Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-907-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-907-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of cloud optical thickness, single scattering albedo and effective droplet radius using a shortwave radiative closure study in Payerne
Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
Oeschger Center for Climate Change Research and Institute of Applied Physics, University of Bern, Bern, Switzerland
now at: Royal Meteorological Institute of Belgium, Brussels, Belgium
Julian Gröbner
Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
Stelios Kazadzis
Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
Laurent Vuilleumier
Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland
Antonis Gkikas
Department of Physics, University of Ioannina, Ioannina, Greece
Niklaus Kämpfer
Oeschger Center for Climate Change Research and Institute of Applied Physics, University of Bern, Bern, Switzerland
Related authors
Stephan Nyeki, Stefan Wacker, Christine Aebi, Julian Gröbner, Giovanni Martucci, and Laurent Vuilleumier
Atmos. Chem. Phys., 19, 13227–13241, https://doi.org/10.5194/acp-19-13227-2019, https://doi.org/10.5194/acp-19-13227-2019, 2019
Short summary
Short summary
The trends of meteorological parameters and surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) were analysed at four stations (between 370 and 3580 m a. s. l.) in Switzerland for the 1996–2015 period. Trends in DSR and DLR were positive during cloudy as well as clear conditions. The trend due to the influence of clouds decreased in magnitude, which implies a reduction in cloud cover and/or a change towards a different cloud type over the four Swiss sites.
Christine Aebi, Julian Gröbner, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018, https://doi.org/10.5194/amt-11-5549-2018, 2018
Short summary
Short summary
A newly developed hemispherical thermal infrared cloud camera (IRCCAM) is presented. The IRCCAM allows automatic cloud detection during the day and at night-time. The cloud fraction determined from the IRCCAM is compared with the cloud fraction determined from other instruments over a time period of 2 years. The IRCCAM has an agreement of +/- 2 oktas cloud fraction in 90 % of the data compared to other instruments. There are no significant differences between seasons or different times of day.
Christine Aebi, Julian Gröbner, Niklaus Kämpfer, and Laurent Vuilleumier
Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017, https://doi.org/10.5194/amt-10-4587-2017, 2017
Short summary
Short summary
The current study analyses the cloud radiative effect during the daytime depending on cloud fraction and cloud type at two stations in Switzerland over a time period of 3–5 years. Information about fractional cloud coverage and cloud type is retrieved from images taken by visible all-sky cameras. Cloud cover, cloud type and other atmospheric parameters have an influence on the magnitude of the longwave cloud effect as well as on the shortwave.
Ilias Fountoulakis, Kyriaki Papachristopoulou, Stelios Kazadzis, Gregor Hülsen, Julian Gröbner, Ioannis-Panagiotis Raptis, Dimitra Kouklaki, Akriti Masoom, Charalampos Kontoes, and Christos S. Zerefos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2964, https://doi.org/10.5194/egusphere-2024-2964, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The UVIOS2 model has been evaluated at Davos, Switzerland during the UVCIII campaign. The accuracy in the modelled UV indices has been assessed for different combinations of model inputs. A good overall agreement between UVIOS2 and the world reference spectroradiometer QASUME was found (average ratio of ~1 between the modelled and measured UV index), although the variability in the ratio can be large under cloudy conditions.
Angelos Karanikolas, Natalia Kouremeti, Monica Campanelli, Victor Estellés, Masahiro Momoi, Gaurav Kumar, Stephan Nyeki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 6085–6105, https://doi.org/10.5194/amt-17-6085-2024, https://doi.org/10.5194/amt-17-6085-2024, 2024
Short summary
Short summary
Different sun photometer networks use different instruments, post-processing algorithms and calibration protocols for aerosol optical depth (AOD) retrieval. Such differences can affect the homogeneity and comparability of their measurements. In this study, we assess the homogeneity between the sun photometer networks GAW-PFR and SKYNET, analysing common measurements during three campaigns between 2017–2021, and investigate the main cause of the differences.
Akriti Masoom, Stelios Kazadzis, Masimo Valeri, Ioannis-Panagiotis Raptis, Gabrielle Brizzi, Kyriakoula Papachristopoulou, Francesca Barnaba, Stefano Casadio, Axel Kreuter, and Fabrizio Niro
Atmos. Meas. Tech., 17, 5525–5549, https://doi.org/10.5194/amt-17-5525-2024, https://doi.org/10.5194/amt-17-5525-2024, 2024
Short summary
Short summary
Aerosols, which have a wide impact on climate, radiative forcing, and human health, are widely represented by aerosol optical depth (AOD). AOD retrievals require Rayleigh scattering and atmospheric absorption (ozone, NO2, etc.) corrections. We analysed the NO2 (which has a high spatiotemporal variation) uncertainty impact on AOD retrievals using the synergy of co-located ground-based instruments with a long-term dataset at worldwide sites and found significant AOD over- or underestimations.
Monica Campanelli, Victor Estellés, Gaurav Kumar, Teruyuki Nakajima, Masahiro Momoi, Julian Gröbner, Stelios Kazadzis, Natalia Kouremeti, Angelos Karanikolas, Africa Barreto, Saulius Nevas, Kerstin Schwind, Philipp Schneider, Iiro Harju, Petri Kärhä, Henri Diémoz, Rei Kudo, Akihiro Uchiyama, Akihiro Yamazaki, Anna Maria Iannarelli, Gabriele Mevi, Annalisa Di Bernardino, and Stefano Casadio
Atmos. Meas. Tech., 17, 5029–5050, https://doi.org/10.5194/amt-17-5029-2024, https://doi.org/10.5194/amt-17-5029-2024, 2024
Short summary
Short summary
To retrieve columnar aerosol properties from sun photometers, some calibration factors are needed. The on-site calibrations, performed as frequently as possible to monitor changes in the machine conditions, allow operators to track and evaluate the calibration status on a continuous basis, reducing the data gaps incurred by the periodic shipments for performing centralized calibrations. The performance of the on-site calibration procedures was evaluated, providing very good results.
Emmanouil Proestakis, Antonis Gkikas, Thanasis Georgiou, Anna Kampouri, Eleni Drakaki, Claire L. Ryder, Franco Marenco, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 17, 3625–3667, https://doi.org/10.5194/amt-17-3625-2024, https://doi.org/10.5194/amt-17-3625-2024, 2024
Short summary
Short summary
A new four-dimensional, multiyear, and near-global climate data record of the fine-mode (submicrometer diameter) and coarse-mode (supermicrometer diameter) components of atmospheric pure dust is presented. The dataset is considered unique with respect to a wide range of potential applications, including climatological, time series, and trend analysis over extensive geographical domains and temporal periods, validation of atmospheric dust models and datasets, and air quality.
Ilias Fountoulakis, Alexandra Tsekeri, Stelios Kazadzis, Vassilis Amiridis, Angelos Nersesian, Maria Tsichla, Emmanouil Proestakis, Antonis Gkikas, Kyriakoula Papachristopoulou, Vasileios Barlakas, Claudia Emde, and Bernhard Mayer
Atmos. Chem. Phys., 24, 4915–4948, https://doi.org/10.5194/acp-24-4915-2024, https://doi.org/10.5194/acp-24-4915-2024, 2024
Short summary
Short summary
In our study we provide an assessment, through a sensitivity study, of the limitations of models to calculate the dust direct radiative effect (DRE) due to the underrepresentation of its size, refractive index (RI), and shape. Our results indicate the necessity of including more realistic sizes and RIs for dust particles in dust models, in order to derive better estimations of the dust direct radiative effects.
Karl Voglmeier, Voltaire A. Velazco, Luca Egli, Julian Gröbner, Alberto Redondas, and Wolfgang Steinbrecht
Atmos. Meas. Tech., 17, 2277–2294, https://doi.org/10.5194/amt-17-2277-2024, https://doi.org/10.5194/amt-17-2277-2024, 2024
Short summary
Short summary
Comparison between total ozone column (TOC) measurements from ground-based Dobson and Brewer spectrophotometers generally reveals seasonally varying differences of a few percent. This study recommends a new TOC retrieval approach, which effectively eliminates these seasonally varying differences by applying new ozone absorption cross sections, appropriate slit functions for the Dobson instrument, and climatological values for the effective ozone temperature.
Kyriakoula Papachristopoulou, Ilias Fountoulakis, Alkiviadis F. Bais, Basil E. Psiloglou, Nikolaos Papadimitriou, Ioannis-Panagiotis Raptis, Andreas Kazantzidis, Charalampos Kontoes, Maria Hatzaki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 1851–1877, https://doi.org/10.5194/amt-17-1851-2024, https://doi.org/10.5194/amt-17-1851-2024, 2024
Short summary
Short summary
The upgraded systems SENSE2 and NextSENSE2 focus on improving the quality of solar nowcasting and forecasting. SENSE2 provides real-time estimates of solar irradiance across a wide region every 15 min. NextSENSE2 offers short-term forecasts of irradiance up to 3 h ahead. Evaluation with actual data showed that the instantaneous comparison yields the most discrepancies due to the uncertainties of cloud-related information and satellite versus ground-based spatial representativeness limitations.
Ruth A. R. Digby, Nathan P. Gillett, Adam H. Monahan, Knut von Salzen, Antonis Gkikas, Qianqian Song, and Zhibo Zhang
Atmos. Chem. Phys., 24, 2077–2097, https://doi.org/10.5194/acp-24-2077-2024, https://doi.org/10.5194/acp-24-2077-2024, 2024
Short summary
Short summary
The COVID-19 lockdowns reduced aerosol emissions. We ask whether these reductions affected regional aerosol optical depth (AOD) and compare the observed changes to predictions from Earth system models. Only India has an observed AOD reduction outside of typical variability. Models overestimate the response in some regions, but when key biases have been addressed, the agreement is improved. Our results suggest that current models can realistically predict the effects of future emission changes.
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024, https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary
Short summary
This paper applies sun photometer synergies to improve calibration transference between different sun photometers and also enhance their quality assurance and quality control. We have validated this technique using different instrumentation, the WMO-GAW and NASA-AERONET references, under different aerosol regimes using the standard Langley calibration method as a reference.
Óscar Alvárez, África Barreto, Omaira E. García, Frank Hase, Rosa D. García, Julian Gröbner, Sergio F. León-Luis, Eliezer Sepúlveda, Virgilio Carreño, Antonio Alcántara, Ramón Ramos, A. Fernando Almansa, Stelios Kazadzis, Noémie Taquet, Carlos Toledano, and Emilio Cuevas
Atmos. Meas. Tech., 16, 4861–4884, https://doi.org/10.5194/amt-16-4861-2023, https://doi.org/10.5194/amt-16-4861-2023, 2023
Short summary
Short summary
In this work, we have extended the capabilities of a portable Fourier transform infrared (FTIR) instrument, which was originally designed to provide high-quality greenhouse gas monitoring within COCCON (COllaborative Carbon Column Observing Network). The extension allows the spectrometer to now also provide coincidentally column-integrated aerosol information. This addition of a reference instrument to a global network will be utilised to enhance our understanding of atmospheric chemistry.
Verena Schenzinger, Axel Kreuter, Barbara Klotz, Michael Schwarzmann, and Julian Gröbner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-188, https://doi.org/10.5194/amt-2023-188, 2023
Revised manuscript not accepted
Short summary
Short summary
We present a fast an easy method to incorporate clouds from satellite imagery into a model for calculating surface UV index maps in near-real time. To judge the quality of the model, we compare our results to measurements from ground based detectors. We discuss in detail where variations in either of the values come from and why satellite and ground values might not necessarily be comparable in every situation.
Julian Gröbner, Natalia Kouremeti, Gregor Hülsen, Ralf Zuber, Mario Ribnitzky, Saulius Nevas, Peter Sperfeld, Kerstin Schwind, Philipp Schneider, Stelios Kazadzis, África Barreto, Tom Gardiner, Kavitha Mottungan, David Medland, and Marc Coleman
Atmos. Meas. Tech., 16, 4667–4680, https://doi.org/10.5194/amt-16-4667-2023, https://doi.org/10.5194/amt-16-4667-2023, 2023
Short summary
Short summary
Spectral solar irradiance measurements traceable to the International System of Units (SI) allow for intercomparability between instruments and for their validation according to metrological standards. Here we also validate and reduce the uncertainties of the top-of-atmosphere TSIS-1 Hybrid Solar Reference Spectrum (HSRS). The management of large networks, e.g. AERONET or GAW-PFR, will benefit from reducing logistical overhead, improving their resilience and achieving metrological traceability.
Vasiliki Daskalopoulou, Panagiotis I. Raptis, Alexandra Tsekeri, Vassilis Amiridis, Stelios Kazadzis, Zbigniew Ulanowski, Vassilis Charmandaris, Konstantinos Tassis, and William Martin
Atmos. Meas. Tech., 16, 4529–4550, https://doi.org/10.5194/amt-16-4529-2023, https://doi.org/10.5194/amt-16-4529-2023, 2023
Short summary
Short summary
Atmospheric dust particles may present a preferential alignment due to their shape on long range transport. Since dust is abundant and plays a key role to global climate, the elusive observation of orientation will be a game changer to existing measurement techniques and the representation of particles in climate models. We utilize a specifically designed instrument, SolPol, and target the Sun from the ground for large polarization values under dusty conditions, a clear sign of orientation.
Akriti Masoom, Ilias Fountoulakis, Stelios Kazadzis, Ioannis-Panagiotis Raptis, Anna Kampouri, Basil E. Psiloglou, Dimitra Kouklaki, Kyriakoula Papachristopoulou, Eleni Marinou, Stavros Solomos, Anna Gialitaki, Dimitra Founda, Vasileios Salamalikis, Dimitris Kaskaoutis, Natalia Kouremeti, Nikolaos Mihalopoulos, Vassilis Amiridis, Andreas Kazantzidis, Alexandros Papayannis, Christos S. Zerefos, and Kostas Eleftheratos
Atmos. Chem. Phys., 23, 8487–8514, https://doi.org/10.5194/acp-23-8487-2023, https://doi.org/10.5194/acp-23-8487-2023, 2023
Short summary
Short summary
We analyse the spatial and temporal aerosol spectral optical properties during the extreme wildfires of August 2021 in Greece and assess their effects on air quality and solar radiation quantities related to health, agriculture, and energy. Different aerosol conditions are identified (pure smoke, pure dust, dust–smoke together); the largest impact on solar radiation quantities is found for cases with mixed dust–smoke aerosols. Such situations are expected to occur more frequently in the future.
Theano Drosoglou, Ioannis-Panagiotis Raptis, Massimo Valeri, Stefano Casadio, Francesca Barnaba, Marcos Herreras-Giralda, Anton Lopatin, Oleg Dubovik, Gabriele Brizzi, Fabrizio Niro, Monica Campanelli, and Stelios Kazadzis
Atmos. Meas. Tech., 16, 2989–3014, https://doi.org/10.5194/amt-16-2989-2023, https://doi.org/10.5194/amt-16-2989-2023, 2023
Short summary
Short summary
Aerosol optical properties derived from sun photometers depend on the optical depth of trace gases absorbing solar radiation at specific spectral ranges. Various networks use satellite-based climatologies to account for this or neglect their effect. In this work, we evaluate the effect of NO2 absorption in aerosol retrievals from AERONET and SKYNET over two stations in Rome, Italy, with relatively high NO2 spatiotemporal variations, using NO2 data from the Pandora network and the TROPOMI sensor.
Luca Egli, Julian Gröbner, Herbert Schill, and Eliane Maillard Barras
Atmos. Meas. Tech., 16, 2889–2902, https://doi.org/10.5194/amt-16-2889-2023, https://doi.org/10.5194/amt-16-2889-2023, 2023
Short summary
Short summary
This paper introduces a new method to retrieve total column ozone with spectral ground-based measurements from a novel array spectroradiometer. Total column ozone estimates using the small, cost-effective, and robust instrument and the new retrieval method are compared with other co-located total column ozone instruments. The comparison shows that the new system performs similarly to other well-established instruments, which require substantially more maintenance than the system introduced here.
Michail Mytilinaios, Sara Basart, Sergio Ciamprone, Juan Cuesta, Claudio Dema, Enza Di Tomaso, Paola Formenti, Antonis Gkikas, Oriol Jorba, Ralph Kahn, Carlos Pérez García-Pando, Serena Trippetta, and Lucia Mona
Atmos. Chem. Phys., 23, 5487–5516, https://doi.org/10.5194/acp-23-5487-2023, https://doi.org/10.5194/acp-23-5487-2023, 2023
Short summary
Short summary
Multiscale Online Non-hydrostatic AtmospheRe CHemistry model (MONARCH) dust reanalysis provides a high-resolution 3D reconstruction of past dust conditions, allowing better quantification of climate and socioeconomic dust impacts. We assess the performance of the reanalysis needed to reproduce dust optical depth using dust-related products retrieved from satellite and ground-based observations and show that it reproduces the spatial distribution and seasonal variability of atmospheric dust well.
Xiaoyi Zhao, Vitali Fioletov, Alberto Redondas, Julian Gröbner, Luca Egli, Franz Zeilinger, Javier López-Solano, Alberto Berjón Arroyo, James Kerr, Eliane Maillard Barras, Herman Smit, Michael Brohart, Reno Sit, Akira Ogyu, Ihab Abboud, and Sum Chi Lee
Atmos. Meas. Tech., 16, 2273–2295, https://doi.org/10.5194/amt-16-2273-2023, https://doi.org/10.5194/amt-16-2273-2023, 2023
Short summary
Short summary
The Brewer ozone spectrophotometer is one of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW)'s standard ozone monitoring instruments since the 1980s. This work is aimed at obtaining answers to (1) why Brewer primary calibration work can only be performed at certain sites (e.g., Izaña and MLO) and (2) what is needed to assure the equivalence of calibration quality from different sites.
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023, https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
Short summary
With the launch of the Aeolus satellite, higher-accuracy wind products became available. This research was carried out to validate the assimilated wind products by testing their effect on the WRF-Chem model predictive ability of dust processes. This was carried out for the eastern Mediterranean and Middle East region for two 2-month periods in autumn and spring 2020. The use of the assimilated products improved the dust forecasts of the autumn season (both quantitatively and qualitatively).
Antonis Gkikas, Anna Gialitaki, Ioannis Binietoglou, Eleni Marinou, Maria Tsichla, Nikolaos Siomos, Peristera Paschou, Anna Kampouri, Kalliopi Artemis Voudouri, Emmanouil Proestakis, Maria Mylonaki, Christina-Anna Papanikolaou, Konstantinos Michailidis, Holger Baars, Anne Grete Straume, Dimitris Balis, Alexandros Papayannis, Tomasso Parrinello, and Vassilis Amiridis
Atmos. Meas. Tech., 16, 1017–1042, https://doi.org/10.5194/amt-16-1017-2023, https://doi.org/10.5194/amt-16-1017-2023, 2023
Short summary
Short summary
We perform an assessment analysis of the Aeolus Standard Correct Algorithm (SCA) backscatter coefficient retrievals against reference observations acquired at three Greek lidar stations (Athens, Thessaloniki and Antikythera) of the PANACEA network. Overall, 43 cases are analysed, whereas specific aerosol scenarios in the vicinity of Antikythera island (SW Greece) are emphasised. All key Cal/Val aspects and recommendations, and the ongoing related activities, are thoroughly discussed.
Bruce W. Forgan, Julian Gröbner, and Ibrahim Reda
Atmos. Meas. Tech., 16, 727–743, https://doi.org/10.5194/amt-16-727-2023, https://doi.org/10.5194/amt-16-727-2023, 2023
Short summary
Short summary
This paper investigates the Absolute Cavity Pyrgeometer (ACP) and its use in measuring atmospheric terrestrial irradiances traceable to the standard system of units (SI). This work fits into the objective of the Expert Team on Radiation References, established by the World Meteorological Organization (WMO), to develop and validate instrumentation that can be used as reference instruments for terrestrial radiation measurements.
Kyriakoula Papachristopoulou, Ioannis-Panagiotis Raptis, Antonis Gkikas, Ilias Fountoulakis, Akriti Masoom, and Stelios Kazadzis
Atmos. Chem. Phys., 22, 15703–15727, https://doi.org/10.5194/acp-22-15703-2022, https://doi.org/10.5194/acp-22-15703-2022, 2022
Short summary
Short summary
Megacities' air quality is determined by atmospheric aerosols. We focus on changes over the last two decades in the 81 largest cities, using satellite data. European and American cities have lower aerosol compared to African and Asian cities. For European, North American and East Asian cities, aerosols are decreasing over time, especially in China and the US. In the remaining cities, aerosol loads are increasing, particularly in India.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Angelos Karanikolas, Natalia Kouremeti, Julian Gröbner, Luca Egli, and Stelios Kazadzis
Atmos. Meas. Tech., 15, 5667–5680, https://doi.org/10.5194/amt-15-5667-2022, https://doi.org/10.5194/amt-15-5667-2022, 2022
Short summary
Short summary
The aim of this work is to investigate the limitations of calculating long-term trends of a parameter that quantifies the overall effect of atmospheric aerosols on the solar radiation. A main finding is that even instruments with good agreement between their observations can show significantly different linear trends. By calculating time-varying trends, the trend agreement is shown to improve. We also show that different methods of trend estimation can result in significant trend differences.
Eleni Drakaki, Vassilis Amiridis, Alexandra Tsekeri, Antonis Gkikas, Emmanouil Proestakis, Sotirios Mallios, Stavros Solomos, Christos Spyrou, Eleni Marinou, Claire L. Ryder, Demetri Bouris, and Petros Katsafados
Atmos. Chem. Phys., 22, 12727–12748, https://doi.org/10.5194/acp-22-12727-2022, https://doi.org/10.5194/acp-22-12727-2022, 2022
Short summary
Short summary
State-of-the-art atmospheric dust models have limitations in accounting for a realistic dust size distribution (emission, transport). We modify the parameterization of the mineral dust cycle by including particles with diameter >20 μm, as indicated by observations over deserts. Moreover, we investigate the effects of reduced settling velocities of dust particles. Model results are evaluated using airborne and spaceborne dust measurements above Cabo Verde.
Luca Egli, Julian Gröbner, Gregor Hülsen, Herbert Schill, and René Stübi
Atmos. Meas. Tech., 15, 1917–1930, https://doi.org/10.5194/amt-15-1917-2022, https://doi.org/10.5194/amt-15-1917-2022, 2022
Short summary
Short summary
This study presents traceable total column ozone retrievals from direct solar spectral irradiance measurements. The retrieved ozone does not require any field calibration with a reference instrument as it is required for other operational network instruments such as Brewer or Dobson. Total column ozone can be retrieved with a traceable overall standard uncertainty of less than 0.8 % indicating a benchmark uncertainty for total column ozone measurements.
Antonis Gkikas, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, Eleni Marinou, Nikos Hatzianastassiou, Jasper F. Kok, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 22, 3553–3578, https://doi.org/10.5194/acp-22-3553-2022, https://doi.org/10.5194/acp-22-3553-2022, 2022
Short summary
Short summary
We present a comprehensive climatological analysis of dust optical depth (DOD) relying on the MIDAS dataset. MIDAS provides columnar mid-visible (550 nm) DOD at fine spatial resolution (0.1° × 0.1°) over a 15-year period (2003–2017). In the current study, the analysis is performed at various spatial (from regional to global) and temporal (from months to years) scales. More specifically, focus is given to specific regions hosting the major dust sources as well as downwind areas of the planet.
Stavros-Andreas Logothetis, Vasileios Salamalikis, Antonis Gkikas, Stelios Kazadzis, Vassilis Amiridis, and Andreas Kazantzidis
Atmos. Chem. Phys., 21, 16499–16529, https://doi.org/10.5194/acp-21-16499-2021, https://doi.org/10.5194/acp-21-16499-2021, 2021
Short summary
Short summary
This study investigates the temporal trends of dust optical depth (DOD; 550 nm) on global, regional and seasonal scales over a 15-year period (2003–2017) using the MIDAS (ModIs Dust AeroSol) dataset. The findings of this study revealed that the DOD was increased across the central Sahara and the Arabian Peninsula, with opposite trends over the eastern and western Sahara, the Thar and Gobi deserts, in the Bodélé Depression, and in the southern Mediterranean.
Xinyuan Hou, Martin Wild, Doris Folini, Stelios Kazadzis, and Jan Wohland
Earth Syst. Dynam., 12, 1099–1113, https://doi.org/10.5194/esd-12-1099-2021, https://doi.org/10.5194/esd-12-1099-2021, 2021
Short summary
Short summary
Solar photovoltaics (PV) matters for the carbon neutrality goal. We use climate scenarios to quantify climate risk for PV in Europe and find higher PV potential. The seasonal cycle of PV generation changes in most places. We find an increase in the spatial correlations of daily PV production, implying that PV power balancing through redistribution will be more difficult in the future. Thus, changes in the spatiotemporal structure of PV generation should be included in power system design.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021, https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Short summary
Large-scale retrievals of the ultraviolet index (UVI) in real time by exploiting the modern Earth observation data and techniques are capable of forming operational early warning systems that raise awareness among citizens of the health implications of high UVI doses. In this direction a novel UVI operating system, the so-called UVIOS, was introduced for massive outputs, while its performance was tested against ground-based measurements revealing a dependence on the input quality and resolution.
Antti Arola, William Wandji Nyamsi, Antti Lipponen, Stelios Kazadzis, Nickolay A. Krotkov, and Johanna Tamminen
Atmos. Meas. Tech., 14, 4947–4957, https://doi.org/10.5194/amt-14-4947-2021, https://doi.org/10.5194/amt-14-4947-2021, 2021
Short summary
Short summary
Methods to estimate surface UV radiation from satellite measurements offer the only means to obtain global coverage, and the development of satellite-based UV algorithms has been ongoing since the early 1990s. One of the main challenges in this development has been how to account for the overall effect of absorption by atmospheric aerosols. One such method was suggested roughly a decade ago, and in this study we propose further improvements for this kind of approach.
Ralf Zuber, Ulf Köhler, Luca Egli, Mario Ribnitzky, Wolfgang Steinbrecht, and Julian Gröbner
Atmos. Meas. Tech., 14, 4915–4928, https://doi.org/10.5194/amt-14-4915-2021, https://doi.org/10.5194/amt-14-4915-2021, 2021
Short summary
Short summary
We validated two BTS-based systems in a longer-term TOC analysis in the 2019/2020 campaign at Hohenpeißenberg and Davos. The results showed a deviation of the BTS-Solar to Brewers of < 0.1 % with a k = 2 of < 1.5 %. Koherent showed a deviation of 1.7 % with a k = 2 of 2.7 %. Resultingly, the BTS-Solar performance is comparable to Brewers in Hohenpeißenberg. Koherent shows a seasonal variation in Davos due to the sensitivity of its TOC retrieval algorithm to stratospheric temperature.
Marek Šmíd, Geiland Porrovecchio, Jiří Tesař, Tim Burnitt, Luca Egli, Julian Grőbner, Petr Linduška, and Martin Staněk
Atmos. Meas. Tech., 14, 3573–3582, https://doi.org/10.5194/amt-14-3573-2021, https://doi.org/10.5194/amt-14-3573-2021, 2021
Short summary
Short summary
We designed and developed a tuneable and portable radiation source (TuPS) to provide a reference wavelength scale, with a bandwidth of emitted radiation of 0.13 nm and uncertainty in wavelength of 0.02 nm. TuPS was successfully used for the in-field characterization of 14 Dobson spectrophotometers in campaigns in Europe. The line spread functions of Dobsons measured by TuPS in conjunction with the cross-sections from IUP improves the consistency between the Dobson and Brewer from 3 % to 1 %.
Julian Gröbner, Herbert Schill, Luca Egli, and René Stübi
Atmos. Meas. Tech., 14, 3319–3331, https://doi.org/10.5194/amt-14-3319-2021, https://doi.org/10.5194/amt-14-3319-2021, 2021
Short summary
Short summary
The world's longest continuous total column ozone time series was initiated in 1926 at the Lichtklimatisches Observatorium (LKO), at Arosa, in the Swiss Alps. The measurements between Dobson and Brewer spectroradiometers have shown seasonal variations of the order of 2 %. The results of the study show that the consistency between the two instrument types can be significantly improved when the ozone cross-sections from Serdyuchenko et al. (2013) and the measured slit functions are used.
Myrto Gratsea, Tim Bösch, Panagiotis Kokkalis, Andreas Richter, Mihalis Vrekoussis, Stelios Kazadzis, Alexandra Tsekeri, Alexandros Papayannis, Maria Mylonaki, Vassilis Amiridis, Nikos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Meas. Tech., 14, 749–767, https://doi.org/10.5194/amt-14-749-2021, https://doi.org/10.5194/amt-14-749-2021, 2021
Antonis Gkikas, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, Alexandra Tsekeri, Eleni Marinou, Nikos Hatzianastassiou, and Carlos Pérez García-Pando
Atmos. Meas. Tech., 14, 309–334, https://doi.org/10.5194/amt-14-309-2021, https://doi.org/10.5194/amt-14-309-2021, 2021
Short summary
Short summary
We present the development of the MIDAS (ModIs Dust AeroSol) data set, providing daily dust optical depth (DOD; 550 nm) at a global scale and fine spatial resolution (0.1° x 0.1°) over a 15-year period (2003–2017). It has been developed via the synergy of MODIS-Aqua and MERRA-2 data, while CALIOP and AERONET retrievals are used for its assessment. MIDAS upgrades existing dust observational capabilities, and it is suitable for dust climatological studies, model evaluation, and data assimilation.
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020, https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary
Short summary
The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. Ground-based data from 25 sites located in Arctic, subarctic, temperate, equatorial and Antarctic
areas were used for the validation of the TROPOMI surface ultraviolet (UV) radiation product. For most sites 60 %–80 % of TROPOMI data was within ± 20 % of ground-based data.
Martine Collaud Coen, Elisabeth Andrews, Alessandro Bigi, Giovanni Martucci, Gonzague Romanens, Frédéric P. A. Vogt, and Laurent Vuilleumier
Atmos. Meas. Tech., 13, 6945–6964, https://doi.org/10.5194/amt-13-6945-2020, https://doi.org/10.5194/amt-13-6945-2020, 2020
Short summary
Short summary
The Mann–Kendall trend test requires prewhitening in the presence of serially correlated data. The effects of five prewhitening methods and time granularity, autocorrelation, temporal segmentation and length of the time series on the statistical significance and the slope are studies for seven atmospheric datasets. Finally, a new algorithm using three prewhitening methods is proposed in order to optimize the power of the test, the amount of erroneous false positive trends and the slope estimate.
Anna Gialitaki, Alexandra Tsekeri, Vassilis Amiridis, Romain Ceolato, Lucas Paulien, Anna Kampouri, Antonis Gkikas, Stavros Solomos, Eleni Marinou, Moritz Haarig, Holger Baars, Albert Ansmann, Tatyana Lapyonok, Anton Lopatin, Oleg Dubovik, Silke Groß, Martin Wirth, Maria Tsichla, Ioanna Tsikoudi, and Dimitris Balis
Atmos. Chem. Phys., 20, 14005–14021, https://doi.org/10.5194/acp-20-14005-2020, https://doi.org/10.5194/acp-20-14005-2020, 2020
Short summary
Short summary
Stratospheric smoke particles are found to significantly depolarize incident light, while this effect is also accompanied by a strong spectral dependence. We utilize scattering simulations to show that this behaviour can be attributed to the near-spherical shape of the particles. We also examine whether an extension of the current AERONET scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke associated with enhanced PLDR.
Ilias Fountoulakis, Henri Diémoz, Anna Maria Siani, Gregor Hülsen, and Julian Gröbner
Earth Syst. Sci. Data, 12, 2787–2810, https://doi.org/10.5194/essd-12-2787-2020, https://doi.org/10.5194/essd-12-2787-2020, 2020
Short summary
Short summary
In this study we discuss the procedures and the technical aspects which ensure the high quality of the measurements of the global solar ultraviolet (UV) irradiance performed by a Bentham spectroradiometer located at Aosta–Saint-Christophe (north-western Alps), Italy. This particular instrument is the reference for the Aosta Valley UV monitoring network, which is the first UV monitoring network in Italy. The final spectra constitute one of the most accurate datasets globally.
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Short summary
With global warming, water vapour increases in the atmosphere. Water vapour is an important gas because it is a natural greenhouse gas and affects the formation of clouds, rain and snow. How much water vapour increases can vary in different regions of the world. To verify if it increases as expected on a regional scale, we analysed water vapour measurements in Switzerland. We found that water vapour generally increases as expected from temperature changes, except in winter.
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Short summary
We measured middle-atmospheric ozone, water vapour and zonal and meridional wind with two ground-based microwave radiometers which are located at Ny-Alesund, Svalbard, in the Arctic. In this article we present measurements of the small-scale horizontal ozone gradients during winter 2018/2019. We found a distinct seasonal variation of the ozone gradients which is linked to the planetary wave activity. We further present the signatures of the SSW in the ozone, water vapour and wind measurements.
Teruyuki Nakajima, Monica Campanelli, Huizheng Che, Victor Estellés, Hitoshi Irie, Sang-Woo Kim, Jhoon Kim, Dong Liu, Tomoaki Nishizawa, Govindan Pandithurai, Vijay Kumar Soni, Boossarasiri Thana, Nas-Urt Tugjsurn, Kazuma Aoki, Sujung Go, Makiko Hashimoto, Akiko Higurashi, Stelios Kazadzis, Pradeep Khatri, Natalia Kouremeti, Rei Kudo, Franco Marenco, Masahiro Momoi, Shantikumar S. Ningombam, Claire L. Ryder, Akihiro Uchiyama, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 4195–4218, https://doi.org/10.5194/amt-13-4195-2020, https://doi.org/10.5194/amt-13-4195-2020, 2020
Short summary
Short summary
This paper overviews the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. The paper also discusses current issues of SKYNET to provide better information for the community.
Eliane Maillard Barras, Alexander Haefele, Liliane Nguyen, Fiona Tummon, William T. Ball, Eugene V. Rozanov, Rolf Rüfenacht, Klemens Hocke, Leonie Bernet, Niklaus Kämpfer, Gerald Nedoluha, and Ian Boyd
Atmos. Chem. Phys., 20, 8453–8471, https://doi.org/10.5194/acp-20-8453-2020, https://doi.org/10.5194/acp-20-8453-2020, 2020
Short summary
Short summary
To determine the part of the variability of the long-term ozone profile trends coming from measurement timing, we estimate microwave radiometer trends for each hour of the day with a multiple linear regression model. The variation in the trend with local solar time is not significant at the 95 % confidence level either in the stratosphere or in the low mesosphere. We conclude that systematic sampling differences between instruments cannot explain significant differences in trend estimates.
Jonas Hagen, Klemens Hocke, Gunter Stober, Simon Pfreundschuh, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 2367–2386, https://doi.org/10.5194/acp-20-2367-2020, https://doi.org/10.5194/acp-20-2367-2020, 2020
Short summary
Short summary
The middle atmosphere (30 to 70 km altitude) is stratified and, despite very strong horizontal winds, there is less mixing between the horizontal layers. An important driver for the energy exchange between the layers in this regime is atmospheric tides, which are waves that are driven by the diurnal cycle of solar heating. We measure these tides in the wind field for the first time using a ground-based passive instrument. Ultimately, such measurements could be used to improve atmospheric models.
Stephan Nyeki, Stefan Wacker, Christine Aebi, Julian Gröbner, Giovanni Martucci, and Laurent Vuilleumier
Atmos. Chem. Phys., 19, 13227–13241, https://doi.org/10.5194/acp-19-13227-2019, https://doi.org/10.5194/acp-19-13227-2019, 2019
Short summary
Short summary
The trends of meteorological parameters and surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) were analysed at four stations (between 370 and 3580 m a. s. l.) in Switzerland for the 1996–2015 period. Trends in DSR and DLR were positive during cloudy as well as clear conditions. The trend due to the influence of clouds decreased in magnitude, which implies a reduction in cloud cover and/or a change towards a different cloud type over the four Swiss sites.
Emilio Cuevas, Pedro Miguel Romero-Campos, Natalia Kouremeti, Stelios Kazadzis, Petri Räisänen, Rosa Delia García, Africa Barreto, Carmen Guirado-Fuentes, Ramón Ramos, Carlos Toledano, Fernando Almansa, and Julian Gröbner
Atmos. Meas. Tech., 12, 4309–4337, https://doi.org/10.5194/amt-12-4309-2019, https://doi.org/10.5194/amt-12-4309-2019, 2019
Short summary
Short summary
A comprehensive comparison of more than 70 000 synchronous 1 min aerosol optical depth (AOD) data from 3 Global Atmosphere Watch precision filter radiometers (GAW-PFR) and 15 Aerosol Robotic Network Cimel radiometers (AERONET-Cimel) was performed for the four
nearwavelengths (380, 440, 500 and 870 nm) in the period 2005–2015. The goal of this study is to assess whether their long term AOD data are comparable and consistent.
Franziska Schranz, Brigitte Tschanz, Rolf Rüfenacht, Klemens Hocke, Mathias Palm, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 9927–9947, https://doi.org/10.5194/acp-19-9927-2019, https://doi.org/10.5194/acp-19-9927-2019, 2019
Short summary
Short summary
The dynamics of the Arctic middle atmosphere above Ny-Ålesund, Svalbard (79° N, 12° E) is investigated using 3 years of H2O and O3 measurements from ground-based microwave radiometers. We found the signals of atmospheric phenomena like sudden stratospheric warmings, polar vortex shifts, effective descent rates of water vapour and periodicities in our data. Additionally, a comprehensive intercomparison is performed with models and measurements from ground-based, in situ and satellite instruments.
Martin Lainer, Klemens Hocke, Ellen Eckert, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 6611–6620, https://doi.org/10.5194/acp-19-6611-2019, https://doi.org/10.5194/acp-19-6611-2019, 2019
Short summary
Short summary
A middle atmospheric water vapor time series of more than 11 years (April 2007 to May 2018) from the NDACC microwave remote sensing site at Bern (Switzerland) is investigated to estimate the trend by means of a robust multilinear parametric trend model. Between 61 and 72 km altitude a significant decline in water vapor could be detected. The reduction of water vapor maximizes to about −12 % per decade at 72 km altitude.
Leonie Bernet, Thomas von Clarmann, Sophie Godin-Beekmann, Gérard Ancellet, Eliane Maillard Barras, René Stübi, Wolfgang Steinbrecht, Niklaus Kämpfer, and Klemens Hocke
Atmos. Chem. Phys., 19, 4289–4309, https://doi.org/10.5194/acp-19-4289-2019, https://doi.org/10.5194/acp-19-4289-2019, 2019
Short summary
Short summary
After severe ozone depletion, upper stratospheric ozone has started to recover in recent years. However, stratospheric ozone trends from various data sets still show differences. To partly explain such differences, we investigate how the trends are affected by different factors, for example, anomalies in the data. We show how trend estimates can be improved by considering such anomalies and present updated stratospheric ozone trends from ground data measured in central Europe.
Christine Aebi, Julian Gröbner, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018, https://doi.org/10.5194/amt-11-5549-2018, 2018
Short summary
Short summary
A newly developed hemispherical thermal infrared cloud camera (IRCCAM) is presented. The IRCCAM allows automatic cloud detection during the day and at night-time. The cloud fraction determined from the IRCCAM is compared with the cloud fraction determined from other instruments over a time period of 2 years. The IRCCAM has an agreement of +/- 2 oktas cloud fraction in 90 % of the data compared to other instruments. There are no significant differences between seasons or different times of day.
Carlos Toledano, Ramiro González, David Fuertes, Emilio Cuevas, Thomas F. Eck, Stelios Kazadzis, Natalia Kouremeti, Julian Gröbner, Philippe Goloub, Luc Blarel, Roberto Román, África Barreto, Alberto Berjón, Brent N. Holben, and Victoria E. Cachorro
Atmos. Chem. Phys., 18, 14555–14567, https://doi.org/10.5194/acp-18-14555-2018, https://doi.org/10.5194/acp-18-14555-2018, 2018
Short summary
Short summary
Most of the ground-based radiometric networks have their reference instruments and/or calibrate them at Mauna Loa or Izaña. The suitability of these high-mountain stations for absolute radiometric calibrations is investigated with the support of 20 years of first-class Sun photometer data from the AERONET and GAW-PFR networks. We analyze the number of calibration days at each site in a climatological sense and investigate the uncertainty of the calibrations based on long-term statistics.
Marco Zanatta, Paolo Laj, Martin Gysel, Urs Baltensperger, Stergios Vratolis, Konstantinos Eleftheriadis, Yutaka Kondo, Philippe Dubuisson, Victor Winiarek, Stelios Kazadzis, Peter Tunved, and Hans-Werner Jacobi
Atmos. Chem. Phys., 18, 14037–14057, https://doi.org/10.5194/acp-18-14037-2018, https://doi.org/10.5194/acp-18-14037-2018, 2018
Short summary
Short summary
The research community aims to quantify the actual contribution of soot particles to the recent Arctic warming. We discovered that mixing of soot with other components might enhance its light absorption power by 50 %. The neglection of such amplification might lead to the underestimation of radiative forcing by 0.12 W m−2. Thus a better understanding of the optical properties of soot is a crucial step for an accurate quantification of the radiative impact of soot in the Arctic atmosphere.
Kaisa Lakkala, Antti Arola, Julian Gröbner, Sergio Fabian León-Luis, Alberto Redondas, Stelios Kazadzis, Tomi Karppinen, Juha Matti Karhu, Luca Egli, Anu Heikkilä, Tapani Koskela, Antonio Serrano, and José Manuel Vilaplana
Atmos. Meas. Tech., 11, 5167–5180, https://doi.org/10.5194/amt-11-5167-2018, https://doi.org/10.5194/amt-11-5167-2018, 2018
Short summary
Short summary
The performance of the cosine error correction method for correcting spectral UV measurements of the Brewer spectroradiometer was studied. The correction depends on the sky radiation distribution, which can change during one spectral scan. The results showed that the correction varied between 4 and 14 %, and that the relative differences between the reference and the Brewer diminished by 10 %. The method is applicable to other instruments as long as the required input parameters are available.
Jonas Hagen, Axel Murk, Rolf Rüfenacht, Sergey Khaykin, Alain Hauchecorne, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5007–5024, https://doi.org/10.5194/amt-11-5007-2018, https://doi.org/10.5194/amt-11-5007-2018, 2018
Martin Lainer, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 18, 12061–12074, https://doi.org/10.5194/acp-18-12061-2018, https://doi.org/10.5194/acp-18-12061-2018, 2018
Short summary
Short summary
A long continuous record (in total 7 years) of middle atmospheric water vapor at the midlatitude NDACC station in Bern is investigated to study quasi 2-day wave oscillations (Q2DWs). We present monthly climatologies of the wave amplitudes and show the periods that the Q2DWs developed. What we observe is very-high-frequency variability. An autobicoherence analysis revealed nonlinear phase couplings between Q2DWs and other atmospheric waves. Our results are useful for model validation purposes.
Amelie Driemel, John Augustine, Klaus Behrens, Sergio Colle, Christopher Cox, Emilio Cuevas-Agulló, Fred M. Denn, Thierry Duprat, Masato Fukuda, Hannes Grobe, Martial Haeffelin, Gary Hodges, Nicole Hyett, Osamu Ijima, Ain Kallis, Wouter Knap, Vasilii Kustov, Charles N. Long, David Longenecker, Angelo Lupi, Marion Maturilli, Mohamed Mimouni, Lucky Ntsangwane, Hiroyuki Ogihara, Xabier Olano, Marc Olefs, Masao Omori, Lance Passamani, Enio Bueno Pereira, Holger Schmithüsen, Stefanie Schumacher, Rainer Sieger, Jonathan Tamlyn, Roland Vogt, Laurent Vuilleumier, Xiangao Xia, Atsumu Ohmura, and Gert König-Langlo
Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, https://doi.org/10.5194/essd-10-1491-2018, 2018
Short summary
Short summary
The Baseline Surface Radiation Network (BSRN) collects and centrally archives high-quality ground-based radiation measurements in 1 min resolution. More than 10 300 months, i.e., > 850 years, of high-radiation data in 1 min resolution from the years 1992 to 2017 are available. The network currently comprises 59 stations collectively representing all seven continents as well as island-based stations in the Pacific, Atlantic, Indian and Arctic oceans.
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
Alberto Redondas, Virgilio Carreño, Sergio F. León-Luis, Bentorey Hernández-Cruz, Javier López-Solano, Juan J. Rodriguez-Franco, José M. Vilaplana, Julian Gröbner, John Rimmer, Alkiviadis F. Bais, Vladimir Savastiouk, Juan R. Moreta, Lamine Boulkelia, Nis Jepsen, Keith M. Wilson, Vadim Shirotov, and Tomi Karppinen
Atmos. Chem. Phys., 18, 9441–9455, https://doi.org/10.5194/acp-18-9441-2018, https://doi.org/10.5194/acp-18-9441-2018, 2018
Short summary
Short summary
This work shows an overview of the total ozone comparison of the Brewer instrument during the 10th RBCC-E campaign in a joint effort with the EUBREWNET COST 1207 action. The status of the network after 2 years of calibration shows 16 out of the 21 participating Brewer instruments (76 %) agreed within better than ±1 %, and 10 instruments (50 %) agreed within better than ±0.5 %. After applying the final calibration and the stray light correction all working instruments agreed at the ±0.5 % level.
Antonis Gkikas, Vincenzo Obiso, Carlos Pérez García-Pando, Oriol Jorba, Nikos Hatzianastassiou, Lluis Vendrell, Sara Basart, Stavros Solomos, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 18, 8757–8787, https://doi.org/10.5194/acp-18-8757-2018, https://doi.org/10.5194/acp-18-8757-2018, 2018
Short summary
Short summary
The present study investigates the direct radiative effects (DREs), induced during 20 intense Mediterranean desert dust outbreaks, based on regional short-term numerical simulations of the NMMB-MONARCH model: more specifically, (i) the DREs and their associated impacts on temperature and surface sensible and latent heat fluxes, (ii) the feedbacks on dust AOD and dust emissions, and (iii) the possible improvements in short-term forecasts (up to 84 h) of temperature and radiation.
Anna Vaskuri, Petri Kärhä, Luca Egli, Julian Gröbner, and Erkki Ikonen
Atmos. Meas. Tech., 11, 3595–3610, https://doi.org/10.5194/amt-11-3595-2018, https://doi.org/10.5194/amt-11-3595-2018, 2018
Short summary
Short summary
In this work, we introduce a Monte Carlo uncertainty analysis that takes into account possible systematic spectral deviations in the atmospheric full spectrum ozone retrieval method. Accounting for possible systematic spectral deviations in the spectral data is important since they produce larger total ozone column uncertainties than uncorrelated noise-like variations that traditional uncertainty estimations predict.
Rosa Delia García, Africa Barreto, Emilio Cuevas, Julian Gröbner, Omaira Elena García, Angel Gómez-Peláez, Pedro Miguel Romero-Campos, Alberto Redondas, Victoria Eugenia Cachorro, and Ramon Ramos
Geosci. Model Dev., 11, 2139–2152, https://doi.org/10.5194/gmd-11-2139-2018, https://doi.org/10.5194/gmd-11-2139-2018, 2018
Short summary
Short summary
A 7-year comparison study between measured and simulated longwave
downward radiation under cloud-free conditions has been performed at BSRN Izaña. Results show an excellent agreement with a mean bias (simulated–measured) less than 1.1 % and RMSE less than 1 %, which are within the instrumental error (2 %).
Daniela Meloni, Alcide di Sarra, Gérard Brogniez, Cyrielle Denjean, Lorenzo De Silvestri, Tatiana Di Iorio, Paola Formenti, José L. Gómez-Amo, Julian Gröbner, Natalia Kouremeti, Giuliano Liuzzi, Marc Mallet, Giandomenico Pace, and Damiano M. Sferlazzo
Atmos. Chem. Phys., 18, 4377–4401, https://doi.org/10.5194/acp-18-4377-2018, https://doi.org/10.5194/acp-18-4377-2018, 2018
Short summary
Short summary
This study examines how different aerosol optical properties determine the dust longwave radiative effects at the surface, in the atmosphere and at the top of the atmosphere, based on the combination of remote sensing and in situ observations from the ground, from airborne sensors, and from space, by means of radiative transfer modelling. The closure experiment is based on longwave irradiances and spectral brightness temperatures measured during the 2013 ChArMEx–ADRIMED campaign at Lampedusa.
Christof Janssen, Hadj Elandaloussi, and Julian Gröbner
Atmos. Meas. Tech., 11, 1707–1723, https://doi.org/10.5194/amt-11-1707-2018, https://doi.org/10.5194/amt-11-1707-2018, 2018
Short summary
Short summary
Monitoring ozone layer recovery at a rate of few percent per decade requires dedicated instrumentation and spectroscopic data of the highest quality. Highly accurate absorption cross sections of ozone are rare, especially in the important UV region between 300 and 340 nm. Our measurement provides the first reference point with permil level of accuracy in this range. Interestingly, our value is lower than currently used data. This might resolve an inconsistency between UV and IR measurements.
Franziska Schranz, Susana Fernandez, Niklaus Kämpfer, and Mathias Palm
Atmos. Chem. Phys., 18, 4113–4130, https://doi.org/10.5194/acp-18-4113-2018, https://doi.org/10.5194/acp-18-4113-2018, 2018
Short summary
Short summary
We present 1 year of ozone measurements form two ground-based microwave radiometers located at Ny-Ålesund, Svalbard. The ozone measurements cover an altitude range of 25–70 km altitude and have a high time resolution of 1–2 h. With these datasets and model data a comprehensive analysis of the ozone diurnal cycle in the Arctic is performed for the different insolation conditions throughout the year. In the stratosphere we find a diurnal cycle which persists over the whole polar day.
Javier López-Solano, Alberto Redondas, Thomas Carlund, Juan J. Rodriguez-Franco, Henri Diémoz, Sergio F. León-Luis, Bentorey Hernández-Cruz, Carmen Guirado-Fuentes, Natalia Kouremeti, Julian Gröbner, Stelios Kazadzis, Virgilio Carreño, Alberto Berjón, Daniel Santana-Díaz, Manuel Rodríguez-Valido, Veerle De Bock, Juan R. Moreta, John Rimmer, Andrew R. D. Smedley, Lamine Boulkelia, Nis Jepsen, Paul Eriksen, Alkiviadis F. Bais, Vadim Shirotov, José M. Vilaplana, Keith M. Wilson, and Tomi Karppinen
Atmos. Chem. Phys., 18, 3885–3902, https://doi.org/10.5194/acp-18-3885-2018, https://doi.org/10.5194/acp-18-3885-2018, 2018
Short summary
Short summary
The European Brewer Network (EUBREWNET, COST Action ES1207) is comprised of close to 50 instruments and currently provides near-real-time ozone and UV data. Aerosols also play key role in the Earth–atmosphere system and introduce a large uncertainty into our understanding of climate change. In this work we describe and validate a method to incorporate the measurement of aerosols in EUBREWNET. We find that this Brewer network can provide reliable aerosol data across Europe in the UV range.
Stelios Kazadzis, Natalia Kouremeti, Henri Diémoz, Julian Gröbner, Bruce W. Forgan, Monica Campanelli, Victor Estellés, Kathleen Lantz, Joseph Michalsky, Thomas Carlund, Emilio Cuevas, Carlos Toledano, Ralf Becker, Stephan Nyeki, Panagiotis G. Kosmopoulos, Viktar Tatsiankou, Laurent Vuilleumier, Frederick M. Denn, Nozomu Ohkawara, Osamu Ijima, Philippe Goloub, Panagiotis I. Raptis, Michael Milner, Klaus Behrens, Africa Barreto, Giovanni Martucci, Emiel Hall, James Wendell, Bryan E. Fabbri, and Christoph Wehrli
Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, https://doi.org/10.5194/acp-18-3185-2018, 2018
Short summary
Short summary
Aerosol optical depth measured from ground-based sun photometers is the most important parameter for studying the changes in the Earth's radiation balance due to aerosols. Representatives for various sun photometer types belonging to individual institutions or international aerosol networks gather every 5 years, for 3 weeks, in Davos, Switzerland, in order to compare their aeorosol optical depth retrievals. This work presents the results of the latest (fourth) filter radiometer intercomparison.
Panagiotis-Ioannis Raptis, Stelios Kazadzis, Julian Gröbner, Natalia Kouremeti, Lionel Doppler, Ralf Becker, and Constantinos Helmis
Atmos. Meas. Tech., 11, 1143–1157, https://doi.org/10.5194/amt-11-1143-2018, https://doi.org/10.5194/amt-11-1143-2018, 2018
Short summary
Short summary
The purpose of this work is to retrieve integrated water vapour using spectral measurements from Precision Solar Spectroradiometer (PSR). Two different approaches were developed one using single-channel direct sun irradiance measurements, and the second one integrating at a certain spectral region. The results of the spectral approach are closer to the retrievals of non-photometric techniques (GPS, microwave radiometer and radiosondes), suggesting this method provide more accurate IWV product.
Stelios Kazadzis, Dimitra Founda, Basil E. Psiloglou, Harry Kambezidis, Nickolaos Mihalopoulos, Arturo Sanchez-Lorenzo, Charikleia Meleti, Panagiotis I. Raptis, Fragiskos Pierros, and Pierre Nabat
Atmos. Chem. Phys., 18, 2395–2411, https://doi.org/10.5194/acp-18-2395-2018, https://doi.org/10.5194/acp-18-2395-2018, 2018
Short summary
Short summary
The National Observatory of Athens has been collecting solar radiation, sunshine duration, and cloud and visibility data/observations since the beginning of the 20th century. In this work we present surface solar radiation data since 1953 and reconstructed data since 1900. We have attempted to show and discuss the long-term changes in solar surface radiation over Athens, Greece, using these unique datasets.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Panagiotis I. Raptis, Iphigenia Keramitsoglou, Chris Kiranoudis, and Alkiviadis F. Bais
Atmos. Meas. Tech., 11, 907–924, https://doi.org/10.5194/amt-11-907-2018, https://doi.org/10.5194/amt-11-907-2018, 2018
Short summary
Short summary
Continuous monitoring of solar energy from space is critical for its efficient exploitation and distribution. For this reason we developed neural-network- and function-based real-time models, which are capable of producing massive radiation outputs in high spectral, spatial and temporal resolution. The models' performance against ground-based measurements revealed a dependence on input quality and resolution, and an overall accuracy under cloudless and high solar energy potential conditions.
Stelios Kazadzis, Natalia Kouremeti, Stephan Nyeki, Julian Gröbner, and Christoph Wehrli
Geosci. Instrum. Method. Data Syst., 7, 39–53, https://doi.org/10.5194/gi-7-39-2018, https://doi.org/10.5194/gi-7-39-2018, 2018
Short summary
Short summary
The World Optical Depth Research Calibration Center (WORCC) has been established after the recommendations of WMO for calibration of aerosol optical depth (AOD) -related sun photometers. WORCC is mandated to initiate homogenization activities among different AOD networks and to run a network (GAW-PFR) of sun photometers. To calibrate such instruments aiming at low measurement uncertainties the quality assurance, quality control and a basic hierarchy have to be defined and followed.
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Aristeidis K. Georgoulias, Stavros Solomos, Stelios Kazadzis, Julien Chimot, Huizheng Che, Georgia Alexandri, Ioannis Binietoglou, Vasiliki Daskalopoulou, Konstantinos A. Kourtidis, Gerrit de Leeuw, and Ronald J. van der A
Atmos. Chem. Phys., 18, 1337–1362, https://doi.org/10.5194/acp-18-1337-2018, https://doi.org/10.5194/acp-18-1337-2018, 2018
Short summary
Short summary
We provide a 3-D climatology of desert dust aerosols over South and East Asia, based on 9 years of CALIPSO observations and an EARLINET methodology. The results provide the horizontal, vertical and seasonal distribution of dust aerosols over SE Asia along with the change in dust transport pathways. The dataset is unique for its potential applications, including evaluation and assimilation activities in atmospheric simulations and the estimation of the climatic impact of dust aerosols.
Martin Lainer, Klemens Hocke, Rolf Rüfenacht, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 14905–14917, https://doi.org/10.5194/acp-17-14905-2017, https://doi.org/10.5194/acp-17-14905-2017, 2017
Short summary
Short summary
We report on middle-atmospheric water vapor measurements above Bern from the ground-based microwave radiometer MIAWARA (NDACC affiliated) during two winter periods of 6 months. Quasi 18 h oscillations of mesospheric water vapor above 0.1 hPa are observed. Further, the 18 h wave is seen in a zonal wind data set from the Doppler wind radiometer WIRA. Inertia-gravity-wave-induced fluctuations or a nonlinear coupling between tides and quasi 2-day waves are considered as possible drivers.
Gerald E. Nedoluha, Michael Kiefer, Stefan Lossow, R. Michael Gomez, Niklaus Kämpfer, Martin Lainer, Peter Forkman, Ole Martin Christensen, Jung Jin Oh, Paul Hartogh, John Anderson, Klaus Bramstedt, Bianca M. Dinelli, Maya Garcia-Comas, Mark Hervig, Donal Murtagh, Piera Raspollini, William G. Read, Karen Rosenlof, Gabriele P. Stiller, and Kaley A. Walker
Atmos. Chem. Phys., 17, 14543–14558, https://doi.org/10.5194/acp-17-14543-2017, https://doi.org/10.5194/acp-17-14543-2017, 2017
Short summary
Short summary
As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. In the lower mesosphere, we quantify instrumental differences in the observed trends and annual variations at six sites. We then present a range of observed trends in water vapor over the past 20 years.
Christine Aebi, Julian Gröbner, Niklaus Kämpfer, and Laurent Vuilleumier
Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017, https://doi.org/10.5194/amt-10-4587-2017, 2017
Short summary
Short summary
The current study analyses the cloud radiative effect during the daytime depending on cloud fraction and cloud type at two stations in Switzerland over a time period of 3–5 years. Information about fractional cloud coverage and cloud type is retrieved from images taken by visible all-sky cameras. Cloud cover, cloud type and other atmospheric parameters have an influence on the magnitude of the longwave cloud effect as well as on the shortwave.
Francisco Navas-Guzmán, Niklaus Kämpfer, Franziska Schranz, Wolfgang Steinbrecht, and Alexander Haefele
Atmos. Chem. Phys., 17, 14085–14104, https://doi.org/10.5194/acp-17-14085-2017, https://doi.org/10.5194/acp-17-14085-2017, 2017
Short summary
Short summary
The paper presents assessment of the stratospheric measurements of a relatively new temperature radiometer (TEMPERA) at 60 GHz. The temperature profiles from TEMPERA have been compared with measurements from different techniques such as radiosondes, MLS satellite and Rayleigh lidar and with the temperature outputs from the SD-WACCM model. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes and comparisons, proving the good performance of TEMPERA.
René Stübi, Herbert Schill, Jörg Klausen, Laurent Vuilleumier, Julian Gröbner, Luca Egli, and Dominique Ruffieux
Atmos. Meas. Tech., 10, 4479–4490, https://doi.org/10.5194/amt-10-4479-2017, https://doi.org/10.5194/amt-10-4479-2017, 2017
Short summary
Short summary
Long-term measurement series are the pillars of all climate change analysis. The Arosa total ozone series is the world's longest record, starting in 1926. To secure the future of these measurements, it is foreseen to move the instruments in Davos. To ascertain that the series will not be affected by this change, a multiyear campaign of parallel measurements on both sites has been done. The analysis of these data is presented and it is concluded that no discernible difference can be identified.
Leonie Bernet, Francisco Navas-Guzmán, and Niklaus Kämpfer
Atmos. Meas. Tech., 10, 4421–4437, https://doi.org/10.5194/amt-10-4421-2017, https://doi.org/10.5194/amt-10-4421-2017, 2017
Short summary
Short summary
Microwave radiometry is a suitable technique to measure atmospheric temperature profiles during clear sky and cloudy conditions. However clouds can influence the temperature measurements. In this study we analyse the influence of clouds on temperature measurements in the troposphere from a microwave radiometer. We found that the effect of clouds on the temperature measurements is important and that the measurements can be improved substantially by considering clouds in the retrieval process.
Julian Gröbner, Ingo Kröger, Luca Egli, Gregor Hülsen, Stefan Riechelmann, and Peter Sperfeld
Atmos. Meas. Tech., 10, 3375–3383, https://doi.org/10.5194/amt-10-3375-2017, https://doi.org/10.5194/amt-10-3375-2017, 2017
Short summary
Short summary
We have produced a benchmark high-resolution solar extraterrestrial spectrum from ground-based measurements of direct solar irradiance in the wavelength range 300 to 500 nm. This spectrum can be used for model calculations and for validating solar spectra measured in space. The metrological traceability of this solar spectrum to the International System of Units (SI) is assured by an unbroken chain of calibrations traceable to the primary spectral irradiance standard of PTB.
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Lorena Moreira, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 10259–10268, https://doi.org/10.5194/acp-17-10259-2017, https://doi.org/10.5194/acp-17-10259-2017, 2017
Short summary
Short summary
GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) has provided ozone profiles for the Network for the Detection of Atmospheric Composition Change since 1994. A new retrieval version for ozone profiles aims to improve the altitude range of profiles. We performed a comparison between coincident profiles of GROMOS and Aura MLS, resulting in agreement within 2% in
the mid- and upper stratosphere from 2009 to 2016. We also observed extensions of the tertiary ozone maximum at midlatitudes.
Stephan Nyeki, Stefan Wacker, Julian Gröbner, Wolfgang Finsterle, and Martin Wild
Atmos. Meas. Tech., 10, 3057–3071, https://doi.org/10.5194/amt-10-3057-2017, https://doi.org/10.5194/amt-10-3057-2017, 2017
Short summary
Short summary
A large number of radiometers used to measure solar and terrestrial broadband radiation are traceable to World Standard Groups at PMOD/WRC in Davos, Switzerland. A small correction of each group may be required in the future, and this study examines the methods and implications of this on data sets collected at four remote baseline stations since the 1990s. The goal is to develop a better estimate of the solar and terrestrial radiation budget at the Earth's surface.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Eleni Athanasopoulou, Orestis Speyer, Panagiotis I. Raptis, Eleni Marinou, Emmanouil Proestakis, Stavros Solomos, Evangelos Gerasopoulos, Vassilis Amiridis, Alkiviadis Bais, and Charalabos Kontoes
Atmos. Meas. Tech., 10, 2435–2453, https://doi.org/10.5194/amt-10-2435-2017, https://doi.org/10.5194/amt-10-2435-2017, 2017
Short summary
Short summary
We study the impact of dust on solar energy using remote sensing data in conjunction with synergistic modelling and forecasting techniques. Under high aerosol loads, we found great solar energy losses of the order of 80 and 50% for concentrated solar power and photovoltaic installations, respectively. The 1-day forecast presented an overall accuracy within 10% in direct comparison to the real conditions under high energy potential, optimising the efficient energy planning and policies.
Klemens Hocke, Franziska Schranz, Eliane Maillard Barras, Lorena Moreira, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 3445–3452, https://doi.org/10.5194/acp-17-3445-2017, https://doi.org/10.5194/acp-17-3445-2017, 2017
Short summary
Short summary
Observation and simulation show an Atlantic ozone streamer along the edge region of the polar vortex in the northern middle stratosphere during winter. The Atlantic streamer has wind speeds of about 100 m/s and turns equatorward at a vortex erosion region. We compare the fields of stratospheric ozone and water vapour from ground- and space-based microwave radiometry and SD-WACCM simulations for a better understanding of non-linear transport processes in the middle atmosphere.
Thomas Carlund, Natalia Kouremeti, Stelios Kazadzis, and Julian Gröbner
Atmos. Meas. Tech., 10, 905–923, https://doi.org/10.5194/amt-10-905-2017, https://doi.org/10.5194/amt-10-905-2017, 2017
Short summary
Short summary
Aerosols play an important role in atmospheric processes. Aerosol optical depth is the most common measure of columnar aerosol load. We present a sunphotometer called UVPFR that is able to measure aerosol optical depth in the ultraviolet range, including the calibration, characterization and validation of the instrument/measurements. The instrument will serve as a reference on the intercalibration of Brewer spectrophotometers that are also able to measure aerosol optical depth in the UV region.
Christos S. Zerefos, Kostas Eleftheratos, John Kapsomenakis, Stavros Solomos, Antje Inness, Dimitris Balis, Alberto Redondas, Henk Eskes, Marc Allaart, Vassilis Amiridis, Arne Dahlback, Veerle De Bock, Henri Diémoz, Ronny Engelmann, Paul Eriksen, Vitali Fioletov, Julian Gröbner, Anu Heikkilä, Irina Petropavlovskikh, Janusz Jarosławski, Weine Josefsson, Tomi Karppinen, Ulf Köhler, Charoula Meleti, Christos Repapis, John Rimmer, Vladimir Savinykh, Vadim Shirotov, Anna Maria Siani, Andrew R. D. Smedley, Martin Stanek, and René Stübi
Atmos. Chem. Phys., 17, 551–574, https://doi.org/10.5194/acp-17-551-2017, https://doi.org/10.5194/acp-17-551-2017, 2017
Short summary
Short summary
The paper makes a convincing case that the Brewer network is capable of detecting enhanced SO2 columns, as observed, e.g., after volcanic eruptions. For this reason, large volcanic eruptions of the past decade have been used to detect and forecast SO2 plumes of volcanic origin using the Brewer and other ground-based networks, aided by satellite, trajectory analysis calculations and modelling.
Stelios Kazadzis, Panagiotis Raptis, Natalia Kouremeti, Vassilis Amiridis, Antti Arola, Evangelos Gerasopoulos, and Gregory L. Schuster
Atmos. Meas. Tech., 9, 5997–6011, https://doi.org/10.5194/amt-9-5997-2016, https://doi.org/10.5194/amt-9-5997-2016, 2016
Short summary
Short summary
Aerosols play an important role in the Earth's climate. One of the main aerosol properties is the single scattering albedo which is a measure of the aerosol absorption. In this work we have presented a method to retrieve this aerosol property in the ultraviolet and we presented the results for measurements at the urban environment of Athens, Greece. We show that the spectral dependence of the aerosol absorption in the VIS–IR and the UV range depends on the aerosol composition and type.
Francisco Navas-Guzmán, Niklaus Kämpfer, and Alexander Haefele
Atmos. Meas. Tech., 9, 4587–4600, https://doi.org/10.5194/amt-9-4587-2016, https://doi.org/10.5194/amt-9-4587-2016, 2016
Short summary
Short summary
The paper presents the assessment of the tropospheric measurements of a new temperature radiometer (TEMPERA) at 60 GHz. The temperature profiles from TEMPERA are compared with independent in situ radiosonde measurements. The TEMPERA performance is also compared with that of a commercial microwave radiometer (HATPRO). In addition, the brightness temperatures from both microwave radiometers are compared with the ones simulated using a radiative transfer model, ARTS.
Dimitra Founda, Stelios Kazadzis, Nikolaos Mihalopoulos, Evangelos Gerasopoulos, Maria Lianou, and Panagiotis I. Raptis
Atmos. Chem. Phys., 16, 11219–11236, https://doi.org/10.5194/acp-16-11219-2016, https://doi.org/10.5194/acp-16-11219-2016, 2016
Short summary
Short summary
Historical time series are unique sources of information for past climate and atmospheric composition change. The 82-year time series of visibility data collected at the National Observatory of Athens (NOA) was an excellent proxy for the long-term evolution of particulate pollution in the eastern Mediterranean, at times when direct aerosol measurements were missing. Evolution of particulate pollution of both local and regional origin is nicely reflected on visibility records of NOA.
Lorena Moreira, Klemens Hocke, Francisco Navas-Guzmán, Ellen Eckert, Thomas von Clarmann, and Niklaus Kämpfer
Atmos. Chem. Phys., 16, 10455–10467, https://doi.org/10.5194/acp-16-10455-2016, https://doi.org/10.5194/acp-16-10455-2016, 2016
Short summary
Short summary
The GROMOS radiometer in Bern has been part of the NDACC since 1994. Our time series of stratospheric ozone profiles allow the assessment of natural oscillations, which are essential for the evaluation of detected stratospheric ozone trends. Among our new findings are the link between the upper stratospheric O3-SAO and the polar stratopause warmings in winter. We have also detected a strong peak amplitude of 5 % related to the solar activity cycle and the ENSO effect in ozone at midlatitudes.
Antonis Gkikas, Sara Basart, Nikos Hatzianastassiou, Eleni Marinou, Vassilis Amiridis, Stelios Kazadzis, Jorge Pey, Xavier Querol, Oriol Jorba, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 16, 8609–8642, https://doi.org/10.5194/acp-16-8609-2016, https://doi.org/10.5194/acp-16-8609-2016, 2016
Short summary
Short summary
This study presents the 3-D structures of intense Mediterranean desert dust outbreaks, over the period Mar 2000–Feb 2013. The desert dust (DD) episodes are identified through an objective and dynamic algorithm, which utilizes satellite retrievals (MODIS, TOMS and OMI) as inputs. The performance of the satellite algorithm is evaluated vs. AERONET and PM10 data. The geometrical characteristics of the identified DD episodes are analyzed using the collocated CALIOP profiles as a complementary tool.
Susana Fernandez, Rolf Rüfenacht, Niklaus Kämpfer, Thierry Portafaix, Françoise Posny, and Guillaume Payen
Atmos. Chem. Phys., 16, 7531–7543, https://doi.org/10.5194/acp-16-7531-2016, https://doi.org/10.5194/acp-16-7531-2016, 2016
Short summary
Short summary
We present a new ground based microwave radiometer for campaigns, GROMOS-C. It measures the vertical distribution of ozone in the middle atmosphere by observing spectra at 110.836 GHz. The paper presents a validation campaign that took place on La Réunion Island. The ozone retrieved profiles are validated against ozone profiles from the Microwave Limb Sounder, the ozone lidar located in the observatory, ozone profiles from weekly radiosondes and with ECMWF model data.
Henri Diémoz, Kostas Eleftheratos, Stelios Kazadzis, Vassilis Amiridis, and Christos S. Zerefos
Atmos. Meas. Tech., 9, 1871–1888, https://doi.org/10.5194/amt-9-1871-2016, https://doi.org/10.5194/amt-9-1871-2016, 2016
Short summary
Short summary
A new algorithm allowed to retrieve aerosol optical depths from a Brewer spectrophotometer in Athens with excellent agreement with AERONET. The instrument radiometric stability and the performances of in situ Langley extrapolations as a way to track it are investigated. Potential sources of error and recommendations to operators are reported. MkIV Brewers represent a great source of information about aerosols in the past decades and a promising worldwide network for coordinated AOD measurements.
Rolf Rüfenacht, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 16, 4915–4925, https://doi.org/10.5194/acp-16-4915-2016, https://doi.org/10.5194/acp-16-4915-2016, 2016
Short summary
Short summary
We quantitatively analyze oscillations with periods from 5 to 50 days in horizontal wind profiles between mid-stratosphere and mesopause based on more than 44 months of data from high, mid- and low latitudes measured by a novel instrument. For the first time, long time series of continuous wind measurements allow direct observations of dynamics throughout this altitude range. The observations agree remarkably well with the ECMWF model in the stratosphere but discrepancies exist in the mesosphere.
Luca Egli, Julian Gröbner, Gregor Hülsen, Luciano Bachmann, Mario Blumthaler, Jimmy Dubard, Marina Khazova, Richard Kift, Kees Hoogendijk, Antonio Serrano, Andrew Smedley, and José-Manuel Vilaplana
Atmos. Meas. Tech., 9, 1553–1567, https://doi.org/10.5194/amt-9-1553-2016, https://doi.org/10.5194/amt-9-1553-2016, 2016
Short summary
Short summary
Array spectroradiometers are small, light, robust and cost-effective instruments, and are increasingly used for atmospheric measurements. The quality of array spectroradiometers is assessed for the reliable quantification of ultraviolet radiation (UV) in order to monitor the exposure of UV radiation to human health. The study shows that reliable UV measurements with these instruments are limited for observations around noon and show large biases in the morning and evening.
África Barreto, Emilio Cuevas, María-José Granados-Muñoz, Lucas Alados-Arboledas, Pedro M. Romero, Julian Gröbner, Natalia Kouremeti, Antonio F. Almansa, Tom Stone, Carlos Toledano, Roberto Román, Mikhail Sorokin, Brent Holben, Marius Canini, and Margarita Yela
Atmos. Meas. Tech., 9, 631–654, https://doi.org/10.5194/amt-9-631-2016, https://doi.org/10.5194/amt-9-631-2016, 2016
Short summary
Short summary
This paper presents the new photometer CE318-T, able to perform daytime and
night-time photometric measurements using the sun and the moon as light
sources. This new device permits a complete cycle of diurnal aerosol and water vapour measurements to be extracted, valuable to enhance atmospheric monitoring. We have also highlighted the ability of this new device to capture short-term atmospheric variations, critical for climate studies.
M. B. Korras-Carraca, N. Hatzianastassiou, C. Matsoukas, A. Gkikas, and C. D. Papadimas
Atmos. Chem. Phys., 15, 13113–13132, https://doi.org/10.5194/acp-15-13113-2015, https://doi.org/10.5194/acp-15-13113-2015, 2015
L. Moreira, K. Hocke, E. Eckert, T. von Clarmann, and N. Kämpfer
Atmos. Chem. Phys., 15, 10999–11009, https://doi.org/10.5194/acp-15-10999-2015, https://doi.org/10.5194/acp-15-10999-2015, 2015
Short summary
Short summary
GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) has provided ozone profiles for the NDACC (Network for the Detection of Atmospheric Composition Change) at Bern since 1994. We performed a trend analysis of our 20-year time series of stratospheric ozone profiles with a multilinear parametric trend estimation method. With our estimated ozone trends we are able to support the stratospheric ozone turnaround, besides a statistically significant negative trend in the lower mesosphere.
M. Lainer, N. Kämpfer, B. Tschanz, G. E. Nedoluha, S. Ka, and J. J. Oh
Atmos. Chem. Phys., 15, 9711–9730, https://doi.org/10.5194/acp-15-9711-2015, https://doi.org/10.5194/acp-15-9711-2015, 2015
Short summary
Short summary
We use water vapor profiles from ground-based microwave radiometers at five locations distributed over the Northern Hemisphere and operated in the frame of NDACC (Network for the Detection of Atmospheric Composition Change) to generate hemispheric water vapor maps based on the so-called trajectory mapping technique. The novelty is to show that a mini network of instruments is capable of providing information about the hemispheric distribution of water vapor under most conditions.
S. Fernandez, A. Murk, and N. Kämpfer
Atmos. Meas. Tech., 8, 2649–2662, https://doi.org/10.5194/amt-8-2649-2015, https://doi.org/10.5194/amt-8-2649-2015, 2015
B. Tschanz and N. Kämpfer
Atmos. Chem. Phys., 15, 5099–5108, https://doi.org/10.5194/acp-15-5099-2015, https://doi.org/10.5194/acp-15-5099-2015, 2015
F. Navas-Guzmán, N. Kämpfer, A. Murk, R. Larsson, S. A. Buehler, and P. Eriksson
Atmos. Meas. Tech., 8, 1863–1874, https://doi.org/10.5194/amt-8-1863-2015, https://doi.org/10.5194/amt-8-1863-2015, 2015
Short summary
Short summary
In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O2 energy states which polarizes the emission spectra. A special campaign was carried out in order to measure for the first time the polarization state of the radiation due to the Zeeman effect in the main isotopologue of oxygen from ground-based microwave measurements.
A. Schanz, K. Hocke, N. Kämpfer, S. Chabrillat, A. Inness, M. Palm, J. Notholt, I. Boyd, A. Parrish, and Y. Kasai
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-32667-2014, https://doi.org/10.5194/acpd-14-32667-2014, 2014
Revised manuscript not accepted
Short summary
Short summary
The manuscript describes novel findings in the diurnal variation of stratospheric ozone by means of the MACC reanalysis, the ERA-Interim reanalysis and the WACCM model. The diurnal variation in ozone has dynamical and photochemical origins which lead to substantial amplitudes especially in the polar, stratospheric regions. The unprecedented, global view on diurnal ozone variation strengthens the implication to correct diurnally sampled satellite observations used for ozone trend estimates.
R. Rüfenacht, A. Murk, N. Kämpfer, P. Eriksson, and S. A. Buehler
Atmos. Meas. Tech., 7, 4491–4505, https://doi.org/10.5194/amt-7-4491-2014, https://doi.org/10.5194/amt-7-4491-2014, 2014
Short summary
Short summary
Only very few techniques for wind measurements in the upper stratosphere and lower mesosphere exist. Moreover, none of these instruments is running on a continuous basis. This paper describes the development of ground-based microwave Doppler radiometry. Time series of daily wind profile measurements from four different locations at polar, mid- and tropical latitudes are presented. The agreement with ECMWF model data is good in the stratosphere, but discrepancies were found in the mesosphere.
J. Badosa, J. Wood, P. Blanc, C. N. Long, L. Vuilleumier, D. Demengel, and M. Haeffelin
Atmos. Meas. Tech., 7, 4267–4283, https://doi.org/10.5194/amt-7-4267-2014, https://doi.org/10.5194/amt-7-4267-2014, 2014
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
M. Taylor, S. Kazadzis, A. Tsekeri, A. Gkikas, and V. Amiridis
Atmos. Meas. Tech., 7, 3151–3175, https://doi.org/10.5194/amt-7-3151-2014, https://doi.org/10.5194/amt-7-3151-2014, 2014
A. Schanz, K. Hocke, and N. Kämpfer
Atmos. Chem. Phys., 14, 7645–7663, https://doi.org/10.5194/acp-14-7645-2014, https://doi.org/10.5194/acp-14-7645-2014, 2014
S. Kazadzis, I. Veselovskii, V. Amiridis, J. Gröbner, A. Suvorina, S. Nyeki, E. Gerasopoulos, N. Kouremeti, M. Taylor, A. Tsekeri, and C. Wehrli
Atmos. Meas. Tech., 7, 2013–2025, https://doi.org/10.5194/amt-7-2013-2014, https://doi.org/10.5194/amt-7-2013-2014, 2014
D. Scheiben, B. Tschanz, K. Hocke, N. Kämpfer, S. Ka, and J. J. Oh
Atmos. Chem. Phys., 14, 6511–6522, https://doi.org/10.5194/acp-14-6511-2014, https://doi.org/10.5194/acp-14-6511-2014, 2014
S. Studer, K. Hocke, A. Schanz, H. Schmidt, and N. Kämpfer
Atmos. Chem. Phys., 14, 5905–5919, https://doi.org/10.5194/acp-14-5905-2014, https://doi.org/10.5194/acp-14-5905-2014, 2014
F. Navas-Guzmán, O. Stähli, and N. Kämpfer
Atmos. Meas. Tech., 7, 1619–1628, https://doi.org/10.5194/amt-7-1619-2014, https://doi.org/10.5194/amt-7-1619-2014, 2014
M. Taylor, S. Kazadzis, and E. Gerasopoulos
Atmos. Meas. Tech., 7, 839–858, https://doi.org/10.5194/amt-7-839-2014, https://doi.org/10.5194/amt-7-839-2014, 2014
C. S. Zerefos, P. Tetsis, A. Kazantzidis, V. Amiridis, S. C. Zerefos, J. Luterbacher, K. Eleftheratos, E. Gerasopoulos, S. Kazadzis, and A. Papayannis
Atmos. Chem. Phys., 14, 2987–3015, https://doi.org/10.5194/acp-14-2987-2014, https://doi.org/10.5194/acp-14-2987-2014, 2014
A. Gkikas, N. Hatzianastassiou, N. Mihalopoulos, V. Katsoulis, S. Kazadzis, J. Pey, X. Querol, and O. Torres
Atmos. Chem. Phys., 13, 12135–12154, https://doi.org/10.5194/acp-13-12135-2013, https://doi.org/10.5194/acp-13-12135-2013, 2013
V. Amiridis, U. Wandinger, E. Marinou, E. Giannakaki, A. Tsekeri, S. Basart, S. Kazadzis, A. Gkikas, M. Taylor, J. Baldasano, and A. Ansmann
Atmos. Chem. Phys., 13, 12089–12106, https://doi.org/10.5194/acp-13-12089-2013, https://doi.org/10.5194/acp-13-12089-2013, 2013
A. Stenke, C. R. Hoyle, B. Luo, E. Rozanov, J. Gröbner, L. Maag, S. Brönnimann, and T. Peter
Atmos. Chem. Phys., 13, 9713–9729, https://doi.org/10.5194/acp-13-9713-2013, https://doi.org/10.5194/acp-13-9713-2013, 2013
O. Stähli, A. Murk, N. Kämpfer, C. Mätzler, and P. Eriksson
Atmos. Meas. Tech., 6, 2477–2494, https://doi.org/10.5194/amt-6-2477-2013, https://doi.org/10.5194/amt-6-2477-2013, 2013
D. Scheiben, A. Schanz, B. Tschanz, and N. Kämpfer
Atmos. Chem. Phys., 13, 6877–6886, https://doi.org/10.5194/acp-13-6877-2013, https://doi.org/10.5194/acp-13-6877-2013, 2013
B. Tschanz, C. Straub, D. Scheiben, K. A. Walker, G. P. Stiller, and N. Kämpfer
Atmos. Meas. Tech., 6, 1725–1745, https://doi.org/10.5194/amt-6-1725-2013, https://doi.org/10.5194/amt-6-1725-2013, 2013
S. Studer, K. Hocke, M. Pastel, S. Godin-Beekmann, and N. Kämpfer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-6097-2013, https://doi.org/10.5194/amtd-6-6097-2013, 2013
Revised manuscript has not been submitted
K. Hocke, S. Studer, O. Martius, D. Scheiben, and N. Kämpfer
Ann. Geophys., 31, 755–764, https://doi.org/10.5194/angeo-31-755-2013, https://doi.org/10.5194/angeo-31-755-2013, 2013
T. Egorova, E. Rozanov, J. Gröbner, M. Hauser, and W. Schmutz
Atmos. Chem. Phys., 13, 3811–3823, https://doi.org/10.5194/acp-13-3811-2013, https://doi.org/10.5194/acp-13-3811-2013, 2013
A. V. Lindfors, N. Kouremeti, A. Arola, S. Kazadzis, A. F. Bais, and A. Laaksonen
Atmos. Chem. Phys., 13, 3733–3741, https://doi.org/10.5194/acp-13-3733-2013, https://doi.org/10.5194/acp-13-3733-2013, 2013
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Contrail altitude estimation using GOES-16 ABI data and deep learning
The Ice Cloud Imager: retrieval of frozen water column properties
Supercooled liquid water cloud classification using lidar backscatter peak properties
Marine cloud base height retrieval from MODIS cloud properties using machine learning
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Retrieving cloud base height and geometric thickness using the oxygen A-band channel of GCOM-C/SGLI
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Bayesian cloud-top phase determination for Meteosat Second Generation
Lidar–radar synergistic method to retrieve ice, supercooled water and mixed-phase cloud properties
Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Discriminating between "Drizzle or rain" and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE CPR, ATLID and MSI
Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network
A new approach to crystal habit retrieval from far-infrared spectral radiance measurements
Multiple-scattering effects on single-wavelength lidar sounding of multi-layered clouds
Peering into the heart of thunderstorm clouds: Insights from cloud radar and spectral polarimetry
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Infrared Radiometric Image Classification and Segmentation of Cloud Structure Using Deep-learning Framework for Ground-based Infrared Thermal Camera Observations
Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar
Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
The EarthCARE mission: science data processing chain overview
Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products
Cloud top heights and aerosol columnar properties from combined EarthCARE lidar and imager observations: the AM-CTH and AM-ACD products
Raman lidar-derived optical and microphysical properties of ice crystals within thin Arctic clouds during PARCS campaign
Evaluation of four ground-based retrievals of cloud droplet number concentration in marine stratocumulus with aircraft in situ measurements
Deep convective cloud system size and structure across the global tropics and subtropics
A neural-network-based method for generating synthetic 1.6 µm near-infrared satellite images
Numerical model generation of test frames for pre-launch studies of EarthCARE's retrieval algorithms and data management system
Segmentation of polarimetric radar imagery using statistical texture
Retrieval of surface solar irradiance from satellite imagery using machine learning: pitfalls and perspectives
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 2: Local optimization
Particle inertial effects on radar Doppler spectra simulation
Detection of aerosol and cloud features for the EarthCARE atmospheric lidar (ATLID): the ATLID FeatureMask (A-FM) product
A unified synergistic retrieval of clouds, aerosols, and precipitation from EarthCARE: the ACM-CAP product
Incorporating EarthCARE observations into a multi-lidar cloud climate record: the ATLID (Atmospheric Lidar) cloud climate product
Introduction to EarthCARE synthetic data using a global storm-resolving simulation
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025, https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Short summary
Our study investigates the impact of cloud shadows on satellite-based aerosol index measurements over Europe by TROPOMI. Using a cloud shadow detection algorithm and simulations, we found that the overall effect on the aerosol index is minimal. Interestingly, we found that cloud shadows are significantly bluer than their shadow-free surroundings, but the traditional algorithm already (partly) automatically corrects for this increased blueness.
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024, https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
Short summary
This study introduces a cloud property retrieval method which integrates traditional radiative transfer simulations with a machine learning method. Retrievals from a machine learning algorithm are used to provide a priori states, and a radiative transfer model is used to create lookup tables for later iteration processes. The new method combines the advantages of traditional and machine learning algorithms, and it is applicable to both daytime and nighttime conditions.
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024, https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Short summary
Measuring the shape of clouds helps scientists understand how the Earth will continue to respond to climate change. Satellites measure clouds in different ways. One way is to take pictures of clouds from multiple angles and to use the differences between the pictures to measure cloud structure. However, doing this accurately can be challenging. We propose a way to use machine learning to recover the shape of clouds from multi-angle satellite data.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024, https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Short summary
This article presents a novel technique to estimate liquid water content (LWC) profiles in shallow warm clouds using a pair of collocated Ka-band (35 GHz) and G-band (239 GHz) radars. We demonstrate that the use of a G-band radar allows retrieving the LWC with 3 times better accuracy than previous works reported in the literature, providing improved ability to understand the vertical profile of LWC and characterize microphysical and dynamical processes more precisely in shallow clouds.
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024, https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Short summary
We introduce an innovative method to retrieve the cloud fraction and optical thickness of liquid water clouds over the ocean based on polarimetry. This is well suited for satellite observations providing multi-angle polarization measurements. Cloud fraction and cloud optical thickness can be derived from measurements at two viewing angles: one within the cloudbow and one in the sun glint region.
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024, https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Short summary
This study demonstrates the potential of enhancing severe-hail detection through the application of convolutional neural networks (CNNs) to dual-polarization radar data. It is shown that current methods can be calibrated to significantly enhance their performance for severe-hail detection. This study establishes the foundation for the solution of a more complex problem: the estimation of the maximum size of hailstones on the ground using deep learning applied to radar data.
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024, https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary
Short summary
This study presents a method for estimating cloud cover from FY-4A AGRI observations using random forest (RF) and multilayer perceptron (MLP) algorithms. The results demonstrate excellent performance in distinguishing clear-sky scenes and reducing errors in cloud cover estimation. It shows significant improvements compared to existing methods.
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024, https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
Short summary
In this study, we present a toolkit of two Python algorithms to extract information from Doppler spectra measured by ground-based cloud radars. In these Doppler spectra, several peaks can be formed due to populations of droplets/ice particles with different fall velocities coexisting in the same measurement time and height. The two algorithms can detect peaks and assign them to certain particle types, such as small cloud droplets or fast-falling ice particles like graupel.
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024, https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Short summary
This paper describes a new treatment of the spatial misregistration of cloud properties for Sentinel-5 Precursor, when the footprints of different spectral bands are not perfectly aligned. The methodology exploits synergies between spectrometers and imagers, like TROPOMI and VIIRS. The largest improvements have been identified for heterogeneous scenes at cloud edges. This approach is generic and can also be applied to future Sentinel-4 and Sentinel-5 instruments.
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024, https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
Short summary
Aviation's climate impact is partly due to contrails: the clouds that form behind aircraft and which can linger for hours under certain atmospheric conditions. Accurately forecasting these conditions could allow aircraft to avoid forming these contrails and thus reduce their environmental footprint. Our research uses deep learning to identify three-dimensional contrail locations in two-dimensional satellite imagery, which can be used to assess and improve these forecasts.
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024, https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Short summary
The upcoming Ice Cloud Imager (ICI) mission is set to improve measurements of atmospheric ice through passive microwave and sub-millimetre wave observations. In this study, we perform detailed simulations of ICI observations. Machine learning is used to characterise the atmospheric ice present for a given simulated observation. This study acts as a final pre-launch assessment of ICI's capability to measure atmospheric ice, providing valuable information to climate and weather applications.
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024, https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Short summary
Supercooled liquid water cloud is important to represent in weather and climate models, particularly in the Southern Hemisphere. Previous work has developed a new machine learning method for measuring supercooled liquid water in Antarctic clouds using simple lidar observations. We evaluate this technique using a lidar dataset from Christchurch, New Zealand, and develop an updated algorithm for accurate supercooled liquid water detection at mid-latitudes.
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024, https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
Short summary
Clouds play a key role in the regulation of the Earth's climate. Aspects like the height of their base are of essential interest to quantify their radiative effects but remain difficult to derive from satellite data. In this study, we combine observations from the surface and satellite retrievals of cloud properties to build a robust and accurate method to retrieve the cloud base height, based on a computer vision model and ordinal regression.
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024, https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
Short summary
This study uses radiative transfer calculations to characterize the relation of two satellite channel combinations (namely infrared window brightness temperature differences – BTDs – of SEVIRI) to the thermodynamic cloud phase. A sensitivity analysis reveals the complex interplay of cloud parameters and their contribution to the observed phase dependence of BTDs. This knowledge helps to design optimal cloud-phase retrievals and to understand their potential and limitations.
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024, https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Short summary
ampycloud is a new algorithm developed at MeteoSwiss to characterize the height and sky coverage fraction of cloud layers above aerodromes via ceilometer data. This algorithm was devised as part of a larger effort to fully automate the creation of meteorological aerodrome reports (METARs) at Swiss civil airports. The ampycloud algorithm is implemented as a Python package that is made publicly available to the community under the 3-Clause BSD license.
Takashi M. Nagao, Kentaroh Suzuki, and Makoto Kuji
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-141, https://doi.org/10.5194/amt-2024-141, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In satellite remote sensing, estimating cloud base height (CBH) is more challenging than estimating cloud top height because the cloud base is obscured by the cloud itself. We developed an algorithm using the specific channel (known as the oxygen A-band channel) of the SGLI instrument on JAXA’s GCOM-C satellite to estimate CBH together with other cloud properties. This algorithm can provide global distributions of CBH across various cloud types, including liquid, ice, and mixed-phase clouds.
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024, https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
Short summary
Ultraviolet imaging technology has significantly advanced the research and development of polar mesospheric clouds (PMCs). In this study, we proposed the wide-field-of-view ultraviolet imager (WFUI) and built a forward model to evaluate the detection capability and efficiency. The results demonstrate that the WFUI performs well in PMC detection and has high detection efficiency. The relationship between ice water content and detection efficiency follows an exponential function distribution.
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024, https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
Short summary
The representation of clouds in numerical weather and climate models remains a major challenge that is difficult to address because of the limitations of currently available data records of cloud properties. In this work, we address this issue by using machine learning to extract novel information on ice clouds from a long record of satellite observations. Through extensive validation, we show that this novel approach provides surprisingly accurate estimates of clouds and their properties.
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024, https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Short summary
This study proposes an inversion method for atmospheric-aerosol or cloud microphysical parameters based on dual-wavelength lidar data. It is suitable for the inversion of uniformly mixed and single-property aerosol layers or small cloud droplets. For aerosol particles, the inversion range that this algorithm can achieve is 0.3–1.7 μm. For cloud droplets, it is 1.0–10 μm. This algorithm can quickly obtain the microphysical parameters of atmospheric particles and has better robustness.
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024, https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Short summary
ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) is a method to detect clouds and their thermodynamic phase with a geostationary satellite, distinguishing between clear sky and ice, mixed-phase, supercooled and warm liquid clouds. It uses a Bayesian approach based on the lidar–radar product DARDAR. The method allows studying cloud phases, especially mixed-phase and supercooled clouds, rarely observed from geostationary satellites. This can be used for comparison with climate models.
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024, https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Short summary
Radar–lidar synergy is used to retrieve ice, supercooled water and mixed-phase cloud properties, making the most of the radar sensitivity to ice crystals and the lidar sensitivity to supercooled droplets. A first analysis of the output of the algorithm run on the satellite data is compared with in situ data during an airborne Arctic field campaign, giving a mean percent error of 49 % for liquid water content and 75 % for ice water content.
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024, https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
Short summary
The number of cloud droplets per unit volume, Nd, in a cloud is important for understanding aerosol–cloud interaction. In this study, we develop techniques to derive cloud droplet number concentration from lidar measurements combined with other remote sensing measurements such as cloud radar and microwave radiometers. We show that deriving Nd is very uncertain, although a synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024, https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Short summary
This paper describes a method to improve the detection of liquid clouds that are easily missed by the CloudSat satellite radar. To address this, we use machine learning techniques to estimate cloud properties (optical depth and droplet size) based on other satellite measurements. The results are compared with data from the MODIS instrument on the Aqua satellite, showing good correlations.
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2024-894, https://doi.org/10.5194/egusphere-2024-894, 2024
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "Drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for the measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over two years at the BCO is presented.
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-99, https://doi.org/10.5194/amt-2024-99, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study introduces the JAXA EarthCARE L2 cloud product using satellite observations and simulated EarthCARE data. The outputs from the product feature a 3D global view of the dominant ice habit categories and corresponding microphysics. Habit and size distribution transitions from cloud to precipitation will be quantified by the L2 cloud algorithms. With Doppler data, the products can be beneficial for further understanding of the coupling of cloud microphysics, radiation, and dynamics.
Sunny Sun-Mack, Patrick Minnis, Yan Chen, Gang Hong, and William L. Smith Jr.
Atmos. Meas. Tech., 17, 3323–3346, https://doi.org/10.5194/amt-17-3323-2024, https://doi.org/10.5194/amt-17-3323-2024, 2024
Short summary
Short summary
Multilayer clouds (MCs) affect the radiation budget differently than single-layer clouds (SCs) and need to be identified in satellite images. A neural network was trained to identify MCs by matching imagery with lidar/radar data. This method correctly identifies ~87 % SCs and MCs with a net accuracy gain of 7.5 % over snow-free surfaces. It is more accurate than most available methods and constitutes a first step in providing a reasonable 3-D characterization of the cloudy atmosphere.
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024, https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Short summary
This work aims to define a new approach to retrieve the distribution of the main ice crystal shapes occurring inside ice and cirrus clouds from infrared spectral measurements. The capability of retrieving these shapes of the ice crystals from satellites will allow us to extend the currently available climatologies to be used as physical constraints in general circulation models. This could could allow us to improve their accuracy and prediction performance.
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024, https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary
Short summary
We performed Monte Carlo simulations of single-wavelength lidar signals from multi-layered clouds with special attention focused on the multiple-scattering (MS) effect in regions of the cloud-free molecular atmosphere. The MS effect on lidar signals always decreases with the increasing distance from the cloud far edge. The decrease is the direct consequence of the fact that the forward peak of particle phase functions is much larger than the receiver field of view.
Ho Yi Lydia Mak and Christine Unal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1232, https://doi.org/10.5194/egusphere-2024-1232, 2024
Short summary
Short summary
The dynamics of thunderclouds is studied using cloud radar. Supercooled liquid water and conical graupel are likely present, while chain-like ice crystals may occur at cloud top. Ice crystals are vertically aligned seconds before lightning and resume their usual horizontal alignment afterwards in some cases. Updrafts and downdrafts are found near cloud core and edges respectively. Turbulence is strong. Radar measurement modes that are more suited for investigating thunderstorms are recommended.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Kélian Sommer, Wassim Kabalan, and Romain Brunet
EGUsphere, https://doi.org/10.5194/egusphere-2024-101, https://doi.org/10.5194/egusphere-2024-101, 2024
Short summary
Short summary
Our research introduces a novel deep-learning approach for classifying and segmenting ground-based infrared thermal images, a crucial step in cloud monitoring. Tests on self-captured data showcase its excellent accuracy in distinguishing image types and in structure segmentation. With potential applications in astronomical observations, our work pioneers a robust solution for ground-based sky quality assessment, promising advancements in the photometric observations experiments.
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024, https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Short summary
In this paper, a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. The cloud optical depth, effective column lidar ratio and linear cloud depolarisation ratio have been calculated by a new approach to the two-way transmittance method, which is valid for both ground-based and spaceborne lidar systems. Their associated errors are also provided.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024, https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
Short summary
We apply the Res-UNet to derive a comprehensive 3D cloud tomography from 2D satellite data over heterogeneous landscapes. We combine observational data from passive and active remote sensing sensors by an automated matching algorithm. These data are fed into a neural network to predict cloud reflectivities on the whole satellite domain between 2.4 and 24 km height. With an average RMSE of 2.99 dBZ, we contribute to closing data gaps in the representation of clouds in observational data.
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024, https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary
Short summary
The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) is an ESA–JAXA satellite mission to be launched in 2024. We presented an overview of the EarthCARE processors' development, with processors developed by teams in Europe, Japan, and Canada. EarthCARE will allow scientists to evaluate the representation of cloud, aerosol, precipitation, and radiative flux in weather forecast and climate models, with the objective to better understand cloud processes and improve weather and climate models.
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024, https://doi.org/10.5194/amt-17-261-2024, 2024
Short summary
Short summary
The ESA cloud, aerosol and radiation mission EarthCARE will provide active profiling and passive imaging measurements from a single satellite platform. The passive multi-spectral imager (MSI) will add information in the across-track direction. We present the cloud optical and physical properties algorithm, which combines the visible to infrared MSI channels to determine the cloud top pressure, optical thickness, particle size and water path.
Moritz Haarig, Anja Hünerbein, Ulla Wandinger, Nicole Docter, Sebastian Bley, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5953–5975, https://doi.org/10.5194/amt-16-5953-2023, https://doi.org/10.5194/amt-16-5953-2023, 2023
Short summary
Short summary
The atmospheric lidar (ATLID) and Multi-Spectral Imager (MSI) will be carried by the EarthCARE satellite. The synergistic ATLID–MSI Column Products (AM-COL) algorithm described in the paper combines the strengths of ATLID in vertically resolved profiles of aerosol and clouds (e.g., cloud top height) with the strengths of MSI in observing the complete scene beside the satellite track and in extending the lidar information to the swath. The algorithm is validated against simulated test scenes.
Patrick Chazette and Jean-Christophe Raut
Atmos. Meas. Tech., 16, 5847–5861, https://doi.org/10.5194/amt-16-5847-2023, https://doi.org/10.5194/amt-16-5847-2023, 2023
Short summary
Short summary
The vertical profiles of the effective radii of ice crystals and ice water content in Arctic semi-transparent stratiform clouds were assessed using quantitative ground-based lidar measurements. The field campaign was part of the Pollution in the ARCtic System (PARCS) project which took place from 13 to 26 May 2016 in Hammerfest (70° 39′ 48″ N, 23° 41′ 00″ E). We show that under certain cloud conditions, lidar measurement combined with a dedicated algorithmic approach is an efficient tool.
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023, https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Short summary
Cloud droplet number concentration can be retrieved from remote sensing measurements. Aircraft measurements are used to validate four ground-based retrievals of cloud droplet number concentration. We demonstrate that retrieved cloud droplet number concentrations align well with aircraft measurements for overcast clouds, but they may substantially differ for broken clouds. The ensemble of various retrievals can help quantify retrieval uncertainties and identify reliable retrieval scenarios.
Eric M. Wilcox, Tianle Yuan, and Hua Song
Atmos. Meas. Tech., 16, 5387–5401, https://doi.org/10.5194/amt-16-5387-2023, https://doi.org/10.5194/amt-16-5387-2023, 2023
Short summary
Short summary
A new database is constructed from over 20 years of satellite records that comprises millions of deep convective clouds and spans the global tropics and subtropics. The database is a collection of clouds ranging from isolated cells to giant cloud systems. The cloud database provides a means of empirically studying the factors that determine the spatial structure and coverage of convective cloud systems, which are strongly related to the overall radiative forcing by cloud systems.
Florian Baur, Leonhard Scheck, Christina Stumpf, Christina Köpken-Watts, and Roland Potthast
Atmos. Meas. Tech., 16, 5305–5326, https://doi.org/10.5194/amt-16-5305-2023, https://doi.org/10.5194/amt-16-5305-2023, 2023
Short summary
Short summary
Near-infrared satellite images have information on clouds that is complementary to what is available from the visible and infrared parts of the spectrum. Using this information for data assimilation and model evaluation requires a fast, accurate forward operator to compute synthetic images from numerical weather prediction model output. We discuss a novel, neural-network-based approach for the 1.6 µm near-infrared channel that is suitable for this purpose and also works for other solar channels.
Zhipeng Qu, David P. Donovan, Howard W. Barker, Jason N. S. Cole, Mark W. Shephard, and Vincent Huijnen
Atmos. Meas. Tech., 16, 4927–4946, https://doi.org/10.5194/amt-16-4927-2023, https://doi.org/10.5194/amt-16-4927-2023, 2023
Short summary
Short summary
The EarthCARE satellite mission Level 2 algorithm development requires realistic 3D cloud and aerosol scenes along the satellite orbits. One of the best ways to produce these scenes is to use a high-resolution numerical weather prediction model to simulate atmospheric conditions at 250 m horizontal resolution. This paper describes the production and validation of three EarthCARE test scenes.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
Atmos. Meas. Tech., 16, 4571–4588, https://doi.org/10.5194/amt-16-4571-2023, https://doi.org/10.5194/amt-16-4571-2023, 2023
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Hadrien Verbois, Yves-Marie Saint-Drenan, Vadim Becquet, Benoit Gschwind, and Philippe Blanc
Atmos. Meas. Tech., 16, 4165–4181, https://doi.org/10.5194/amt-16-4165-2023, https://doi.org/10.5194/amt-16-4165-2023, 2023
Short summary
Short summary
Solar surface irradiance (SSI) estimations inferred from satellite images are essential to gain a comprehensive understanding of the solar resource, which is crucial in many fields. This study examines the recent data-driven methods for inferring SSI from satellite images and explores their strengths and weaknesses. The results suggest that while these methods show great promise, they sometimes dramatically underperform and should probably be used in conjunction with physical approaches.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 3931–3957, https://doi.org/10.5194/amt-16-3931-2023, https://doi.org/10.5194/amt-16-3931-2023, 2023
Short summary
Short summary
We test a new method for measuring the 3D spatial variations of water within clouds, using measurements of reflections of the Sun's light observed at multiple angles by satellites. This is a great improvement on older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Zeen Zhu, Pavlos Kollias, and Fan Yang
Atmos. Meas. Tech., 16, 3727–3737, https://doi.org/10.5194/amt-16-3727-2023, https://doi.org/10.5194/amt-16-3727-2023, 2023
Short summary
Short summary
We show that large rain droplets, with large inertia, are unable to follow the rapid change of velocity field in a turbulent environment. A lack of consideration for this inertial effect leads to an artificial broadening of the Doppler spectrum from the conventional simulator. Based on the physics-based simulation, we propose a new approach to generate the radar Doppler spectra. This simulator provides a valuable tool to decode cloud microphysical and dynamical properties from radar observation.
Gerd-Jan van Zadelhoff, David P. Donovan, and Ping Wang
Atmos. Meas. Tech., 16, 3631–3651, https://doi.org/10.5194/amt-16-3631-2023, https://doi.org/10.5194/amt-16-3631-2023, 2023
Short summary
Short summary
The Earth Clouds, Aerosols and Radiation (EarthCARE) satellite mission features the UV lidar ATLID. The ATLID FeatureMask algorithm provides a high-resolution detection probability mask which is used to guide smoothing strategies within the ATLID profile retrieval algorithm, one step further in the EarthCARE level-2 processing chain, in which the microphysical retrievals and target classification are performed.
Shannon L. Mason, Robin J. Hogan, Alessio Bozzo, and Nicola L. Pounder
Atmos. Meas. Tech., 16, 3459–3486, https://doi.org/10.5194/amt-16-3459-2023, https://doi.org/10.5194/amt-16-3459-2023, 2023
Short summary
Short summary
We present a method for accurately estimating the contents and properties of clouds, snow, rain, and aerosols through the atmosphere, using the combined measurements of the radar, lidar, and radiometer instruments aboard the upcoming EarthCARE satellite, and evaluate the performance of the retrieval, using test scenes simulated from a numerical forecast model. When EarthCARE is in operation, these quantities and their estimated uncertainties will be distributed in a data product called ACM-CAP.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, and Frederic Szczap
Atmos. Meas. Tech., 16, 3363–3390, https://doi.org/10.5194/amt-16-3363-2023, https://doi.org/10.5194/amt-16-3363-2023, 2023
Short summary
Short summary
The response of clouds to human-induced climate warming remains the largest source of uncertainty in model predictions of climate. We consider cloud retrievals from spaceborne observations, the existing CALIOP lidar and future ATLID lidar; show how they compare for the same scenes; and discuss the advantage of adding a new lidar for detecting cloud changes in the long run. We show that ATLID's advanced technology should allow for better detecting thinner clouds during daytime than before.
Woosub Roh, Masaki Satoh, Tempei Hashino, Shuhei Matsugishi, Tomoe Nasuno, and Takuji Kubota
Atmos. Meas. Tech., 16, 3331–3344, https://doi.org/10.5194/amt-16-3331-2023, https://doi.org/10.5194/amt-16-3331-2023, 2023
Short summary
Short summary
JAXA EarthCARE synthetic data (JAXA L1 data) were compiled using the global storm-resolving model (GSRM) NICAM (Nonhydrostatic ICosahedral
Atmospheric Model) simulation with 3.5 km horizontal resolution and the Joint-Simulator. JAXA L1 data are intended to support the development of JAXA retrieval algorithms for the EarthCARE sensor before launch of the satellite. The expected orbit of EarthCARE and horizontal sampling of each sensor were used to simulate the signals.
Cited articles
Ackerman, T. P., Flynn, D. M., and Marchand, R. T.: Quantifying the magnitude
of anomalous solar absorption, J. Geophys. Res.-Atmos., 108,
4273, https://doi.org/10.1029/2002JD002674, 2003. a
Aebi, C., Gröbner, J., Kämpfer, N., and Vuilleumier, L.: Cloud radiative effect, cloud fraction and cloud type at two stations in Switzerland using hemispherical sky cameras, Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017, 2017. a, b, c, d
Aebi, C., Gröbner, J., and Kämpfer, N.: Cloud fraction determined by thermal infrared and visible all-sky cameras, Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018, 2018. a
Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, 2015. a
Anderson, G. P.: AFGL atmospheric constituent profiles (0–120km), Hanscom
AFB, MA: Optical Physics Division, Air Force Geophysics Laboratory,
AFGL-TR; 86-0110, U.S. Air Force Geophysics Laboratory, Optical
Physics Division, 1986. a
Antón, M., López, M., Vilaplana, J. M., Kroon, M., McPeters, R., Bañón,
M., and Serrano, A.: Validation of OMI-TOMS and OMI-DOAS total ozone column
using five Brewer spectroradiometers at the Iberian peninsula, J. Geophys.
Res.-Atmos., 114, D14307, https://doi.org/10.1029/2009JD012003, 2009. a
Baran, A. J.: A review of the light scattering properties of cirrus, J. Quant. Spectrosc. Ra., 110, 1239–1260,
https://doi.org/10.1016/j.jqsrt.2009.02.026, 2009. a
Baran, A. J.: From the single-scattering properties of ice crystals to climate
prediction: A way forward, Atmos. Res., 112, 45–69,
https://doi.org/10.1016/j.atmosres.2012.04.010, 2012. a
Barker, H. W., Curtis, T. J., Leontieva, E., and Stamnes, K.: Optical Depth of
Overcast Cloud across Canada: Estimates Based on Surface Pyranometer and
Satellite Measurements, J. Climate, 11, 2980–2994,
https://doi.org/10.1175/1520-0442(1998)011<2980:ODOOCA>2.0.CO;2,
1998. a, b, c
Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Cole, B. H., Merrelli,
A., Schmitt, C., and Wang, C.: Ice cloud single-scattering property models
with the full phase matrix at wavelengths from 0.2 to 100 µm, J.
Quant. Spectrosc. Ra., 146, 123–139,
https://doi.org/10.1016/j.jqsrt.2014.02.029, 2014. a
BIPM: Guide to the Expression of Uncertainty in Measurement, available at: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (last access: 18 February 2020), 2008. a
Blanc, P., Espinar, B., Geuder, N., Gueymard, C., Meyer, R., Pitz-Paal, R.,
Reinhardt, B., Rennè, D., Sengupta, M., Wald, L., and Wilbert, S.: Direct
normal irradiance related definitions and applications: The circumsolar
issue, Sol. Energy, 110, 561–577,
https://doi.org/10.1016/j.solener.2014.10.001,
2014. a, b
Bohren, C. F., Linskens, J. R., and Churma, M. E.: At What Optical Thickness
Does a Cloud Completely Obscure the Sun?, J. Atmos.
Sci., 52, 1257–1259,
https://doi.org/10.1175/1520-0469(1995)052<1257:AWOTDA>2.0.CO;2, 1995. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, book
section 7, 571–658, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Ceppi, P., Brient, F., Zelinka, M. D., and Hartmann, D. L.: Cloud feedback
mechanisms and their representation in global climate models, Wiley
Interdisciplinary Reviews: Climate Change, 8, e465, https://doi.org/10.1002/wcc.465,
2017. a
Chen, T., Rossow, W. B., and Zhang, Y. C.: Radiative effects of cloud-type
variations, J. Climate, 13, 264–286,
https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2, 2000. a
Chiu, J. C., Huang, C.-H., Marshak, A., Slutsker, I., Giles, D. M., Holben,
B. N., Knyazikhin, Y., and Wiscombe, W. J.: Cloud optical depth retrievals
from the Aerosol Robotic Network (AERONET) cloud mode observations, J.
Geophys. Res.-Atmos., 115, D14202, https://doi.org/10.1029/2009JD013121,
2010. a, b
Dolinar, E. K., Dong, X., Xi, B., Jiang, J. H., and Loeb, N. G.: A clear-sky
radiation closure study using a one-dimensional radiative transfer model and
collocated satellite-surface-reanalysis data sets, J. Geophys. Res.-Atmos.,
121, 13698–13714, https://doi.org/10.1002/2016JD025823, 2016. a
Dong, X., Minnis, P., Ackerman, T. P., Clothiaux, E. E., Mace, G. G., Long,
C. N., and Liljegren, J. C.: A 25-month database of stratus cloud properties
generated from ground-based measurements at the Atmospheric Radiation
Measurement Southern Great Plains Site, J. Geophys. Res.-Atmos., 105,
4529–4537, https://doi.org/10.1029/1999JD901159, 2000. a
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018. a
Dupont, J.-C., Haeffelin, M., Wærsted, E., Delanoe, J., Renard, J.-B.,
Preissler, J., and O-Dowd, C.: Evaluation of Fog and Low Stratus Cloud
Microphysical Properties Derived from In Situ Sensor, Cloud Radar and SYRSOC
Algorithm, Atmosphere, 9, 169, https://doi.org/10.3390/atmos9050169,
2018. a
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016. a
Finger, F., Werner, F., Klingebiel, M., Ehrlich, A., Jäkel, E., Voigt, M., Borrmann, S., Spichtinger, P., and Wendisch, M.: Spectral optical layer properties of cirrus from collocated airborne measurements and simulations, Atmos. Chem. Phys., 16, 7681–7693, https://doi.org/10.5194/acp-16-7681-2016, 2016. a
Gasteiger, J., Emde, C., Mayer, B., Buras, R., Buehler, S., and Lemke, O.:
Representative wavelengths absorption parameterization applied to satellite
channels and spectral bands, J. Quant. Spectrosc.
Ra., 148, 99–115, https://doi.org/10.1016/j.jqsrt.2014.06.024, 2014. a
Giannakaki, E., Balis, D. S., Amiridis, V., and Kazadzis, S.: Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station, Atmos. Chem. Phys., 7, 5519–5530, https://doi.org/10.5194/acp-7-5519-2007, 2007. a, b
Gouveia, D. A., Barja, B., Barbosa, H. M. J., Seifert, P., Baars, H., Pauliquevis, T., and Artaxo, P.: Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements, Atmos. Chem. Phys., 17, 3619–3636, https://doi.org/10.5194/acp-17-3619-2017, 2017. a
Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and
Clouds: The Software Package OPAC, B. Am. Meteorol. Soc., 79, 831–844,
https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998. a, b, c
Hong, Y. and Liu, G.: The Characteristics of Ice Cloud Properties Derived from
CloudSat and CALIPSO Measurements, J. Climate, 28, 3880–3901,
https://doi.org/10.1175/JCLI-D-14-00666.1,
2015. a, b, c
Hu, Y. X. and Stamnes, K.: An Accurate Parameterization of the Radiative
Properties of Water Clouds Suitable for Use in Climate Models, J. Climate, 6,
728–742, https://doi.org/10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2, 1993. a
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, 2013. a
Jensen, E. J., Kinne, S., and Toon, O. B.: Tropical Cirrus Cloud Radiative
Forcing – Sensitivity Studies, Geophys. Res. Lett., 21, 2023–2026,
https://doi.org/10.1029/94GL01358, 1994. a
Kato, S., Ackerman, T. P., Clothiaux, E. E., Mather, J. H., Mace, G. G.,
Wesely, M. L., Murcray, F., and Michalsky, J.: Uncertainties in modeled and
measured clear-sky surface shortwave irradiances, J. Geophys. Res.-Atmos.,
102, 25881–25898, https://doi.org/10.1029/97JD01841, 1997. a
Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., and Holben,
B. N.: Operational remote sensing of tropospheric aerosol over land from EOS
moderate resolution imaging spectroradiometer, J. Geophys. Res.-Atmos., 102,
17051–17067, https://doi.org/10.1029/96JD03988, 1997. a
Kazadzis, S., Kouremeti, N., Diémoz, H., Gröbner, J., Forgan, B. W., Campanelli, M., Estellés, V., Lantz, K., Michalsky, J., Carlund, T., Cuevas, E., Toledano, C., Becker, R., Nyeki, S., Kosmopoulos, P. G., Tatsiankou, V., Vuilleumier, L., Denn, F. M., Ohkawara, N., Ijima, O., Goloub, P., Raptis, P. I., Milner, M., Behrens, K., Barreto, A., Martucci, G., Hall, E., Wendell, J., Fabbri, B. E., and Wehrli, C.: Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements, Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, 2018. a
Key, J. R., Yang, P., Baum, B. A., and Nasiri, S. L.: Parameterization of
shortwave ice cloud optical properties for various particle habits, J.
Geophys. Res.-Atmos., 107, AAC 7-1–AAC 7-10, https://doi.org/10.1029/2001JD000742,
2002. a, b, c, d
Kokhanovsky, A.: Optical properties of terrestrial clouds, Earth-Sci.
Rev., 64, 189–241, https://doi.org/10.1016/S0012-8252(03)00042-4,
2004. a
König-Langlo, G., Sieger, R., Schmithüsen, H., Bücker, A., Richter, F., and Dutton, E.: The Baseline Surface Radiation Network and its World Radiation Monitoring Centre at the Alfred Wegener Institute, GCOS – 174, WCRP Report 24/2013, available at:
https://bsrn.awi.de/fileadmin/user_upload/bsrn.awi.de/Publications/gcos-174.pdf (last access: 18 February 2020), 2013. a
Korolev, A. V., Isaac, G. A., Strapp, J. W., Cober, S. G., and Barker, H. W.:
In situ measurements of liquid water content profiles in midlatitude
stratiform clouds, Q. J. Roy. Meteor. Soc.,
133, 1693–1699, https://doi.org/10.1002/qj.147, 2007. a
Kox, S., Bugliaro, L., and Ostler, A.: Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing, Atmos. Meas. Tech., 7, 3233–3246, https://doi.org/10.5194/amt-7-3233-2014, 2014. a
Krisna, T. C., Wendisch, M., Ehrlich, A., Jäkel, E., Werner, F., Weigel, R., Borrmann, S., Mahnke, C., Pöschl, U., Andreae, M. O., Voigt, C., and Machado, L. A. T.: Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds, Atmos. Chem. Phys., 18, 4439–4462, https://doi.org/10.5194/acp-18-4439-2018, 2018. a
Leontyeva, E. and Stamnes, K.: Estimations of Cloud Optical Thickness from
Ground-Based Measurements of Incoming Solar Radiation in the Arctic, J. Climate, 7, 566–578,
https://doi.org/10.1175/1520-0442(1994)007<0566:EOCOTF>2.0.CO;2,
1994. a, b
Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Malkki, A., Visser, H.,
de Vries, J., Stammes, P., Lundell, J. O. V., and Saari, H.: The ozone
monitoring instrument, IEEE T. Geosci. Remote,
44, 1093–1101, https://doi.org/10.1109/TGRS.2006.872333, 2006. a
Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Stein Zweers, D. C., Duncan, B. N., Streets, D. G., Eskes, H., van der A, R., McLinden, C., Fioletov, V., Carn, S., de Laat, J., DeLand, M., Marchenko, S., McPeters, R., Ziemke, J., Fu, D., Liu, X., Pickering, K., Apituley, A., González Abad, G., Arola, A., Boersma, F., Chan Miller, C., Chance, K., de Graaf, M., Hakkarainen, J., Hassinen, S., Ialongo, I., Kleipool, Q., Krotkov, N., Li, C., Lamsal, L., Newman, P., Nowlan, C., Suleiman, R., Tilstra, L. G., Torres, O., Wang, H., and Wargan, K.: The Ozone Monitoring Instrument: overview of 14 years in space, Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, 2018. a, b
Li, X., Che, H., Wang, H., Xia, X., Chen, Q., Gui, K., Zhao, H., An, L., Zheng,
Y., Sun, T., Sheng, Z., Liu, C., and Zhang, X.: Spatial and temporal
distribution of the cloud optical depth over China based on MODIS satellite
data during 2003–2016, J. Environ. Sci., 80, 66–81,
https://doi.org/10.1016/j.jes.2018.08.010,
2019. a, b, c
Lindfors, A. and Vuilleumier, L.: Erythemal UV at Davos (Switzerland),
1926-2003, estimated using total ozone, sunshine duration, and snow depth,
J. Geophys. Res.-Atmos., 110,
D02104, https://doi.org/10.1029/2004JD005231,
2005. a
Löhnert, U. and Crewell, S.: Accuracy of cloud liquid water path from
ground-based microwave radiometry 1. Dependency on cloud model statistics,
Radio Science, 38, 8041, https://doi.org/10.1029/2002RS002654,
2003. a
Manninen, T., Siljamo, N., Poutiainen, J., Vuilleumier, L., Bosveld, F., and
Gratzki, A.: Cloud statistics-based estimation of land surface albedo from
AVHRR data, https://doi.org/10.1117/12.565133,
2004. a
Matamoros, S., Gonzàlez, J.-A., and Calbò, J.: A Simple Method to
Retrieve Cloud Properties from Atmospheric Transmittance and Liquid Water
Column Measurements, J. Appl. Meteorol. Clim., 50,
283–295, 2011. a
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005. a
McFarlane, S. A. and Evans, K. F.: Clouds and Shortwave Fluxes at Nauru. Part
I: Retrieved Cloud Properties, J. Atmos. Sci., 61,
733–744, https://doi.org/10.1175/1520-0469(2004)061<0733:CASFAN>2.0.CO;2, 2004. a
McHardy, T. M., Dong, X., Xi, B., Thieman, M. M., Minnis, P., and Palikonda,
R.: Comparison of Daytime Low-Level Cloud Properties Derived From GOES and
ARM SGP Measurements, J. Geophys. Res.-Atmos., 123,
8221–8237, https://doi.org/10.1029/2018JD028911,
2018. a
Michalsky, J. J., Anderson, G. P., Barnard, J., Delamere, J., Gueymard, C.,
Kato, S., Kiedron, P., McComiskey, A., and Ricchiazzi, P.: Shortwave
radiative closure studies for clear skies during the Atmospheric Radiation
Measurement 2003 Aerosol Intensive Observation Period, J. Geophys. Res.-Atmos., 111, d14S90, https://doi.org/10.1029/2005JD006341, 2006. a
Min, Q. and Harrison, L. C.: Cloud properties derived from surface MFRSR
measurements and comparison with GOES results at the ARM SGP Site,
Geophys. Res. Lett., 23, 1641–1644, https://doi.org/10.1029/96GL01488,
1996. a
Minnis, P., Hong, G., Sun-Mack, S., Smith, W. L., Chen, Y., and Miller, S. D.:
Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral
infrared radiances using a neural network method, J. Geophys. Res.-Atmos.,
121, 4907–4932, https://doi.org/10.1002/2015JD024456, 2016. a
Morland, J., Deuber, B., Feist, D. G., Martin, L., Nyeki, S., Kämpfer, N., Mätzler, C., Jeannet, P., and Vuilleumier, L.: The STARTWAVE atmospheric water database, Atmos. Chem. Phys., 6, 2039–2056, https://doi.org/10.5194/acp-6-2039-2006, 2006a. a
Morland, J., Liniger, M. A., Kunz, H., Balin, I., Nyeki, S., Mätzler, C., and
Kämpfer, N.: Comparison of GPS and ERA40 IWV in the Alpine region, including
correction of GPS observations at Jungfraujoch (3584 m), J. Geophys. Res.-Atmos., 111, d04102, https://doi.org/10.1029/2005JD006043,
2006b. a
Nakajima, T. and King, M. D.: Determination of the Optical Thickness and
Effective Particle Radius of Clouds from Reflected Solar Radiation
Measurements. Part I: Theory, J. Atmos. Sci., 47,
1878–1893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990. a, b
Navas-Guzmán, F., Stähli, O., and Kämpfer, N.: An integrated approach toward the incorporation of clouds in the temperature retrievals from microwave measurements, Atmos. Meas. Tech., 7, 1619–1628, https://doi.org/10.5194/amt-7-1619-2014, 2014. a
Nowak, D., Vuilleumier, L., Long, C. N., and Ohmura, A.: Solar irradiance
computations compared with observations at the Baseline Surface Radiation
Network Payerne site, J. Geophys. Res., 113, d14206,
https://doi.org/10.1029/2007JD009441, 2008a. a
Nowak, D., Vuilleumier, L., and Ohmura, A.: Radiation transfer in stratus clouds at the BSRN Payerne site, Atmos. Chem. Phys. Discuss., 8, 11453–11485, https://doi.org/10.5194/acpd-8-11453-2008, 2008b. a, b
Ohmura, A., Dutton, E. G., Forgan, B., Fröhlich, C., Gilgen, H., Hegner, H.,
Heimo, A., König-Langlo, G., McArthur, B., Müller, G., Philipona, R.,
Pinker, R., Whitlock, C. H., Dehne, K., and Wild, M.: Baseline Surface
Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research,
B. Am. Meteorol. Soc., 79, 2115–2136,
https://doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2, 1998. a
Painemal, D. and Zuidema, P.: Assessment of MODIS cloud effective radius and
optical thickness retrievals over the Southeast Pacific with VOCALS-REx in
situ measurements, J. Geophys. Res.-Atmos., 116,
D24206, https://doi.org/10.1029/2011JD016155,
2011. a
Philipona, R.: Underestimation of solar global and diffuse radiation measured
at Earth's surface, J. Geophys. Res.-Atmos., 107, ACL 15-1–ACL 15-8,
https://doi.org/10.1029/2002JD002396, 2002. a
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant,
B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P., Ridgway,
W. L., and Riedi, J.: The MODIS Cloud Optical and Microphysical Products:
Collection 6 Updates and Examples From Terra and Aqua, IEEE T.
Geosci. Remote, 55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522,
2017. a, b
Qiu, J.: Cloud optical thickness retrievals from ground-based pyranometer
measurements, J. Geophys. Res.-Atmos., 111, D22206, https://doi.org/10.1029/2005JD006792, 2006. a, b
Rawlins, F. and Foot, J. S.: Remotely Sensed Measurements of Stratocumulus
Properties during FIRE Using the C130 Aircraft Multi-channel Radiometer,
J. Atmos. Sci., 47, 2488–2504,
https://doi.org/10.1175/1520-0469(1990)047<2488:RSMOSP>2.0.CO;2, 1990. a, b, c, d
Ruiz-Arias, J. A., Dudhia, J., Santos-Alamillos, F. J., and Pozo-Vázquez, D.:
Surface clear-sky shortwave radiative closure intercomparisons in the Weather
Research and Forecasting model, J. Geophys. Res.-Atmos., 118, 9901–9913,
https://doi.org/10.1002/jgrd.50778, 2013. a
Schäfer, M., Loewe, K., Ehrlich, A., Hoose, C., and Wendisch, M.: Simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus, Atmos. Chem. Phys., 18, 13115–13133, https://doi.org/10.5194/acp-18-13115-2018, 2018. a
Serrano, D., Núñez, M., Utrillas, M. P., Marín, M. J., Marcos, C., and
Martínez-Lozano, J. A.: Effective cloud optical depth for overcast
conditions determined with a UV radiometers, Int. J. Climatol., 34,
3939–3952, https://doi.org/10.1002/joc.3953, 2014. a, b
Shettle, E.: Models of aerosols, clouds, and precipitation for atmospheric
propagation studies, in: Atmospheric propagation in the uv, visible, ir and
mm-region and related system aspects, no. 454 in AGARD Conference
Proceedings, 1989. a
Slingo, A. and Schrecker, H. M.: On the shortwave radiative properties of
stratiform water clouds, Q. J. Roy. Meteor.
Soc., 108, 407–426, https://doi.org/10.1002/qj.49710845607,
1982. a, b
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically stable
algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Optics, 27, 2502–2509,
https://doi.org/10.1364/AO.27.002502, 1988. a
Stephens, G. L.: Radiation Profiles in Extended Water Clouds. II:
Parameterization Schemes, J. Atmos. Sci., 35,
2123–2132, https://doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2,
1978. a
Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G.,
Chepfer, H., Di Girolamo, L., Getzewich, B., Guignard, A., Heidinger, A.,
Maddux, B. C., Menzel, W. P., Minnis, P., Pearl, C., Platnick, S., Poulsen,
C., Riedi, J., Sun-Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao, G.:
Assessment of Global Cloud Datasets from Satellites: Project and Database
Initiated by the GEWEX Radiation Panel, B. Am.
Meteorol. Soc., 94, 1031–1049, https://doi.org/10.1175/BAMS-D-12-00117.1,
2013. a
Taylor, P. C.: Tropical Outgoing Longwave Radiation and Longwave Cloud Forcing
Diurnal Cycles from CERES, J. Atmos. Sci., 69, 3652–3669,
https://doi.org/10.1175/JAS-D-12-088.1, 2012. a
Vanicek, K.: Differences between ground Dobson, Brewer and satellite TOMS-8, GOME-WFDOAS total ozone observations at Hradec Kralove, Czech, Atmos. Chem. Phys., 6, 5163–5171, https://doi.org/10.5194/acp-6-5163-2006, 2006.
a
Wacker, S., Gröbner, J., Nowak, D., Vuilleumier, L., and Kämpfer, N.:
Cloud effect of persistent stratus nebulosus at the Payerne BSRN site,
Atmos. Res., 102, 1–9, https://doi.org/10.1016/j.atmosres.2011.06.007, 2011. a
Wacker, S., Gröbner, J., Zysset, C., Diener, L., Tzoumanikas, P.,
Kazantzidis, A., Vuilleumier, L., Stoeckli, R., Nyeki, S., and Kämpfer,
N.: Cloud observations in Switzerland using hemispherical sky cameras, J.
Geophys. Res., 120, 695–707, https://doi.org/10.1002/2014JD022643, 2015. a, b, c
Waliser, D. E., Li, J.-L. F., Woods, C. P., Austin, R. T., Bacmeister, J.,
Chern, J., Del Genio, A., Jiang, J. H., Kuang, Z., Meng, H., Minnis, P.,
Platnick, S., Rossow, W. B., Stephens, G. L., Sun-Mack, S., Tao, W.-K.,
Tompkins, A. M., Vane, D. G., Walker, C., and Wu, D.: Cloud ice: A climate
model challenge with signs and expectations of progress, J. Geophys. Res.-Atmos., 114, D00A21, https://doi.org/10.1029/2008JD010015, 2009. a
Wang, P., Knap, W. H., Kuipers Munneke, P., and Stammes, P.: Clear-sky
shortwave radiative closure for the Cabauw Baseline Surface Radiation Network
site, Netherlands, J. Geophys. Res.-Atmos., 114, d14206,
https://doi.org/10.1029/2009JD011978, 2009. a
Wang, P., Knap, W. H., and Stammes, P.: Cloudy sky shortwave radiative closure
for a Baseline Surface Radiation Network site, J. Geophys. Res.-Atmos., 116, d08202,
https://doi.org/10.1029/2010JD015141, 2011. a, b
Wehrli, C.: Calibrations of filter radiometers for determination of atmospheric
optical depth, Metrologia, 37, 419–422,
https://doi.org/10.1088/0026-1394/37/5/16, 2000. a
Wiegner, M. and Geiß, A.: Aerosol profiling with the Jenoptik ceilometer CHM15kx, Atmos. Meas. Tech., 5, 1953–1964, https://doi.org/10.5194/amt-5-1953-2012, 2012. a
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP Data
Processing Algorithms, J. Atmos. Ocean. Tech., 26,
2310–2323, https://doi.org/10.1175/2009JTECHA1281.1,
2009. a
Zelinka, M. D., Klein, S. A., Taylor, K. E., Andrews, T., Webb, M. J., Gregory,
J. M., and Forster, P. M.: Contributions of Different Cloud Types to
Feedbacks and Rapid Adjustments in CMIP5, J. Climate, 26, 5007–5027, 2013. a
Zeng, S., Cornet, C., Parol, F., Riedi, J., and Thieuleux, F.: A better understanding of cloud optical thickness derived from the passive sensors MODIS/AQUA and POLDER/PARASOL in the A-Train constellation, Atmos. Chem. Phys., 12, 11245–11259, https://doi.org/10.5194/acp-12-11245-2012, 2012. a
Short summary
Clouds are one of the largest sources of uncertainties in climate models. The current study estimates the cloud optical thickness (COT), the effective droplet radius and the single scattering albedo of stratus–altostratus and cirrus–cirrostratus clouds in Payerne, Switzerland, by combining ground- and satellite-based measurements and radiative transfer models. The estimated values are thereafter compared with data retrieved from other methods. The mean COT is distinct for different seasons.
Clouds are one of the largest sources of uncertainties in climate models. The current study...