Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-907-2020
https://doi.org/10.5194/amt-13-907-2020
Research article
 | 
26 Feb 2020
Research article |  | 26 Feb 2020

Estimation of cloud optical thickness, single scattering albedo and effective droplet radius using a shortwave radiative closure study in Payerne

Christine Aebi, Julian Gröbner, Stelios Kazadzis, Laurent Vuilleumier, Antonis Gkikas, and Niklaus Kämpfer

Related authors

Trends in surface radiation and cloud radiative effect at four Swiss sites for the 1996–2015 period
Stephan Nyeki, Stefan Wacker, Christine Aebi, Julian Gröbner, Giovanni Martucci, and Laurent Vuilleumier
Atmos. Chem. Phys., 19, 13227–13241, https://doi.org/10.5194/acp-19-13227-2019,https://doi.org/10.5194/acp-19-13227-2019, 2019
Short summary
Cloud fraction determined by thermal infrared and visible all-sky cameras
Christine Aebi, Julian Gröbner, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018,https://doi.org/10.5194/amt-11-5549-2018, 2018
Short summary
Cloud radiative effect, cloud fraction and cloud type at two stations in Switzerland using hemispherical sky cameras
Christine Aebi, Julian Gröbner, Niklaus Kämpfer, and Laurent Vuilleumier
Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017,https://doi.org/10.5194/amt-10-4587-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Marine cloud base height retrieval from MODIS cloud properties using machine learning
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024,https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024,https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024,https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary

Cited articles

Ackerman, T. P., Flynn, D. M., and Marchand, R. T.: Quantifying the magnitude of anomalous solar absorption, J. Geophys. Res.-Atmos., 108, 4273, https://doi.org/10.1029/2002JD002674, 2003. a
Aebi, C., Gröbner, J., Kämpfer, N., and Vuilleumier, L.: Cloud radiative effect, cloud fraction and cloud type at two stations in Switzerland using hemispherical sky cameras, Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017, 2017. a, b, c, d
Aebi, C., Gröbner, J., and Kämpfer, N.: Cloud fraction determined by thermal infrared and visible all-sky cameras, Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018, 2018. a
Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, 2015. a
Anderson, G. P.: AFGL atmospheric constituent profiles (0–120km), Hanscom AFB, MA: Optical Physics Division, Air Force Geophysics Laboratory, AFGL-TR; 86-0110, U.S. Air Force Geophysics Laboratory, Optical Physics Division, 1986. a
Download
Short summary
Clouds are one of the largest sources of uncertainties in climate models. The current study estimates the cloud optical thickness (COT), the effective droplet radius and the single scattering albedo of stratus–altostratus and cirrus–cirrostratus clouds in Payerne, Switzerland, by combining ground- and satellite-based measurements and radiative transfer models. The estimated values are thereafter compared with data retrieved from other methods. The mean COT is distinct for different seasons.