Articles | Volume 13, issue 2
Atmos. Meas. Tech., 13, 907–923, 2020
https://doi.org/10.5194/amt-13-907-2020
Atmos. Meas. Tech., 13, 907–923, 2020
https://doi.org/10.5194/amt-13-907-2020

Research article 26 Feb 2020

Research article | 26 Feb 2020

Estimation of cloud optical thickness, single scattering albedo and effective droplet radius using a shortwave radiative closure study in Payerne

Christine Aebi et al.

Related authors

Trends in surface radiation and cloud radiative effect at four Swiss sites for the 1996–2015 period
Stephan Nyeki, Stefan Wacker, Christine Aebi, Julian Gröbner, Giovanni Martucci, and Laurent Vuilleumier
Atmos. Chem. Phys., 19, 13227–13241, https://doi.org/10.5194/acp-19-13227-2019,https://doi.org/10.5194/acp-19-13227-2019, 2019
Short summary
Cloud fraction determined by thermal infrared and visible all-sky cameras
Christine Aebi, Julian Gröbner, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018,https://doi.org/10.5194/amt-11-5549-2018, 2018
Short summary
Cloud radiative effect, cloud fraction and cloud type at two stations in Switzerland using hemispherical sky cameras
Christine Aebi, Julian Gröbner, Niklaus Kämpfer, and Laurent Vuilleumier
Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017,https://doi.org/10.5194/amt-10-4587-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Analysis of 3D cloud effects in OCO-2 XCO2 retrievals
Steven T. Massie, Heather Cronk, Aronne Merrelli, Christopher O'Dell, K. Sebastian Schmidt, Hong Chen, and David Baker
Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021,https://doi.org/10.5194/amt-14-1475-2021, 2021
Short summary
Improving cloud type classification of ground-based images using region covariance descriptors
Yuzhu Tang, Pinglv Yang, Zeming Zhou, Delu Pan, Jianyu Chen, and Xiaofeng Zhao
Atmos. Meas. Tech., 14, 737–747, https://doi.org/10.5194/amt-14-737-2021,https://doi.org/10.5194/amt-14-737-2021, 2021
Short summary
Global cloud property models for real-time triage on board visible–shortwave infrared spectrometers
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, and Winston Olson-Duvall
Atmos. Meas. Tech., 13, 7047–7057, https://doi.org/10.5194/amt-13-7047-2020,https://doi.org/10.5194/amt-13-7047-2020, 2020
Short summary
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020,https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Microwave single-scattering properties of non-spheroidal raindrops
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020,https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary

Cited articles

Ackerman, T. P., Flynn, D. M., and Marchand, R. T.: Quantifying the magnitude of anomalous solar absorption, J. Geophys. Res.-Atmos., 108, 4273, https://doi.org/10.1029/2002JD002674, 2003. a
Aebi, C., Gröbner, J., Kämpfer, N., and Vuilleumier, L.: Cloud radiative effect, cloud fraction and cloud type at two stations in Switzerland using hemispherical sky cameras, Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017, 2017. a, b, c, d
Aebi, C., Gröbner, J., and Kämpfer, N.: Cloud fraction determined by thermal infrared and visible all-sky cameras, Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018, 2018. a
Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, 2015. a
Anderson, G. P.: AFGL atmospheric constituent profiles (0–120km), Hanscom AFB, MA: Optical Physics Division, Air Force Geophysics Laboratory, AFGL-TR; 86-0110, U.S. Air Force Geophysics Laboratory, Optical Physics Division, 1986. a
Download
Short summary
Clouds are one of the largest sources of uncertainties in climate models. The current study estimates the cloud optical thickness (COT), the effective droplet radius and the single scattering albedo of stratus–altostratus and cirrus–cirrostratus clouds in Payerne, Switzerland, by combining ground- and satellite-based measurements and radiative transfer models. The estimated values are thereafter compared with data retrieved from other methods. The mean COT is distinct for different seasons.