, B. Bonn, J. Kesselmeier, J. Lelieveld, and J. Williams
Biogeosciences, 10, 4241–4257, https://doi.org/10.5194/bg-10-4241-2013, https://doi.org/10.5194/bg-10-4241-2013, 2013
M. D. Andrés-Hernández, D. Kartal, J. N. Crowley, V. Sinha, E. Regelin, M. Martínez-Harder, V. Nenakhov, J. Williams, H. Harder, H. Bozem, W. Song, J. Thieser, M. J. Tang, Z. Hosaynali Beigi, and J. P. Burrows
Atmos. Chem. Phys., 13, 5731–5749, https://doi.org/10.5194/acp-13-5731-2013, https://doi.org/10.5194/acp-13-5731-2013, 2013
C. Crevoisier, D. Nobileau, R. Armante, L. Crépeau, T. Machida, Y. Sawa, H. Matsueda, T. Schuck, T. Thonat, J. Pernin, N. A. Scott, and A. Chédin
Atmos. Chem. Phys., 13, 4279–4289, https://doi.org/10.5194/acp-13-4279-2013, https://doi.org/10.5194/acp-13-4279-2013, 2013
J. E. Williams, P. F. J. van Velthoven, and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 13, 2857–2891, https://doi.org/10.5194/acp-13-2857-2013, https://doi.org/10.5194/acp-13-2857-2013, 2013
J. C. Laube, A. Keil, H. Bönisch, A. Engel, T. Röckmann, C. M. Volk, and W. T. Sturges
Atmos. Chem. Phys., 13, 2779–2791, https://doi.org/10.5194/acp-13-2779-2013, https://doi.org/10.5194/acp-13-2779-2013, 2013
A. L. Vogel, M. Äijälä, M. Brüggemann, M. Ehn, H. Junninen, T. Petäjä, D. R. Worsnop, M. Kulmala, J. Williams, and T. Hoffmann
Atmos. Meas. Tech., 6, 431–443, https://doi.org/10.5194/amt-6-431-2013, https://doi.org/10.5194/amt-6-431-2013, 2013
S. M. Andersson, B. G. Martinsson, J. Friberg, C. A. M. Brenninkmeijer, A. Rauthe-Schöch, M. Hermann, P. F. J. van Velthoven, and A. Zahn
Atmos. Chem. Phys., 13, 1781–1796, https://doi.org/10.5194/acp-13-1781-2013, https://doi.org/10.5194/acp-13-1781-2013, 2013
G. J. Phillips, N. Pouvesle, J. Thieser, G. Schuster, R. Axinte, H. Fischer, J. Williams, J. Lelieveld, and J. N. Crowley
Atmos. Chem. Phys., 13, 1129–1139, https://doi.org/10.5194/acp-13-1129-2013, https://doi.org/10.5194/acp-13-1129-2013, 2013
A. C. Nölscher, V. Sinha, S. Bockisch, T. Klüpfel, and J. Williams
Atmos. Meas. Tech., 5, 2981–2992, https://doi.org/10.5194/amt-5-2981-2012, https://doi.org/10.5194/amt-5-2981-2012, 2012
Related subject area
Subject: Gases | Technique: Laboratory Measurement | Topic: Instruments and Platforms
High-precision oxygen isotope (δ18O) measurements of atmospheric dioxygen using optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS)
Water vapor stable isotope memory effects of common tubing materials
Product Ion Distributions using H3O+ PTR-ToF-MS: Mechanisms, Transmission Effects, and Instrument-to-Instrument Variability
Evaluation of a reduced-pressure chemical ion reactor utilizing adduct ionization for the detection of gaseous organic and inorganic species
Ammonium CI-Orbitrap: a tool for characterizing the reactivity of oxygenated organic molecules
A high-accuracy dynamic dilution method for generating reference gas mixtures of carbonyl sulfide at sub-nanomole-per-mole levels for long-term atmospheric observation
Optimizing the iodide-adduct chemical ionization mass spectrometry (CIMS) quantitative method for toluene oxidation intermediates: experimental insights into functional-group differences
Simultaneous measurement of greenhouse gases (CH4, CO2 and N2O) at atmospheric levels using a gas chromatography system
A new portable sampler of atmospheric methane for radiocarbon measurements
Characterization of a new Teflon chamber and on-line analysis of isomeric multifunctional photooxidation products
A versatile water vapor generation module for vapor isotope calibration and liquid isotope measurements
Extraction, purification, and clumped isotope analysis of methane (Δ13CDH3 and Δ12CD2H2) from sources and the atmosphere
Response of protonated, adduct, and fragmented ions in Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS)
Absorption of volatile organic compounds (VOCs) by polymer tubing: implications for indoor air and use as a simple gas-phase volatility separation technique
A flexible device to produce a gas stream with a precisely controlled water vapour mixing ratio and isotope composition based on microdrop dispensing technology
Revision of an open-split-based dual-inlet system for elemental and isotope ratio mass spectrometers with a focus on clumped-isotope measurements
Characterisation of gaseous iodine species detection using the multi-scheme chemical ionisation inlet 2 with bromide and nitrate chemical ionisation methods
A novel inlet for enriching concentrations of reactive organic gases in low sampling flows
Characterizing the automatic radon flux transfer standard system Autoflux: laboratory calibration and field experiments
Influence of ozone and humidity on PTR-MS and GC-MS VOC measurements with and without a Na2S2O3 ozone scrubber
Laser-induced sublimation extraction for centimeter-resolution multi-species greenhouse gas analysis on ice cores
Ozone reactivity measurement of biogenic volatile organic compound emissions
Comparison of two photolytic calibration methods for nitrous acid
Measurement of enantiomer percentages for five monoterpenes from six conifer species by cartridge-tube-based passive sampling adsorption–thermal desorption (ps-ATD)
Identification, monitoring, and reaction kinetics of reactive trace species using time-resolved mid-infrared quantum cascade laser absorption spectroscopy: development, characterisation, and initial results for the CH2OO Criegee intermediate
Air pollution monitoring: development of ammonia (NH3) dynamic reference gas mixtures at nanomoles per mole levels to improve the lack of traceability of measurements
Formaldehyde and glyoxal measurement deploying a selected ion flow tube mass spectrometer (SIFT-MS)
Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides
MULTICHARME: a modified Chernin-type multi-pass cell designed for IR and THz long-path absorption measurements in the CHARME atmospheric simulation chamber
Silicone tube humidity generator
A source for the continuous generation of pure and quantifiable HONO mixtures
Photochemical method for removing methane interference for improved gas analysis
A simulation chamber for absorption spectroscopy in planetary atmospheres
An automated system for trace gas flux measurements from plant foliage and other plant compartments
Simultaneous measurement of δ13C, δ18O and δ17O of atmospheric CO2 – performance assessment of a dual-laser absorption spectrometer
Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers
A method for resolving changes in atmospheric He ∕ N2 as an indicator of fossil fuel extraction and stratospheric circulation
Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
Atomic emission detector with gas chromatographic separation and cryogenic pre-concentration (CryoTrap–GC–AED) for atmospheric trace gas measurements
New technique for high-precision, simultaneous measurements of CH4, N2O and CO2 concentrations; isotopic and elemental ratios of N2, O2 and Ar; and total air content in ice cores by wet extraction
High-precision laser spectrometer for multiple greenhouse gas analysis in 1 mL air from ice core samples
A thermal-dissociation–cavity ring-down spectrometer (TD-CRDS) for the detection of organic nitrates in gas and particle phases
Interference from alkenes in chemiluminescent NOx measurements
Calibration of an airborne HOx instrument using the All Pressure Altitude-based Calibrator for HOx Experimentation (APACHE)
Measurement of ammonia, amines and iodine compounds using protonated water cluster chemical ionization mass spectrometry
An instrument for in situ measurement of total ozone reactivity
Portable calibrator for NO based on the photolysis of N2O and a combined NO2∕NO∕O3 source for field calibrations of air pollution monitors
A new instrument for time-resolved measurement of HO2 radicals
Investigation of adsorption and desorption behavior of small-volume cylinders and its relevance for atmospheric trace gas analysis
Towards an understanding of surface effects: testing of various materials in a small volume measurement chamber and its relevance for atmospheric trace gas analysis
Clément Piel, Daniele Romanini, Morgane Farradèche, Justin Chaillot, Clémence Paul, Nicolas Bienville, Thomas Lauwers, Joana Sauze, Kévin Jaulin, Frédéric Prié, and Amaëlle Landais
Atmos. Meas. Tech., 17, 6647–6658, https://doi.org/10.5194/amt-17-6647-2024, https://doi.org/10.5194/amt-17-6647-2024, 2024
Short summary
Short summary
This paper introduces a new optical gas analyzer based on an optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) technique enabling high-temporal-resolution and high-precision measurements of oxygen isotopes (δ18O) and dioxygen (O2) concentration of atmospheric O2 (respectively 0.06 ‰ and 0.002 % over 10 min integration). The results underscore the good agreement with isotope ratio mass spectrometry measurements and the ability of the instrument to monitor biological processes.
Alexandra L. Meyer and Lisa R. Welp
Atmos. Meas. Tech., 17, 6193–6212, https://doi.org/10.5194/amt-17-6193-2024, https://doi.org/10.5194/amt-17-6193-2024, 2024
Short summary
Short summary
Water molecules stick to air intake tubing wall surfaces, smoothing measurements of fast isotopic variability in the atmosphere. We tested this stickiness and saw small differences in isotopic signal speed between materials, tubing inner dimensions, and isotopic switch direction, although no consistent temperature effects. Researchers can confidently compare measurements across observation systems using different commonly used tubing materials and plan for optimal inlet designs of new systems.
Michael F. Link, Megan S. Claflin, Christina E. Cecelski, Ayomide A. Akande, Delaney Kilgour, Paul A. Heine, Matthew Coggon, Chelsea E. Stockwell, Andrew Jensen, Jie Yu, Han N. Huynh, Jenna C. Ditto, Carsten Warneke, William Dresser, Keighan Gemmell, Spiro Jorga, Rileigh L. Robertson, Joost de Gouw, Timothy Bertram, Jonathan P. D. Abbatt, Nadine Borduas-Dedekind, and Dustin Poppendieck
EGUsphere, https://doi.org/10.5194/egusphere-2024-3132, https://doi.org/10.5194/egusphere-2024-3132, 2024
Short summary
Short summary
Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for the measurement of volatile organic compounds (VOCs) both indoors and outdoors. An analytical challenge for PTR-MS measurements is the formation of unintended measurement interferences, product ion distributions (PIDs), that may appear in the data as VOCs of interest. We developed a method for quantifying PID formation and use interlaboratory comparison data to put quantitative constraints on PID formation.
Matthieu Riva, Veronika Pospisilova, Carla Frege, Sebastien Perrier, Priyanka Bansal, Spiro Jorga, Patrick Sturm, Joel A. Thornton, Urs Rohner, and Felipe Lopez-Hilfiker
Atmos. Meas. Tech., 17, 5887–5901, https://doi.org/10.5194/amt-17-5887-2024, https://doi.org/10.5194/amt-17-5887-2024, 2024
Short summary
Short summary
We present a newly designed reduced-pressure chemical ionization reactor for detection of gas-phase organic and inorganic species. The system operates through the combined use of vacuum ultraviolet ionization and photosensitizers to generate numerous adduct ionization schemes. As a result, it offers the ability to simultaneously measure a wide variety of organic and inorganic species in terms of compound volatility and functionality, while being largely independent of changes in sample humidity.
Dandan Li, Dongyu Wang, Lucia Caudillo, Wiebke Scholz, Mingyi Wang, Sophie Tomaz, Guillaume Marie, Mihnea Surdu, Elias Eccli, Xianda Gong, Loic Gonzalez-Carracedo, Manuel Granzin, Joschka Pfeifer, Birte Rörup, Benjamin Schulze, Pekka Rantala, Sébastien Perrier, Armin Hansel, Joachim Curtius, Jasper Kirkby, Neil M. Donahue, Christian George, Imad El-Haddad, and Matthieu Riva
Atmos. Meas. Tech., 17, 5413–5428, https://doi.org/10.5194/amt-17-5413-2024, https://doi.org/10.5194/amt-17-5413-2024, 2024
Short summary
Short summary
Due to the analytical challenges of measuring organic vapors, it remains challenging to identify and quantify organic molecules present in the atmosphere. Here, we explore the performance of the Orbitrap chemical ionization mass spectrometer (CI-Orbitrap) using ammonium ion chemistry. This study shows that ammonium-ion-based chemistry associated with the high mass resolution of the Orbitrap mass analyzer can measure almost all inclusive compounds.
Hideki Nara, Takuya Saito, Taku Umezawa, and Yasunori Tohjima
Atmos. Meas. Tech., 17, 5187–5200, https://doi.org/10.5194/amt-17-5187-2024, https://doi.org/10.5194/amt-17-5187-2024, 2024
Short summary
Short summary
We have developed a high-accuracy dynamic dilution system for generating reference gas mixtures containing carbonyl sulfide (COS). Although COS at ambient levels generally has poor storage stability, our approach involves the dilution of a gas mixture containing micromole-per-mole levels of COS, the stability of which was validated for more than 1 decade. The developed system has excellent dilution performance and will facilitate accurate instrumental calibration for atmospheric COS observation.
Mengdi Song, Shuyu He, Xin Li, Ying Liu, Shengrong Lou, Sihua Lu, Limin Zeng, and Yuanhang Zhang
Atmos. Meas. Tech., 17, 5113–5127, https://doi.org/10.5194/amt-17-5113-2024, https://doi.org/10.5194/amt-17-5113-2024, 2024
Short summary
Short summary
We introduce detailed and improved quantitation and semi-quantitation methods of iodide-adduct time-of-flight chemical ionization mass spectrometry (I-CIMS) to measure toluene oxidation intermediates. We assess the experimental sensitivity of various functional group species and their binding energy with iodide ions in I-CIMS. A novel classification approach was introduced to significantly enhance the accuracy of semi-quantitative methods (improving R2 values from 0.52 to beyond 0.88).
Michal Bucha, Dominika Lewicka-Szczebak, and Piotr Wójtowicz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2125, https://doi.org/10.5194/egusphere-2024-2125, 2024
Short summary
Short summary
Manuscript presents new method for determination of GHG’s (CH4, CO2 and N2O) at ambient levels using chromatographic system with barrier ion discharge detector (BID) and Carboxen 1010 column. System is omitting the need for an electron capture detector (ECD) containing radiogenic components for N2O analysis and a flame ionisation detector (FID) with a methaniser for CO2 samples. This simplification reduces analytical costs, facilitates instrument maintenance and improves measurement robustness.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautchi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-123, https://doi.org/10.5194/amt-2024-123, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing fossil from biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. With this work we made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Finja Löher, Esther Borrás, Amalia Muñoz, and Anke Christine Nölscher
Atmos. Meas. Tech., 17, 4553–4579, https://doi.org/10.5194/amt-17-4553-2024, https://doi.org/10.5194/amt-17-4553-2024, 2024
Short summary
Short summary
We constructed and characterized a new indoor Teflon atmospheric simulation chamber. We evaluated wall losses, photolysis rates, and secondary reactions of multifunctional photooxidation products in the chamber. To measure these products on-line, we combined chromatographic and mass spectrometric analyses to obtain both isomeric information and a high temporal resolution. For method validation, we studied the formation yields of the main ring-retaining products of toluene.
Hans Christian Steen-Larsen and Daniele Zannoni
Atmos. Meas. Tech., 17, 4391–4409, https://doi.org/10.5194/amt-17-4391-2024, https://doi.org/10.5194/amt-17-4391-2024, 2024
Short summary
Short summary
The water vapor generation module is completely scalable, allowing autonomous calibrations to use N standards and providing integration times only restricted by sample availability. We document improved reproducibility in 17O-excess liquid measurements. This module makes spectroscopy measurements comparable to mass spectrometry. We document that the vapor generation module can be used to analyze instrument performance and for vapor isotope calibration during field campaign measurements.
Malavika Sivan, Thomas Röckmann, Carina van der Veen, and Maria Elena Popa
Atmos. Meas. Tech., 17, 2687–2705, https://doi.org/10.5194/amt-17-2687-2024, https://doi.org/10.5194/amt-17-2687-2024, 2024
Short summary
Short summary
We have set up a measurement system for methane-clumped isotopologues. We have built an extraction and purification system to extract pure methane for these measurements, for samples of various origins, including atmospheric air, for which we need to process about 1000 L of air for one measurement. We report here the technical setup for extraction and measurements, as well as the calibration, and we give an overview of the samples measured so far.
Fangbing Li, Dan Dan Huang, Linhui Tian, Bin Yuan, Wen Tan, Liang Zhu, Penglin Ye, Douglas Worsnop, Ka In Hoi, Kai Meng Mok, and Yong Jie Li
Atmos. Meas. Tech., 17, 2415–2427, https://doi.org/10.5194/amt-17-2415-2024, https://doi.org/10.5194/amt-17-2415-2024, 2024
Short summary
Short summary
The responses of protonated, adduct, and fragmented ions of 21 volatile organic compounds (VOCs) were investigated with varying instrument settings and relative humidity (RH) in a Vocus proton-transfer-reaction mass spectrometer (PTR-MS). The protonated ions of most VOCs studied show < 15 % variation in sensitivity, except for some long-chain aldehydes. The relationship between sensitivity and PTR rate constant is complicated by the influences from ion transmission and protonated ion fraction.
Melissa A. Morris, Demetrios Pagonis, Douglas A. Day, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
Atmos. Meas. Tech., 17, 1545–1559, https://doi.org/10.5194/amt-17-1545-2024, https://doi.org/10.5194/amt-17-1545-2024, 2024
Short summary
Short summary
Polymer absorption of volatile organic compounds (VOCs) is important to characterize for atmospheric sampling setups (as interactions cause sampling delays) and indoor air quality. Here we test different polymer materials and quantify their absorptive capacities through modeling. We found the main polymers in carpets to be highly absorptive, acting as large reservoirs for indoor pollution. We also demonstrated how polymer tubes can be used as a low-cost gas separation technique.
Harald Sodemann, Alena Dekhtyareva, Alvaro Fernandez, Andrew Seidl, and Jenny Maccali
Atmos. Meas. Tech., 16, 5181–5203, https://doi.org/10.5194/amt-16-5181-2023, https://doi.org/10.5194/amt-16-5181-2023, 2023
Short summary
Short summary
We describe a device that allows one to produce a continuous stream of water vapour with a specified level of humidity. As a main innovation, we can mix waters with different water isotope composition. Through a series of tests we show that the performance characteristics of the device are in line with specifications. We present two laboratory applications where the device proves useful, first in characterizing instruments, and second for the analysis of water contained in stalagmites.
Stephan Räss, Peter Nyfeler, Paul Wheeler, Will Price, and Markus Christian Leuenberger
Atmos. Meas. Tech., 16, 4489–4505, https://doi.org/10.5194/amt-16-4489-2023, https://doi.org/10.5194/amt-16-4489-2023, 2023
Short summary
Short summary
Due to technological advances clumped-isotope studies have gained importance in recent years. Typically, these studies are performed with high-resolution isotope ratio mass spectrometers (IRMSs) along with a changeover-valve-based dual-inlet system (DIS). We are taking a different approach, namely performing clumped-isotope measurements with a compact low-resolution IRMS with an open-split-based DIS. Currently, we are working with pure-oxygen gas for which we are providing a proof of concept.
Xu-Cheng He, Jiali Shen, Siddharth Iyer, Paxton Juuti, Jiangyi Zhang, Mrisha Koirala, Mikko M. Kytökari, Douglas R. Worsnop, Matti Rissanen, Markku Kulmala, Norbert M. Maier, Jyri Mikkilä, Mikko Sipilä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 4461–4487, https://doi.org/10.5194/amt-16-4461-2023, https://doi.org/10.5194/amt-16-4461-2023, 2023
Short summary
Short summary
In this study, the upgraded multi-scheme chemical ionisation inlet 2 is presented. Sulfuric acid, hypoiodous acid, iodine, sulfur dioxide, and hydroperoxyl radicals are calibrated, and the improved ion optics allow us to detect sulfuric acid and iodine-containing molecules at as low as a few parts per quadrillion by volume. Additionally, we confirm the reliable detection of iodic acid using both the nitrate and bromide chemical ionisation methods under atmospherically relevant conditions.
Namrata Shanmukh Panji and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 16, 4319–4330, https://doi.org/10.5194/amt-16-4319-2023, https://doi.org/10.5194/amt-16-4319-2023, 2023
Short summary
Short summary
Measuring volatile organic compounds (VOCs) in the atmosphere is crucial for understanding air quality and environmental impact. Since these compounds are present in low concentrations, preconcentration of samples is often necessary for accurate detection. To address this issue, we have developed a novel inlet that uses selective permeation to concentrate organic gases in small sample flows. This device offers a promising approach for accurately detecting low levels of VOCs in the atmosphere.
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023, https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Short summary
The automatic and low-maintenance radon flux system Autoflux, completed with environmental soil and atmosphere sensors, has been theoretically and experimentally characterized and calibrated under laboratory conditions to be used as transfer standard for in situ measurements. It will offer for the first time long-term measurements to validate radon flux maps used by the climate and the radiation protection communities for assessing the radon gas emissions in the atmosphere.
Lisa Ernle, Monika Akima Ringsdorf, and Jonathan Williams
Atmos. Meas. Tech., 16, 1179–1194, https://doi.org/10.5194/amt-16-1179-2023, https://doi.org/10.5194/amt-16-1179-2023, 2023
Short summary
Short summary
Atmospheric ozone can induce artefacts in volatile organic compound measurements. Laboratory tests were made using GC-MS and PTR-MS aircraft systems under tropospheric and stratospheric conditions of humidity and ozone, with and without sodium thiosulfate filter scrubbers. Ozone in dry air produces some carbonyls and degrades alkenes. The scrubber lifetime depends on ozone concentration, flow rate and humidity. For the troposphere with scrubber, no significant artefacts were found over 14 d.
Lars Mächler, Daniel Baggenstos, Florian Krauss, Jochen Schmitt, Bernhard Bereiter, Remo Walther, Christoph Reinhard, Béla Tuzson, Lukas Emmenegger, and Hubertus Fischer
Atmos. Meas. Tech., 16, 355–372, https://doi.org/10.5194/amt-16-355-2023, https://doi.org/10.5194/amt-16-355-2023, 2023
Short summary
Short summary
We present a new method to extract the gases from ice cores and measure their greenhouse gas composition. The ice is sublimated continuously with a near-infrared laser, releasing the gases, which are then analyzed on a laser absorption spectrometer. The main advantage over previous efforts is a low effective resolution of 1–2 cm. This capability is crucial for the analysis of highly thinned ice, as expected from ongoing drilling efforts to extend ice core history further back in time.
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Wei Wang, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech., 15, 5439–5454, https://doi.org/10.5194/amt-15-5439-2022, https://doi.org/10.5194/amt-15-5439-2022, 2022
Short summary
Short summary
This research demonstrates a new method for determination of the chemical reactivity of volatile organic compounds that are emitted from the leaves and needles of trees. These measurements allow elucidating if and how much of these emissions and their associated reactivity are captured and quantified by currently applicable chemical analysis methods.
Andrew J. Lindsay and Ezra C. Wood
Atmos. Meas. Tech., 15, 5455–5464, https://doi.org/10.5194/amt-15-5455-2022, https://doi.org/10.5194/amt-15-5455-2022, 2022
Short summary
Short summary
Nitrous acid (HONO) is an important source of the main atmospheric oxidant – the hydroxyl radical (OH). Advances in nitrous acid measurement techniques and calibration methods therefore improve our understanding of atmospheric oxidation processes. In this paper, we present two calibration methods based on photo-dissociating water vapor. These calibration methods are useful alternatives to conventional calibrations that involve a reacting hydrogen chloride vapor with sodium nitrite.
Ying Wang, Wentai Luo, Todd N. Rosenstiel, and James F. Pankow
Atmos. Meas. Tech., 15, 4651–4661, https://doi.org/10.5194/amt-15-4651-2022, https://doi.org/10.5194/amt-15-4651-2022, 2022
Short summary
Short summary
A rapid, sensitive, and precise analytical method was developed for measuring the fractional amounts of the (−) and (+) forms of chiral enantiomeric forms of monoterpenes in air containing biogenic plant emissions. The method uses passive air sampling onto adsorption–thermal desorption (ATD) gas sampling cartridge tubes; this is followed by automatable thermal desorption onto a chiral gas chromatography (GC) column, followed by detection with mass spectrometry (MS).
Zara S. Mir, Matthew Jamieson, Nicholas R. Greenall, Paul W. Seakins, Mark A. Blitz, and Daniel Stone
Atmos. Meas. Tech., 15, 2875–2887, https://doi.org/10.5194/amt-15-2875-2022, https://doi.org/10.5194/amt-15-2875-2022, 2022
Short summary
Short summary
In this work we describe the development and characterisation of an experiment using laser flash photolysis coupled with time-resolved mid-infrared (mid-IR) quantum cascade laser (QCL) absorption spectroscopy, with initial results reported for measurements of the infrared spectrum, kinetics, and product yields for the reaction of the CH2OO Criegee intermediate with SO2. This work has significance for the identification and measurement of reactive trace species in complex systems.
Tatiana Macé, Maitane Iturrate-Garcia, Céline Pascale, Bernhard Niederhauser, Sophie Vaslin-Reimann, and Christophe Sutour
Atmos. Meas. Tech., 15, 2703–2718, https://doi.org/10.5194/amt-15-2703-2022, https://doi.org/10.5194/amt-15-2703-2022, 2022
Short summary
Short summary
LNE developed, with the company 2M PROCESS, a gas reference generator to dynamically generate NH3 reference gas mixtures in the air at very low fractions between 1 and 400 nmol/mol. The procedure defined by LNE for calibrating NH3 analyzers used for monitoring air quality guarantees relative expanded uncertainties lower than 2 % for this measurement range. The results of a comparison organized between METAS and LNE allowed the validation of LNE's reference generator and calibration procedure.
Antonia G. Zogka, Manolis N. Romanias, and Frederic Thevenet
Atmos. Meas. Tech., 15, 2001–2019, https://doi.org/10.5194/amt-15-2001-2022, https://doi.org/10.5194/amt-15-2001-2022, 2022
Short summary
Short summary
We emphasize the application of SIFT-MS to detect two important atmospheric pollutants, i.e., formaldehyde (FM) and glyoxal (GL). FM and GL are secondary products formed by volatile organic compound oxidation in indoor and outdoor environments and play a key role in air quality and climate. We show that SIFT-MS is able to monitor these species selectively and in real time, overcoming the limitations of other, classical analytical techniques used to monitor these species in the atmosphere.
Haiyan Li, Thomas Golin Almeida, Yuanyuan Luo, Jian Zhao, Brett B. Palm, Christopher D. Daub, Wei Huang, Claudia Mohr, Jordan E. Krechmer, Theo Kurtén, and Mikael Ehn
Atmos. Meas. Tech., 15, 1811–1827, https://doi.org/10.5194/amt-15-1811-2022, https://doi.org/10.5194/amt-15-1811-2022, 2022
Short summary
Short summary
This work evaluated the potential for PTR-based mass spectrometers to detect ROOR and ROOH peroxides both experimentally and through computations. Laboratory experiments using a Vocus PTR observed only noisy signals of potential dimers during α-pinene ozonolysis and a few small signals of dimeric compounds during cyclohexene ozonolysis. Quantum chemical calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation.
Jean Decker, Éric Fertein, Jonas Bruckhuisen, Nicolas Houzel, Pierre Kulinski, Bo Fang, Weixiong Zhao, Francis Hindle, Guillaume Dhont, Robin Bocquet, Gaël Mouret, Cécile Coeur, and Arnaud Cuisset
Atmos. Meas. Tech., 15, 1201–1215, https://doi.org/10.5194/amt-15-1201-2022, https://doi.org/10.5194/amt-15-1201-2022, 2022
Short summary
Short summary
We present a multiple pass system developed for the CHamber for Atmospheric Reactivity and Metrology of the Environment. This multi-pass cell allows monitoring of atmospheric species at trace levels by high-resolution spectroscopy with long interaction path lengths in the IR and for the first time in the terahertz range. Interesting prospects are highlighted in this frequency domain, such as a high degree of selectivity or the possibility to monitor in real-time atmospheric processes.
Robert F. Berg, Nicola Chiodo, and Eric Georgin
Atmos. Meas. Tech., 15, 819–832, https://doi.org/10.5194/amt-15-819-2022, https://doi.org/10.5194/amt-15-819-2022, 2022
Short summary
Short summary
We made a humidity generator that adds water vapor to a flowing gas. Its range of humidity is useful for calibrating balloon-borne probes to the Earth's stratosphere. The generator’s novel feature is a saturator that comprises 5 m of silicone tubing immersed in water. The length was enough to ensure that the saturator’s output was independent of the dimensions and permeability of the tube. This simple, low-cost design provides an accuracy that is acceptable for many applications.
Guillermo Villena and Jörg Kleffmann
Atmos. Meas. Tech., 15, 627–637, https://doi.org/10.5194/amt-15-627-2022, https://doi.org/10.5194/amt-15-627-2022, 2022
Short summary
Short summary
A continuous source for the generation of pure HONO mixtures was developed and characterized, which is based on the Henry's law solubility of HONO in acidic aqueous solutions. The source shows a fast time response and an excellent long-term stability and can be easily adjusted to HONO mixing ratios in the range 0.05–500 ppb. A general equation based on Henry's law is developed, whereby the HONO concentration of the source can be absolutely calculated with an accuracy of better than 10 %.
Merve Polat, Jesper Baldtzer Liisberg, Morten Krogsbøll, Thomas Blunier, and Matthew S. Johnson
Atmos. Meas. Tech., 14, 8041–8067, https://doi.org/10.5194/amt-14-8041-2021, https://doi.org/10.5194/amt-14-8041-2021, 2021
Short summary
Short summary
We have designed a process for removing methane from a gas stream so that nitrous oxide can be measured without interference. These are both key long-lived greenhouse gases frequently studied in relation to ice cores, plants, water treatment and so on. However, many researchers are not aware of the problem of methane interference, and in addition there have not been good methods available for solving the problem. Here we present and evaluate such a method.
Marcel Snels, Stefania Stefani, Angelo Boccaccini, David Biondi, and Giuseppe Piccioni
Atmos. Meas. Tech., 14, 7187–7197, https://doi.org/10.5194/amt-14-7187-2021, https://doi.org/10.5194/amt-14-7187-2021, 2021
Short summary
Short summary
A novel simulation chamber, PASSxS (Planetary Atmosphere Simulation System for Spectroscopy), has been developed for absorption measurements with a Fourier transform spectrometer (FTS) and possibly a cavity ring-down (CRD) spectrometer, with a sample temperature ranging from 100 K up to 550 K, while the pressure of the gas can be varied up to 60 bar. These temperature and pressure ranges cover a significant part of the planetary atmospheres in the solar system and possibly extrasolar planets.
Lukas Kohl, Markku Koskinen, Tatu Polvinen, Salla Tenhovirta, Kaisa Rissanen, Marjo Patama, Alessandro Zanetti, and Mari Pihlatie
Atmos. Meas. Tech., 14, 4445–4460, https://doi.org/10.5194/amt-14-4445-2021, https://doi.org/10.5194/amt-14-4445-2021, 2021
Short summary
Short summary
We present ShoTGa-FluMS, a measurement system designed for continuous and automated measurements of trace gas and volatile organic compound (VOC) fluxes from plant shoots. ShoTGa-FluMS uses transparent shoot enclosures equipped with cooling elements, automatically replaces fixated CO2, and removes transpired water from the enclosure, thus solving multiple technical problems that have so far prevented automated plant shoot trace gas flux measurements.
Pharahilda M. Steur, Hubertus A. Scheeren, Dave D. Nelson, J. Barry McManus, and Harro A. J. Meijer
Atmos. Meas. Tech., 14, 4279–4304, https://doi.org/10.5194/amt-14-4279-2021, https://doi.org/10.5194/amt-14-4279-2021, 2021
Short summary
Short summary
For understanding the sources and sinks of atmospheric CO2, measurement of stable isotopes has proven to be highly valuable. We present a new method using laser absorption spectroscopy to simultaneously conduct measurements of three CO2 isotopes, directly on dry-air samples. This new method reduces sample preparation time significantly, compared to the conventional method in which measurements are conducted on pure CO2, and avoids measurement biases introduced by CO2 extraction.
Mingyi Wang, Xu-Cheng He, Henning Finkenzeller, Siddharth Iyer, Dexian Chen, Jiali Shen, Mario Simon, Victoria Hofbauer, Jasper Kirkby, Joachim Curtius, Norbert Maier, Theo Kurtén, Douglas R. Worsnop, Markku Kulmala, Matti Rissanen, Rainer Volkamer, Yee Jun Tham, Neil M. Donahue, and Mikko Sipilä
Atmos. Meas. Tech., 14, 4187–4202, https://doi.org/10.5194/amt-14-4187-2021, https://doi.org/10.5194/amt-14-4187-2021, 2021
Short summary
Short summary
Atmospheric iodine species are often short-lived with low abundance and have thus been challenging to measure. We show that the bromide chemical ionization mass spectrometry, compatible with both the atmospheric pressure and reduced pressure interfaces, can simultaneously detect various gas-phase iodine species. Combining calibration experiments and quantum chemical calculations, we quantify detection sensitivities to HOI, HIO3, I2, and H2SO4, giving detection limits down to < 106 molec. cm-3.
Benjamin Birner, William Paplawsky, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Meas. Tech., 14, 2515–2527, https://doi.org/10.5194/amt-14-2515-2021, https://doi.org/10.5194/amt-14-2515-2021, 2021
Short summary
Short summary
The atmospheric helium-to-nitrogen ratio is a promising indicator for circulation changes in the upper atmosphere and fossil fuel burning by humans. We present a very precise analysis method to determine changes in the helium-to-nitrogen ratio of air samples. The method relies on stabilizing the gas flow to a mass spectrometer and continuous removal of reactive gases. These advances enable new insights and monitoring possibilities for anthropogenic and natural processes.
Alexander Zaytsev, Martin Breitenlechner, Anna Novelli, Hendrik Fuchs, Daniel A. Knopf, Jesse H. Kroll, and Frank N. Keutsch
Atmos. Meas. Tech., 14, 2501–2513, https://doi.org/10.5194/amt-14-2501-2021, https://doi.org/10.5194/amt-14-2501-2021, 2021
Short summary
Short summary
We have developed an online method for speciated measurements of organic peroxy radicals and stabilized Criegee intermediates using chemical derivatization combined with chemical ionization mass spectrometry. Chemical derivatization prevents secondary radical reactions and eliminates potential interferences. Comparison between our measurements and results from numeric modeling shows that the method can be used for the quantification of a wide range of atmospheric radicals and intermediates.
Einar Karu, Mengze Li, Lisa Ernle, Carl A. M. Brenninkmeijer, Jos Lelieveld, and Jonathan Williams
Atmos. Meas. Tech., 14, 1817–1831, https://doi.org/10.5194/amt-14-1817-2021, https://doi.org/10.5194/amt-14-1817-2021, 2021
Short summary
Short summary
A gas measurement device was developed to measure trace gases (ppt level) in the air based on an atomic emission detector. It combines a cryogenic pre-concentrator (CryoTrap), a gas chromatograph (GC), and a new high-resolution atomic emission detector (AED). The CryoTrap–GC–AED instrumental setup, limits of detection, and elemental performance are presented and discussed. Two measurement case studies are reported: one in a Finnish boreal forest and the other based on an aircraft campaign.
Ikumi Oyabu, Kenji Kawamura, Kyotaro Kitamura, Remi Dallmayr, Akihiro Kitamura, Chikako Sawada, Jeffrey P. Severinghaus, Ross Beaudette, Anaïs Orsi, Satoshi Sugawara, Shigeyuki Ishidoya, Dorthe Dahl-Jensen, Kumiko Goto-Azuma, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Meas. Tech., 13, 6703–6731, https://doi.org/10.5194/amt-13-6703-2020, https://doi.org/10.5194/amt-13-6703-2020, 2020
Short summary
Short summary
Air in polar ice cores provides information on past atmosphere and climate. We present a new method for simultaneously measuring eight gases (CH4, N2O and CO2 concentrations; isotopic ratios of N2 and O2; elemental ratios between N2, O2 and Ar; and total air content) from single ice-core samples with high precision.
Bernhard Bereiter, Béla Tuzson, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Lars Mächler, Daniel Baggenstos, Jochen Schmitt, Hubertus Fischer, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 6391–6406, https://doi.org/10.5194/amt-13-6391-2020, https://doi.org/10.5194/amt-13-6391-2020, 2020
Short summary
Short summary
The record of past greenhouse gas composition from ice cores is crucial for our understanding of global climate change. Deciphering this archive requires highly accurate and spatially resolved analysis of the very small amount of gas that is trapped in the ice. This is achieved with a mid-IR laser absorption spectrometer that provides simultaneous, high-precision measurements of CH4, N2O, CO2, and δ13C(CO2) and which will be coupled to a quantitative sublimation extraction method.
Natalie I. Keehan, Bellamy Brownwood, Andrey Marsavin, Douglas A. Day, and Juliane L. Fry
Atmos. Meas. Tech., 13, 6255–6269, https://doi.org/10.5194/amt-13-6255-2020, https://doi.org/10.5194/amt-13-6255-2020, 2020
Short summary
Short summary
This paper describes a new instrument (a thermal-dissociation–cavity ring-down spectrometer, TD-CRDS) for the measurement of key atmospheric gaseous and particle-phase molecules containing the nitrate functional group. Several operational considerations affecting the measurements are described, as well as several characterization experiments comparing the TD-CRDS measurements to analogous measurements from other instruments. Examples are given using a TD-CRDS for ambient and laboratory studies.
Mohammed S. Alam, Leigh R. Crilley, James D. Lee, Louisa J. Kramer, Christian Pfrang, Mónica Vázquez-Moreno, Milagros Ródenas, Amalia Muñoz, and William J. Bloss
Atmos. Meas. Tech., 13, 5977–5991, https://doi.org/10.5194/amt-13-5977-2020, https://doi.org/10.5194/amt-13-5977-2020, 2020
Short summary
Short summary
We report on the interference arising in measurements of nitrogen oxides (NOx) from the presence of a range of alkenes in sampled air when using the most widespread air quality monitoring technique for chemiluminescence detection. Interferences of up to 11 % are reported, depending upon the alkene present and conditions used. Such interferences may be of substantial importance for the interpretation of ambient NOx data, particularly for high volatile organic compound and low NOx environments.
Daniel Marno, Cheryl Ernest, Korbinian Hens, Umar Javed, Thomas Klimach, Monica Martinez, Markus Rudolf, Jos Lelieveld, and Hartwig Harder
Atmos. Meas. Tech., 13, 2711–2731, https://doi.org/10.5194/amt-13-2711-2020, https://doi.org/10.5194/amt-13-2711-2020, 2020
Short summary
Short summary
In this study, a calibration device for OH and HO2 instruments is characterized at pressures of 275 to 1000 mbar, allowing instrument pressure sensitivity to be quantified to an accuracy of 22 % (1σ). Computational fluid dynamic simulations supporting the understanding of interactions between generated HOx and the instrument inlet led to enhanced determination of factors affecting instrument sensitivity.
Joschka Pfeifer, Mario Simon, Martin Heinritzi, Felix Piel, Lena Weitz, Dongyu Wang, Manuel Granzin, Tatjana Müller, Steffen Bräkling, Jasper Kirkby, Joachim Curtius, and Andreas Kürten
Atmos. Meas. Tech., 13, 2501–2522, https://doi.org/10.5194/amt-13-2501-2020, https://doi.org/10.5194/amt-13-2501-2020, 2020
Short summary
Short summary
Ammonia is an important atmospheric trace gas that affects secondary aerosol formation and, together with sulfuric acid, the formation of new particles. A measurement technique is presented that uses high-resolution mass spectrometry and protonated water clusters for the ultrasensitive detection of ammonia at single-digit parts per trillion by volume levels. The instrument is further capable of measuring amines and a suite of iodine compounds at sub-parts per trillion by volume levels.
Roberto Sommariva, Louisa J. Kramer, Leigh R. Crilley, Mohammed S. Alam, and William J. Bloss
Atmos. Meas. Tech., 13, 1655–1670, https://doi.org/10.5194/amt-13-1655-2020, https://doi.org/10.5194/amt-13-1655-2020, 2020
Short summary
Short summary
Ozone is a key atmospheric pollutant formed through chemical processing of natural and anthropogenic emissions and removed by reaction with organic compounds emitted by plants. We describe a new instrument – the
Total Ozone Reactivity Systemor TORS – that measures the total loss of ozone in the troposphere. The objective of the TORS instrument is to provide an estimate of the organic compounds emitted by plants which are not measured and thus to improve our understanding of the ozone budget.
John W. Birks, Andrew A. Turnipseed, Peter C. Andersen, Craig J. Williford, Stanley Strunk, Brian Carpenter, and Christine A. Ennis
Atmos. Meas. Tech., 13, 1001–1018, https://doi.org/10.5194/amt-13-1001-2020, https://doi.org/10.5194/amt-13-1001-2020, 2020
Short summary
Short summary
We describe a portable calibration source of nitric oxide (NO) based on the photolysis of nitrous oxide. Combining this with a previous photolytic ozone (O3) source yields a calibrator that produces known mixing ratios of NO, O3, and nitrogen dioxide (NO2); NO2 is produced by the reaction of NO with O3. This portable
NO2/NO/O3 calibration source requires no external gas cylinders and can be used as a standard to calibrate O3 and NOx air pollution monitors in the field.
Thomas H. Speak, Mark A. Blitz, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 13, 839–852, https://doi.org/10.5194/amt-13-839-2020, https://doi.org/10.5194/amt-13-839-2020, 2020
Short summary
Short summary
OH and HO2 radicals are important trace constituents of the atmosphere that are closely coupled via several types of reaction. This paper describes a new laboratory method to simultaneously determine OH kinetics and HO2 yields from chemical processes. The instrument also provides some time resolution on HO2 detection allowing one to separate HO2 produced from the target reaction from HO2 arising from secondary chemistry. Examples of applications are presented.
Ece Satar, Peter Nyfeler, Bernhard Bereiter, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 101–117, https://doi.org/10.5194/amt-13-101-2020, https://doi.org/10.5194/amt-13-101-2020, 2020
Short summary
Short summary
Good-quality measurements of atmospheric trace gases are only possible with regular calibrations and stable measurements from the standard cylinders. This study investigates instabilities due to surface effects on newly built aluminum and steel cylinders. We present measurements over a set of temperature and pressure ranges for the amount fractions of CO2, CO, CH4 and H2O using a commercial and a novel laser spectroscopic analyzer.
Ece Satar, Peter Nyfeler, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 119–130, https://doi.org/10.5194/amt-13-119-2020, https://doi.org/10.5194/amt-13-119-2020, 2020
Short summary
Short summary
To ensure the best preparation and measurement conditions for trace gases, usage of coated materials is in demand in gas metrology and atmospheric measurement communities. In this article, the previously introduced aluminum measurement chamber is used to investigate materials such as glass, aluminum, copper, brass, steel and three different commercially available coatings. Our measurements focus on temperature and pressure dependencies for the species CO2, CO, CH4 and H2O using a CRDS analyzer.
Cited articles
Adcock, K. E., Reeves, C. E., Gooch, L. J., Leedham Elvidge, E. C., Ashfold, M. J., Brenninkmeijer, C. A. M., Chou, C., Fraser, P. J., Langenfelds, R. L., Mohd Hanif, N., O'Doherty, S., Oram, D. E., Ou-Yang, C.-F., Phang, S. M., Samah, A. A., Röckmann, T., Sturges, W. T., and Laube, J. C.: Continued increase of CFC-113a (CCl3CF3) mixing ratios in the global atmosphere: emissions, occurrence and potential sources, Atmos. Chem. Phys., 18, 4737–4751, https://doi.org/10.5194/acp-18-4737-2018, 2018. a
Apel, E. C., Hills, A. J., Lueb, R., Zindel, S., Eisele, S., and Riemer, D. D.:
A fast-GC/MS system to measure C2 to C4 carbonyls and methanol aboard
aircraft, J. Geophys. Res.-Atmos., 108, 8794,
https://doi.org/10.1029/2002JD003199, 2003. a
Baker, A. K., Slemr, F., and Brenninkmeijer, C. A. M.: Analysis of non-methane hydrocarbons in air samples collected aboard the CARIBIC passenger aircraft, Atmos. Meas. Tech., 3, 311–321, https://doi.org/10.5194/amt-3-311-2010, 2010. a
Baker, A. K., Sauvage, C., Thorenz, U. R., van Velthoven, P., Oram, D. E.,
Zahn, A., Brenninkmeijer, C. A. M., and Williams, J.: Evidence for strong,
widespread chlorine radical chemistry associated with pollution outflow from
continental Asia, Sci. Rep., 6, 36821, https://doi.org/10.1038/srep36821,
2016. a
Batterman, S. A., Zhang, G.-Z., and Baumann, M.: Analysis and stability of
aldehydes and terpenes in electropolished canisters, Atmos. Environ.,
32, 1647–1655, https://doi.org/10.1016/S1352-2310(97)00417-2, 1998. a
Bourtsoukidis, E., Helleis, F., Tomsche, L., Fischer, H., Hofmann, R., Lelieveld, J., and Williams, J.: An aircraft gas chromatograph–mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow, Atmos. Meas. Tech., 10, 5089–5105, https://doi.org/10.5194/amt-10-5089-2017, 2017. a
Brenninkmeijer, C. A. M., Crutzen, P., Boumard, F., Dauer, T., Dix, B., Ebinghaus, R., Filippi, D., Fischer, H., Franke, H., Frieβ, U., Heintzenberg, J., Helleis, F., Hermann, M., Kock, H. H., Koeppel, C., Lelieveld, J., Leuenberger, M., Martinsson, B. G., Miemczyk, S., Moret, H. P., Nguyen, H. N., Nyfeler, P., Oram, D., O'Sullivan, D., Penkett, S., Platt, U., Pupek, M., Ramonet, M., Randa, B., Reichelt, M., Rhee, T. S., Rohwer, J., Rosenfeld, K., Scharffe, D., Schlager, H., Schumann, U., Slemr, F., Sprung, D., Stock, P., Thaler, R., Valentino, F., van Velthoven, P., Waibel, A., Wandel, A., Waschitschek, K., Wiedensohler, A., Xueref-Remy, I., Zahn, A., Zech, U., and Ziereis, H.: Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system, Atmos. Chem. Phys., 7, 4953–4976, https://doi.org/10.5194/acp-7-4953-2007, 2007. a, b, c
Engel, A., Rigby, M. L. A., Burkholder, J., Fernandez, R., Froidevaux, L.,
Hall, B., Hossaini, R., Saito, T., Vollmer, B., and Yao, B.: Update on
Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal
Protocol, in: Scientific Assessment of Ozone Depletion: 2018, Global Ozone
Research and Monitoring Project-Report No. 58, Chapter 1, World
Meteorological Organization, Geneva, Switzerland, 1.1–1.87, 2018. a
Hoker, J., Obersteiner, F., Bönisch, H., and Engel, A.: Comparison of GC/time-of-flight MS with GC/quadrupole MS for halocarbon trace gas analysis, Atmos. Meas. Tech., 8, 2195–2206, https://doi.org/10.5194/amt-8-2195-2015, 2015. a, b
Hsieh, C.-C., Horng, S.-H., and Liao, P.-N.: Stability of Trace-level VOLatile
Organic Compounds Stored in Canisters and Tedlar Bags, Aerosol Air Qual. Res., 3, 17–28, https://doi.org/10.4209/aaqr.2003.06.0003, 2003. a
Jensen, E. J., Pfister, L., Jordan, D. E., Bui, T. V., Ueyama, R., Singh,
H. B., Thornberry, T. D., Rollins, A. W., Gao, R.-S., Fahey, D. W., Rosenlof,
K. H., Elkins, J. W., Diskin, G. S., DiGangi, J. P., Lawson, R. P., Woods,
S., Atlas, E. L., Navarro Rodriguez, M. A., Wofsy, S. C., Pittman, J.,
Bardeen, C. G., Toon, O. B., Kindel, B. C., Newman, P. A., McGill, M. J.,
Hlavka, D. L., Lait, L. R., Schoeberl, M. R., Bergman, J. W., Selkirk, H. B.,
Alexander, M. J., Kim, J.-E., Lim, B. H., Stutz, J., and Pfeilsticker, K.:
The NASA Airborne Tropical Tropopause Experiment: High-Altitude Aircraft
Measurements in the Tropical Western Pacific, B. Am. Meteorol. Soc., 98, 129–143, https://doi.org/10.1175/BAMS-D-14-00263.1, 2017. a
Keber, T., Bönisch, H., Hartick, C., Hauck, M., Lefrancois, F., Obersteiner, F., Ringsdorf, A., Schohl, N., Schuck, T., Hossaini, R., Graf, P., Jöckel, P., and Engel, A.: Bromine from short–lived source gases in the Northern Hemisphere UTLS, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-796, in review, 2019. a
Laube, J. C., Martinerie, P., Witrant, E., Blunier, T., Schwander, J., Brenninkmeijer, C. A. M., Schuck, T. J., Bolder, M., Röckmann, T., van der Veen, C., Bönisch, H., Engel, A., Mills, G. P., Newland, M. J., Oram, D. E., Reeves, C. E., and Sturges, W. T.: Accelerating growth of HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane) in the atmosphere, Atmos. Chem. Phys., 10, 5903–5910, https://doi.org/10.5194/acp-10-5903-2010, 2010. a
Laube, J. C., Hogan, C., Newland, M. J., Mani, F. S., Fraser, P. J., Brenninkmeijer, C. A. M., Martinerie, P., Oram, D. E., Röckmann, T., Schwander, J., Witrant, E., Mills, G. P., Reeves, C. E., and Sturges, W. T.: Distributions, long term trends and emissions of four perfluorocarbons in remote parts of the atmosphere and firn air, Atmos. Chem. Phys., 12, 4081–4090, https://doi.org/10.5194/acp-12-4081-2012, 2012. a
Laube, J. C., Mohd Hanif, N., Martinerie, P., Gallacher, E., Fraser, P. J., Langenfelds, R., Brenninkmeijer, C. A. M., Schwander, J., Witrant, E., Wang, J.-L., Ou-Yang, C.-F., Gooch, L. J., Reeves, C. E., Sturges, W. T., and Oram, D. E.: Tropospheric observations of CFC-114 and CFC-114a with a focus on long-term trends and emissions, Atmos. Chem. Phys., 16, 15347–15358, https://doi.org/10.5194/acp-16-15347-2016, 2016. a
Leedham Elvidge, E. C., Oram, D. E., Laube, J. C., Baker, A. K., Montzka, S. A., Humphrey, S., O'Sullivan, D. A., and Brenninkmeijer, C. A. M.: Increasing concentrations of dichloromethane, CH2Cl2, inferred from CARIBIC air samples collected 1998–2012, Atmos. Chem. Phys., 15, 1939–1958, https://doi.org/10.5194/acp-15-1939-2015, 2015. a, b, c
Lerner, B. M., Gilman, J. B., Aikin, K. C., Atlas, E. L., Goldan, P. D., Graus, M., Hendershot, R., Isaacman-VanWertz, G. A., Koss, A., Kuster, W. C., Lueb, R. A., McLaughlin, R. J., Peischl, J., Sueper, D., Ryerson, T. B., Tokarek, T. W., Warneke, C., Yuan, B., and de Gouw, J. A.: An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere, Atmos. Meas. Tech., 10, 291–313, https://doi.org/10.5194/amt-10-291-2017, 2017. a
Li, M., Karu, E., Brenninkmeijer, C., Fischer, H., Lelieveld, J., and Williams,
J.: Tropospheric OH and stratospheric OH and Cl concentrations determined
from CH4, CH3Cl, and SF6 measurements, npj Climate and Atmospheric Science,
1, 29, https://doi.org/10.1038/s41612-018-0041-9, 2018. a
Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K., Kondo, N.,
Goto, K., Nakazawa, T., Ishikawa, K., and Ogawa, T.: Worldwide Measurements
of Atmospheric CO2 and Other Trace Gas Species Using Commercial
Airlines, J. Atmos. Ocean. Tech., 25, 1744–1754,
https://doi.org/10.1175/2008JTECHA1082.1, 2008. a
Navarro, M. A., Atlas, E. L., Saiz-Lopez, A., Rodriguez-Lloveras, X., Kinnison,
D. E., Lamarque, J.-F., Tilmes, S., Filus, M., Harris, N. R. P., Meneguz, E.,
Ashfold, M. J., Manning, A. J., Cuevas, C. A., Schauffler, S. M., and Donets,
V.: Airborne measurements of organic bromine compounds in the Pacific
tropical tropopause layer, P. Natl. Acad. Sci. USA,
112, 13789–13793, https://doi.org/10.1073/pnas.1511463112, 2015. a, b
Obersteiner, F., Bönisch, H., Keber, T., O'Doherty, S., and Engel, A.: A versatile, refrigerant- and cryogen-free cryofocusing–thermodesorption unit for preconcentration of traces gases in air, Atmos. Meas. Tech., 9, 5265–5279, https://doi.org/10.5194/amt-9-5265-2016, 2016. a, b
Ochiai, N., Tsuji, A., Nakamura, N., Daishima, S., and Cardin, D. B.:
Stabilities of 58 volatile organic compounds in fused-silica-lined and SUMMA
polished canisters under various humidified conditions, J. Environ. Monit.,
4, 879–889, https://doi.org/10.1039/B209210G, 2002. a, b
Oram, D. E., Ashfold, M. J., Laube, J. C., Gooch, L. J., Humphrey, S., Sturges, W. T., Leedham-Elvidge, E., Forster, G. L., Harris, N. R. P., Mead, M. I., Samah, A. A., Phang, S. M., Ou-Yang, C.-F., Lin, N.-H., Wang, J.-L., Baker, A. K., Brenninkmeijer, C. A. M., and Sherry, D.: A growing threat to the ozone layer from short-lived anthropogenic chlorocarbons, Atmos. Chem. Phys., 17, 11929–11941, https://doi.org/10.5194/acp-17-11929-2017, 2017. a
Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Brenninkmeijer, C. A. M.,
Gallagher, M., Hermann, M., Pontaud, M., Ziereis, H., Boulanger, D.,
Marshall, J., Nédélec, P., Smit, H. G. J., Friess, U., Flaud, J.-M.,
Wahner, A., Cammas, J.-P., Volz-Thomas, A., and TEAM, I.: Global-scale
atmosphere monitoring by in-service aircraft – current achievements and
future prospects of the European Research Infrastructure IAGOS, Tellus B, 67, 28452,
https://doi.org/10.3402/tellusb.v67.28452, 2015.
a, b
Sala, S., Bönisch, H., Keber, T., Oram, D. E., Mills, G., and Engel, A.: Deriving an atmospheric budget of total organic bromine using airborne in situ measurements from the western Pacific area during SHIVA, Atmos. Chem. Phys., 14, 6903–6923, https://doi.org/10.5194/acp-14-6903-2014, 2014. a
Scharffe, D., Slemr, F., Brenninkmeijer, C. A. M., and Zahn, A.: Carbon monoxide measurements onboard the CARIBIC passenger aircraft using UV resonance fluorescence, Atmos. Meas. Tech., 5, 1753–1760, https://doi.org/10.5194/amt-5-1753-2012, 2012. a, b
Schuck, T. J., Brenninkmeijer, C. A. M., Slemr, F., Xueref-Remy, I., and Zahn, A.: Greenhouse gas analysis of air samples collected onboard the CARIBIC passenger aircraft, Atmos. Meas. Tech., 2, 449–464, https://doi.org/10.5194/amt-2-449-2009, 2009. a
Schuck, T. J., Ishijima, K., Patra, P. K., Baker, A. K., Machida, T., Matsueda,
H., Sawa, Y., Umezawa, T., Brenninkmeijer, C. A. M., and Lelieveld, J.:
Distribution of methane in the tropical upper troposphere measured by CARIBIC
and CONTRAIL aircraft, J. Geophys. Res.-Atmos., 117, D19304,
https://doi.org/10.1029/2012JD018199, 2012. a
Schuck, T. J., Lefrancois, F., Gallmann, F., Wang, D., Jesswein, M., Hoker, J., Bönisch, H., and Engel, A.: Establishing long-term measurements of halocarbons at Taunus Observatory, Atmos. Chem. Phys., 18, 16553–16569, https://doi.org/10.5194/acp-18-16553-2018, 2018. a, b, c
Sturges, W. T., Oram, D. E., Laube, J. C., Reeves, C. E., Newland, M. J., Hogan, C., Martinerie, P., Witrant, E., Brenninkmeijer, C. A. M., Schuck, T. J., and Fraser, P. J.: Emissions halted of the potent greenhouse gas SF5CF3, Atmos. Chem. Phys., 12, 3653–3658, https://doi.org/10.5194/acp-12-3653-2012, 2012. a
Wisher, A., Oram, D. E., Laube, J. C., Mills, G. P., van Velthoven, P., Zahn, A., and Brenninkmeijer, C. A. M.: Very short-lived bromomethanes measured by the CARIBIC observatory over the North Atlantic, Africa and Southeast Asia during 2009–2013, Atmos. Chem. Phys., 14, 3557–3570, https://doi.org/10.5194/acp-14-3557-2014, 2014. a
Wofsy, S. C.: HIAPER Pole-to-Pole Observations (HIPPO): fine-grained,
global-scale measurements of climatically important atmospheric gases and
aerosols, P. Roy. Soc. A-Math. Phy., 369, 2073–2086,
https://doi.org/10.1098/rsta.2010.0313, 2011. a
Zahn, A., Weppner, J., Widmann, H., Schlote-Holubek, K., Burger, B., Kühner, T., and Franke, H.: A fast and precise chemiluminescence ozone detector for eddy flux and airborne application, Atmos. Meas. Tech., 5, 363–375, https://doi.org/10.5194/amt-5-363-2012, 2012. a, b
Short summary
Air sample collection aboard aircraft is a tool to measure atmospheric trace gas mixing ratios at altitude. We present results on the stability of 28 halocarbons during storage of air samples collected in stainless-steel flasks inside an automated air sampling unit which is part of the CARIBIC instrument package. Selected fluorinated compounds grew during the experiments while short-lived compounds were depleted. Individual substances were additionally influenced by high mixing ratios of ozone.
Air sample collection aboard aircraft is a tool to measure atmospheric trace gas mixing ratios...