Research article 26 Feb 2020
Research article | 26 Feb 2020
Estimation of cloud optical thickness, single scattering albedo and effective droplet radius using a shortwave radiative closure study in Payerne
Christine Aebi et al.
Related authors
Stephan Nyeki, Stefan Wacker, Christine Aebi, Julian Gröbner, Giovanni Martucci, and Laurent Vuilleumier
Atmos. Chem. Phys., 19, 13227–13241, https://doi.org/10.5194/acp-19-13227-2019, https://doi.org/10.5194/acp-19-13227-2019, 2019
Short summary
Short summary
The trends of meteorological parameters and surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) were analysed at four stations (between 370 and 3580 m a. s. l.) in Switzerland for the 1996–2015 period. Trends in DSR and DLR were positive during cloudy as well as clear conditions. The trend due to the influence of clouds decreased in magnitude, which implies a reduction in cloud cover and/or a change towards a different cloud type over the four Swiss sites.
Christine Aebi, Julian Gröbner, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018, https://doi.org/10.5194/amt-11-5549-2018, 2018
Short summary
Short summary
A newly developed hemispherical thermal infrared cloud camera (IRCCAM) is presented. The IRCCAM allows automatic cloud detection during the day and at night-time. The cloud fraction determined from the IRCCAM is compared with the cloud fraction determined from other instruments over a time period of 2 years. The IRCCAM has an agreement of +/- 2 oktas cloud fraction in 90 % of the data compared to other instruments. There are no significant differences between seasons or different times of day.
Christine Aebi, Julian Gröbner, Niklaus Kämpfer, and Laurent Vuilleumier
Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017, https://doi.org/10.5194/amt-10-4587-2017, 2017
Short summary
Short summary
The current study analyses the cloud radiative effect during the daytime depending on cloud fraction and cloud type at two stations in Switzerland over a time period of 3–5 years. Information about fractional cloud coverage and cloud type is retrieved from images taken by visible all-sky cameras. Cloud cover, cloud type and other atmospheric parameters have an influence on the magnitude of the longwave cloud effect as well as on the shortwave.
Myrto Gratsea, Tim Bösch, Panagiotis Kokkalis, Andreas Richter, Mihalis Vrekoussis, Stelios Kazadzis, Alexandra Tsekeri, Alexandros Papayannis, Maria Mylonaki, Vassilis Amiridis, Nikos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Meas. Tech., 14, 749–767, https://doi.org/10.5194/amt-14-749-2021, https://doi.org/10.5194/amt-14-749-2021, 2021
Antonis Gkikas, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, Alexandra Tsekeri, Eleni Marinou, Nikos Hatzianastassiou, and Carlos Pérez García-Pando
Atmos. Meas. Tech., 14, 309–334, https://doi.org/10.5194/amt-14-309-2021, https://doi.org/10.5194/amt-14-309-2021, 2021
Short summary
Short summary
We present the development of the MIDAS (ModIs Dust AeroSol) data set, providing daily dust optical depth (DOD; 550 nm) at a global scale and fine spatial resolution (0.1° x 0.1°) over a 15-year period (2003–2017). It has been developed via the synergy of MODIS-Aqua and MERRA-2 data, while CALIOP and AERONET retrievals are used for its assessment. MIDAS upgrades existing dust observational capabilities, and it is suitable for dust climatological studies, model evaluation, and data assimilation.
Julian Gröbner, Herbert Schill, Luca Egli, and René Stübi
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-497, https://doi.org/10.5194/amt-2020-497, 2021
Preprint under review for AMT
Short summary
Short summary
The world's longest continuous total column ozone time series was initiated in 1926 at the Lichtklimatisches Observatorium (LKO), at Arosa, in the Swiss Alps. The measurements between Dobson and Brewer spectroradiometers have shown seasonal variations of the order of 2 %. The results of the study show that the consistency between the two instrument types can be significantly improved when the ozone cross-sections from Serdyuchenko et al. (2013) and the measured slit functions are used.
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020, https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary
Short summary
The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. Ground-based data from 25 sites located in Arctic, subarctic, temperate, equatorial and Antarctic
areas were used for the validation of the TROPOMI surface ultraviolet (UV) radiation product. For most sites 60 %–80 % of TROPOMI data was within ± 20 % of ground-based data.
Martine Collaud Coen, Elisabeth Andrews, Alessandro Bigi, Giovanni Martucci, Gonzague Romanens, Frédéric P. A. Vogt, and Laurent Vuilleumier
Atmos. Meas. Tech., 13, 6945–6964, https://doi.org/10.5194/amt-13-6945-2020, https://doi.org/10.5194/amt-13-6945-2020, 2020
Short summary
Short summary
The Mann–Kendall trend test requires prewhitening in the presence of serially correlated data. The effects of five prewhitening methods and time granularity, autocorrelation, temporal segmentation and length of the time series on the statistical significance and the slope are studies for seven atmospheric datasets. Finally, a new algorithm using three prewhitening methods is proposed in order to optimize the power of the test, the amount of erroneous false positive trends and the slope estimate.
Anna Gialitaki, Alexandra Tsekeri, Vassilis Amiridis, Romain Ceolato, Lucas Paulien, Anna Kampouri, Antonis Gkikas, Stavros Solomos, Eleni Marinou, Moritz Haarig, Holger Baars, Albert Ansmann, Tatyana Lapyonok, Anton Lopatin, Oleg Dubovik, Silke Groß, Martin Wirth, Maria Tsichla, Ioanna Tsikoudi, and Dimitris Balis
Atmos. Chem. Phys., 20, 14005–14021, https://doi.org/10.5194/acp-20-14005-2020, https://doi.org/10.5194/acp-20-14005-2020, 2020
Short summary
Short summary
Stratospheric smoke particles are found to significantly depolarize incident light, while this effect is also accompanied by a strong spectral dependence. We utilize scattering simulations to show that this behaviour can be attributed to the near-spherical shape of the particles. We also examine whether an extension of the current AERONET scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke associated with enhanced PLDR.
Ilias Fountoulakis, Henri Diémoz, Anna Maria Siani, Gregor Hülsen, and Julian Gröbner
Earth Syst. Sci. Data, 12, 2787–2810, https://doi.org/10.5194/essd-12-2787-2020, https://doi.org/10.5194/essd-12-2787-2020, 2020
Short summary
Short summary
In this study we discuss the procedures and the technical aspects which ensure the high quality of the measurements of the global solar ultraviolet (UV) irradiance performed by a Bentham spectroradiometer located at Aosta–Saint-Christophe (north-western Alps), Italy. This particular instrument is the reference for the Aosta Valley UV monitoring network, which is the first UV monitoring network in Italy. The final spectra constitute one of the most accurate datasets globally.
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Short summary
With global warming, water vapour increases in the atmosphere. Water vapour is an important gas because it is a natural greenhouse gas and affects the formation of clouds, rain and snow. How much water vapour increases can vary in different regions of the world. To verify if it increases as expected on a regional scale, we analysed water vapour measurements in Switzerland. We found that water vapour generally increases as expected from temperature changes, except in winter.
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Short summary
We measured middle-atmospheric ozone, water vapour and zonal and meridional wind with two ground-based microwave radiometers which are located at Ny-Alesund, Svalbard, in the Arctic. In this article we present measurements of the small-scale horizontal ozone gradients during winter 2018/2019. We found a distinct seasonal variation of the ozone gradients which is linked to the planetary wave activity. We further present the signatures of the SSW in the ozone, water vapour and wind measurements.
Marek Šmíd, Geiland Porrovecchio, Jiří Tesař, Tim Burnitt, Luca Egli, Julian Grőbner, Petr Linduška, and Martin Staněk
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-244, https://doi.org/10.5194/amt-2020-244, 2020
Preprint under review for AMT
Teruyuki Nakajima, Monica Campanelli, Huizheng Che, Victor Estellés, Hitoshi Irie, Sang-Woo Kim, Jhoon Kim, Dong Liu, Tomoaki Nishizawa, Govindan Pandithurai, Vijay Kumar Soni, Boossarasiri Thana, Nas-Urt Tugjsurn, Kazuma Aoki, Sujung Go, Makiko Hashimoto, Akiko Higurashi, Stelios Kazadzis, Pradeep Khatri, Natalia Kouremeti, Rei Kudo, Franco Marenco, Masahiro Momoi, Shantikumar S. Ningombam, Claire L. Ryder, Akihiro Uchiyama, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 4195–4218, https://doi.org/10.5194/amt-13-4195-2020, https://doi.org/10.5194/amt-13-4195-2020, 2020
Short summary
Short summary
This paper overviews the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. The paper also discusses current issues of SKYNET to provide better information for the community.
Eliane Maillard Barras, Alexander Haefele, Liliane Nguyen, Fiona Tummon, William T. Ball, Eugene V. Rozanov, Rolf Rüfenacht, Klemens Hocke, Leonie Bernet, Niklaus Kämpfer, Gerald Nedoluha, and Ian Boyd
Atmos. Chem. Phys., 20, 8453–8471, https://doi.org/10.5194/acp-20-8453-2020, https://doi.org/10.5194/acp-20-8453-2020, 2020
Short summary
Short summary
To determine the part of the variability of the long-term ozone profile trends coming from measurement timing, we estimate microwave radiometer trends for each hour of the day with a multiple linear regression model. The variation in the trend with local solar time is not significant at the 95 % confidence level either in the stratosphere or in the low mesosphere. We conclude that systematic sampling differences between instruments cannot explain significant differences in trend estimates.
Jonas Hagen, Klemens Hocke, Gunter Stober, Simon Pfreundschuh, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 2367–2386, https://doi.org/10.5194/acp-20-2367-2020, https://doi.org/10.5194/acp-20-2367-2020, 2020
Short summary
Short summary
The middle atmosphere (30 to 70 km altitude) is stratified and, despite very strong horizontal winds, there is less mixing between the horizontal layers. An important driver for the energy exchange between the layers in this regime is atmospheric tides, which are waves that are driven by the diurnal cycle of solar heating. We measure these tides in the wind field for the first time using a ground-based passive instrument. Ultimately, such measurements could be used to improve atmospheric models.
Stephan Nyeki, Stefan Wacker, Christine Aebi, Julian Gröbner, Giovanni Martucci, and Laurent Vuilleumier
Atmos. Chem. Phys., 19, 13227–13241, https://doi.org/10.5194/acp-19-13227-2019, https://doi.org/10.5194/acp-19-13227-2019, 2019
Short summary
Short summary
The trends of meteorological parameters and surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) were analysed at four stations (between 370 and 3580 m a. s. l.) in Switzerland for the 1996–2015 period. Trends in DSR and DLR were positive during cloudy as well as clear conditions. The trend due to the influence of clouds decreased in magnitude, which implies a reduction in cloud cover and/or a change towards a different cloud type over the four Swiss sites.
Emilio Cuevas, Pedro Miguel Romero-Campos, Natalia Kouremeti, Stelios Kazadzis, Petri Räisänen, Rosa Delia García, Africa Barreto, Carmen Guirado-Fuentes, Ramón Ramos, Carlos Toledano, Fernando Almansa, and Julian Gröbner
Atmos. Meas. Tech., 12, 4309–4337, https://doi.org/10.5194/amt-12-4309-2019, https://doi.org/10.5194/amt-12-4309-2019, 2019
Short summary
Short summary
A comprehensive comparison of more than 70 000 synchronous 1 min aerosol optical depth (AOD) data from 3 Global Atmosphere Watch precision filter radiometers (GAW-PFR) and 15 Aerosol Robotic Network Cimel radiometers (AERONET-Cimel) was performed for the four
nearwavelengths (380, 440, 500 and 870 nm) in the period 2005–2015. The goal of this study is to assess whether their long term AOD data are comparable and consistent.
Franziska Schranz, Brigitte Tschanz, Rolf Rüfenacht, Klemens Hocke, Mathias Palm, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 9927–9947, https://doi.org/10.5194/acp-19-9927-2019, https://doi.org/10.5194/acp-19-9927-2019, 2019
Short summary
Short summary
The dynamics of the Arctic middle atmosphere above Ny-Ålesund, Svalbard (79° N, 12° E) is investigated using 3 years of H2O and O3 measurements from ground-based microwave radiometers. We found the signals of atmospheric phenomena like sudden stratospheric warmings, polar vortex shifts, effective descent rates of water vapour and periodicities in our data. Additionally, a comprehensive intercomparison is performed with models and measurements from ground-based, in situ and satellite instruments.
Martin Lainer, Klemens Hocke, Ellen Eckert, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 6611–6620, https://doi.org/10.5194/acp-19-6611-2019, https://doi.org/10.5194/acp-19-6611-2019, 2019
Short summary
Short summary
A middle atmospheric water vapor time series of more than 11 years (April 2007 to May 2018) from the NDACC microwave remote sensing site at Bern (Switzerland) is investigated to estimate the trend by means of a robust multilinear parametric trend model. Between 61 and 72 km altitude a significant decline in water vapor could be detected. The reduction of water vapor maximizes to about −12 % per decade at 72 km altitude.
Leonie Bernet, Thomas von Clarmann, Sophie Godin-Beekmann, Gérard Ancellet, Eliane Maillard Barras, René Stübi, Wolfgang Steinbrecht, Niklaus Kämpfer, and Klemens Hocke
Atmos. Chem. Phys., 19, 4289–4309, https://doi.org/10.5194/acp-19-4289-2019, https://doi.org/10.5194/acp-19-4289-2019, 2019
Short summary
Short summary
After severe ozone depletion, upper stratospheric ozone has started to recover in recent years. However, stratospheric ozone trends from various data sets still show differences. To partly explain such differences, we investigate how the trends are affected by different factors, for example, anomalies in the data. We show how trend estimates can be improved by considering such anomalies and present updated stratospheric ozone trends from ground data measured in central Europe.
Christine Aebi, Julian Gröbner, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018, https://doi.org/10.5194/amt-11-5549-2018, 2018
Short summary
Short summary
A newly developed hemispherical thermal infrared cloud camera (IRCCAM) is presented. The IRCCAM allows automatic cloud detection during the day and at night-time. The cloud fraction determined from the IRCCAM is compared with the cloud fraction determined from other instruments over a time period of 2 years. The IRCCAM has an agreement of +/- 2 oktas cloud fraction in 90 % of the data compared to other instruments. There are no significant differences between seasons or different times of day.
Carlos Toledano, Ramiro González, David Fuertes, Emilio Cuevas, Thomas F. Eck, Stelios Kazadzis, Natalia Kouremeti, Julian Gröbner, Philippe Goloub, Luc Blarel, Roberto Román, África Barreto, Alberto Berjón, Brent N. Holben, and Victoria E. Cachorro
Atmos. Chem. Phys., 18, 14555–14567, https://doi.org/10.5194/acp-18-14555-2018, https://doi.org/10.5194/acp-18-14555-2018, 2018
Short summary
Short summary
Most of the ground-based radiometric networks have their reference instruments and/or calibrate them at Mauna Loa or Izaña. The suitability of these high-mountain stations for absolute radiometric calibrations is investigated with the support of 20 years of first-class Sun photometer data from the AERONET and GAW-PFR networks. We analyze the number of calibration days at each site in a climatological sense and investigate the uncertainty of the calibrations based on long-term statistics.
Marco Zanatta, Paolo Laj, Martin Gysel, Urs Baltensperger, Stergios Vratolis, Konstantinos Eleftheriadis, Yutaka Kondo, Philippe Dubuisson, Victor Winiarek, Stelios Kazadzis, Peter Tunved, and Hans-Werner Jacobi
Atmos. Chem. Phys., 18, 14037–14057, https://doi.org/10.5194/acp-18-14037-2018, https://doi.org/10.5194/acp-18-14037-2018, 2018
Short summary
Short summary
The research community aims to quantify the actual contribution of soot particles to the recent Arctic warming. We discovered that mixing of soot with other components might enhance its light absorption power by 50 %. The neglection of such amplification might lead to the underestimation of radiative forcing by 0.12 W m−2. Thus a better understanding of the optical properties of soot is a crucial step for an accurate quantification of the radiative impact of soot in the Arctic atmosphere.
Kaisa Lakkala, Antti Arola, Julian Gröbner, Sergio Fabian León-Luis, Alberto Redondas, Stelios Kazadzis, Tomi Karppinen, Juha Matti Karhu, Luca Egli, Anu Heikkilä, Tapani Koskela, Antonio Serrano, and José Manuel Vilaplana
Atmos. Meas. Tech., 11, 5167–5180, https://doi.org/10.5194/amt-11-5167-2018, https://doi.org/10.5194/amt-11-5167-2018, 2018
Short summary
Short summary
The performance of the cosine error correction method for correcting spectral UV measurements of the Brewer spectroradiometer was studied. The correction depends on the sky radiation distribution, which can change during one spectral scan. The results showed that the correction varied between 4 and 14 %, and that the relative differences between the reference and the Brewer diminished by 10 %. The method is applicable to other instruments as long as the required input parameters are available.
Jonas Hagen, Axel Murk, Rolf Rüfenacht, Sergey Khaykin, Alain Hauchecorne, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5007–5024, https://doi.org/10.5194/amt-11-5007-2018, https://doi.org/10.5194/amt-11-5007-2018, 2018
Martin Lainer, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 18, 12061–12074, https://doi.org/10.5194/acp-18-12061-2018, https://doi.org/10.5194/acp-18-12061-2018, 2018
Short summary
Short summary
A long continuous record (in total 7 years) of middle atmospheric water vapor at the midlatitude NDACC station in Bern is investigated to study quasi 2-day wave oscillations (Q2DWs). We present monthly climatologies of the wave amplitudes and show the periods that the Q2DWs developed. What we observe is very-high-frequency variability. An autobicoherence analysis revealed nonlinear phase couplings between Q2DWs and other atmospheric waves. Our results are useful for model validation purposes.
Amelie Driemel, John Augustine, Klaus Behrens, Sergio Colle, Christopher Cox, Emilio Cuevas-Agulló, Fred M. Denn, Thierry Duprat, Masato Fukuda, Hannes Grobe, Martial Haeffelin, Gary Hodges, Nicole Hyett, Osamu Ijima, Ain Kallis, Wouter Knap, Vasilii Kustov, Charles N. Long, David Longenecker, Angelo Lupi, Marion Maturilli, Mohamed Mimouni, Lucky Ntsangwane, Hiroyuki Ogihara, Xabier Olano, Marc Olefs, Masao Omori, Lance Passamani, Enio Bueno Pereira, Holger Schmithüsen, Stefanie Schumacher, Rainer Sieger, Jonathan Tamlyn, Roland Vogt, Laurent Vuilleumier, Xiangao Xia, Atsumu Ohmura, and Gert König-Langlo
Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, https://doi.org/10.5194/essd-10-1491-2018, 2018
Short summary
Short summary
The Baseline Surface Radiation Network (BSRN) collects and centrally archives high-quality ground-based radiation measurements in 1 min resolution. More than 10 300 months, i.e., > 850 years, of high-radiation data in 1 min resolution from the years 1992 to 2017 are available. The network currently comprises 59 stations collectively representing all seven continents as well as island-based stations in the Pacific, Atlantic, Indian and Arctic oceans.
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
Alberto Redondas, Virgilio Carreño, Sergio F. León-Luis, Bentorey Hernández-Cruz, Javier López-Solano, Juan J. Rodriguez-Franco, José M. Vilaplana, Julian Gröbner, John Rimmer, Alkiviadis F. Bais, Vladimir Savastiouk, Juan R. Moreta, Lamine Boulkelia, Nis Jepsen, Keith M. Wilson, Vadim Shirotov, and Tomi Karppinen
Atmos. Chem. Phys., 18, 9441–9455, https://doi.org/10.5194/acp-18-9441-2018, https://doi.org/10.5194/acp-18-9441-2018, 2018
Short summary
Short summary
This work shows an overview of the total ozone comparison of the Brewer instrument during the 10th RBCC-E campaign in a joint effort with the EUBREWNET COST 1207 action. The status of the network after 2 years of calibration shows 16 out of the 21 participating Brewer instruments (76 %) agreed within better than ±1 %, and 10 instruments (50 %) agreed within better than ±0.5 %. After applying the final calibration and the stray light correction all working instruments agreed at the ±0.5 % level.
Antonis Gkikas, Vincenzo Obiso, Carlos Pérez García-Pando, Oriol Jorba, Nikos Hatzianastassiou, Lluis Vendrell, Sara Basart, Stavros Solomos, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 18, 8757–8787, https://doi.org/10.5194/acp-18-8757-2018, https://doi.org/10.5194/acp-18-8757-2018, 2018
Short summary
Short summary
The present study investigates the direct radiative effects (DREs), induced during 20 intense Mediterranean desert dust outbreaks, based on regional short-term numerical simulations of the NMMB-MONARCH model: more specifically, (i) the DREs and their associated impacts on temperature and surface sensible and latent heat fluxes, (ii) the feedbacks on dust AOD and dust emissions, and (iii) the possible improvements in short-term forecasts (up to 84 h) of temperature and radiation.
Anna Vaskuri, Petri Kärhä, Luca Egli, Julian Gröbner, and Erkki Ikonen
Atmos. Meas. Tech., 11, 3595–3610, https://doi.org/10.5194/amt-11-3595-2018, https://doi.org/10.5194/amt-11-3595-2018, 2018
Short summary
Short summary
In this work, we introduce a Monte Carlo uncertainty analysis that takes into account possible systematic spectral deviations in the atmospheric full spectrum ozone retrieval method. Accounting for possible systematic spectral deviations in the spectral data is important since they produce larger total ozone column uncertainties than uncorrelated noise-like variations that traditional uncertainty estimations predict.
Rosa Delia García, Africa Barreto, Emilio Cuevas, Julian Gröbner, Omaira Elena García, Angel Gómez-Peláez, Pedro Miguel Romero-Campos, Alberto Redondas, Victoria Eugenia Cachorro, and Ramon Ramos
Geosci. Model Dev., 11, 2139–2152, https://doi.org/10.5194/gmd-11-2139-2018, https://doi.org/10.5194/gmd-11-2139-2018, 2018
Short summary
Short summary
A 7-year comparison study between measured and simulated longwave
downward radiation under cloud-free conditions has been performed at BSRN Izaña. Results show an excellent agreement with a mean bias (simulated–measured) less than 1.1 % and RMSE less than 1 %, which are within the instrumental error (2 %).
Daniela Meloni, Alcide di Sarra, Gérard Brogniez, Cyrielle Denjean, Lorenzo De Silvestri, Tatiana Di Iorio, Paola Formenti, José L. Gómez-Amo, Julian Gröbner, Natalia Kouremeti, Giuliano Liuzzi, Marc Mallet, Giandomenico Pace, and Damiano M. Sferlazzo
Atmos. Chem. Phys., 18, 4377–4401, https://doi.org/10.5194/acp-18-4377-2018, https://doi.org/10.5194/acp-18-4377-2018, 2018
Short summary
Short summary
This study examines how different aerosol optical properties determine the dust longwave radiative effects at the surface, in the atmosphere and at the top of the atmosphere, based on the combination of remote sensing and in situ observations from the ground, from airborne sensors, and from space, by means of radiative transfer modelling. The closure experiment is based on longwave irradiances and spectral brightness temperatures measured during the 2013 ChArMEx–ADRIMED campaign at Lampedusa.
Christof Janssen, Hadj Elandaloussi, and Julian Gröbner
Atmos. Meas. Tech., 11, 1707–1723, https://doi.org/10.5194/amt-11-1707-2018, https://doi.org/10.5194/amt-11-1707-2018, 2018
Short summary
Short summary
Monitoring ozone layer recovery at a rate of few percent per decade requires dedicated instrumentation and spectroscopic data of the highest quality. Highly accurate absorption cross sections of ozone are rare, especially in the important UV region between 300 and 340 nm. Our measurement provides the first reference point with permil level of accuracy in this range. Interestingly, our value is lower than currently used data. This might resolve an inconsistency between UV and IR measurements.
Franziska Schranz, Susana Fernandez, Niklaus Kämpfer, and Mathias Palm
Atmos. Chem. Phys., 18, 4113–4130, https://doi.org/10.5194/acp-18-4113-2018, https://doi.org/10.5194/acp-18-4113-2018, 2018
Short summary
Short summary
We present 1 year of ozone measurements form two ground-based microwave radiometers located at Ny-Ålesund, Svalbard. The ozone measurements cover an altitude range of 25–70 km altitude and have a high time resolution of 1–2 h. With these datasets and model data a comprehensive analysis of the ozone diurnal cycle in the Arctic is performed for the different insolation conditions throughout the year. In the stratosphere we find a diurnal cycle which persists over the whole polar day.
Javier López-Solano, Alberto Redondas, Thomas Carlund, Juan J. Rodriguez-Franco, Henri Diémoz, Sergio F. León-Luis, Bentorey Hernández-Cruz, Carmen Guirado-Fuentes, Natalia Kouremeti, Julian Gröbner, Stelios Kazadzis, Virgilio Carreño, Alberto Berjón, Daniel Santana-Díaz, Manuel Rodríguez-Valido, Veerle De Bock, Juan R. Moreta, John Rimmer, Andrew R. D. Smedley, Lamine Boulkelia, Nis Jepsen, Paul Eriksen, Alkiviadis F. Bais, Vadim Shirotov, José M. Vilaplana, Keith M. Wilson, and Tomi Karppinen
Atmos. Chem. Phys., 18, 3885–3902, https://doi.org/10.5194/acp-18-3885-2018, https://doi.org/10.5194/acp-18-3885-2018, 2018
Short summary
Short summary
The European Brewer Network (EUBREWNET, COST Action ES1207) is comprised of close to 50 instruments and currently provides near-real-time ozone and UV data. Aerosols also play key role in the Earth–atmosphere system and introduce a large uncertainty into our understanding of climate change. In this work we describe and validate a method to incorporate the measurement of aerosols in EUBREWNET. We find that this Brewer network can provide reliable aerosol data across Europe in the UV range.
Stelios Kazadzis, Natalia Kouremeti, Henri Diémoz, Julian Gröbner, Bruce W. Forgan, Monica Campanelli, Victor Estellés, Kathleen Lantz, Joseph Michalsky, Thomas Carlund, Emilio Cuevas, Carlos Toledano, Ralf Becker, Stephan Nyeki, Panagiotis G. Kosmopoulos, Viktar Tatsiankou, Laurent Vuilleumier, Frederick M. Denn, Nozomu Ohkawara, Osamu Ijima, Philippe Goloub, Panagiotis I. Raptis, Michael Milner, Klaus Behrens, Africa Barreto, Giovanni Martucci, Emiel Hall, James Wendell, Bryan E. Fabbri, and Christoph Wehrli
Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, https://doi.org/10.5194/acp-18-3185-2018, 2018
Short summary
Short summary
Aerosol optical depth measured from ground-based sun photometers is the most important parameter for studying the changes in the Earth's radiation balance due to aerosols. Representatives for various sun photometer types belonging to individual institutions or international aerosol networks gather every 5 years, for 3 weeks, in Davos, Switzerland, in order to compare their aeorosol optical depth retrievals. This work presents the results of the latest (fourth) filter radiometer intercomparison.
Panagiotis-Ioannis Raptis, Stelios Kazadzis, Julian Gröbner, Natalia Kouremeti, Lionel Doppler, Ralf Becker, and Constantinos Helmis
Atmos. Meas. Tech., 11, 1143–1157, https://doi.org/10.5194/amt-11-1143-2018, https://doi.org/10.5194/amt-11-1143-2018, 2018
Short summary
Short summary
The purpose of this work is to retrieve integrated water vapour using spectral measurements from Precision Solar Spectroradiometer (PSR). Two different approaches were developed one using single-channel direct sun irradiance measurements, and the second one integrating at a certain spectral region. The results of the spectral approach are closer to the retrievals of non-photometric techniques (GPS, microwave radiometer and radiosondes), suggesting this method provide more accurate IWV product.
Stelios Kazadzis, Dimitra Founda, Basil E. Psiloglou, Harry Kambezidis, Nickolaos Mihalopoulos, Arturo Sanchez-Lorenzo, Charikleia Meleti, Panagiotis I. Raptis, Fragiskos Pierros, and Pierre Nabat
Atmos. Chem. Phys., 18, 2395–2411, https://doi.org/10.5194/acp-18-2395-2018, https://doi.org/10.5194/acp-18-2395-2018, 2018
Short summary
Short summary
The National Observatory of Athens has been collecting solar radiation, sunshine duration, and cloud and visibility data/observations since the beginning of the 20th century. In this work we present surface solar radiation data since 1953 and reconstructed data since 1900. We have attempted to show and discuss the long-term changes in solar surface radiation over Athens, Greece, using these unique datasets.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Panagiotis I. Raptis, Iphigenia Keramitsoglou, Chris Kiranoudis, and Alkiviadis F. Bais
Atmos. Meas. Tech., 11, 907–924, https://doi.org/10.5194/amt-11-907-2018, https://doi.org/10.5194/amt-11-907-2018, 2018
Short summary
Short summary
Continuous monitoring of solar energy from space is critical for its efficient exploitation and distribution. For this reason we developed neural-network- and function-based real-time models, which are capable of producing massive radiation outputs in high spectral, spatial and temporal resolution. The models' performance against ground-based measurements revealed a dependence on input quality and resolution, and an overall accuracy under cloudless and high solar energy potential conditions.
Stelios Kazadzis, Natalia Kouremeti, Stephan Nyeki, Julian Gröbner, and Christoph Wehrli
Geosci. Instrum. Method. Data Syst., 7, 39–53, https://doi.org/10.5194/gi-7-39-2018, https://doi.org/10.5194/gi-7-39-2018, 2018
Short summary
Short summary
The World Optical Depth Research Calibration Center (WORCC) has been established after the recommendations of WMO for calibration of aerosol optical depth (AOD) -related sun photometers. WORCC is mandated to initiate homogenization activities among different AOD networks and to run a network (GAW-PFR) of sun photometers. To calibrate such instruments aiming at low measurement uncertainties the quality assurance, quality control and a basic hierarchy have to be defined and followed.
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Aristeidis K. Georgoulias, Stavros Solomos, Stelios Kazadzis, Julien Chimot, Huizheng Che, Georgia Alexandri, Ioannis Binietoglou, Vasiliki Daskalopoulou, Konstantinos A. Kourtidis, Gerrit de Leeuw, and Ronald J. van der A
Atmos. Chem. Phys., 18, 1337–1362, https://doi.org/10.5194/acp-18-1337-2018, https://doi.org/10.5194/acp-18-1337-2018, 2018
Short summary
Short summary
We provide a 3-D climatology of desert dust aerosols over South and East Asia, based on 9 years of CALIPSO observations and an EARLINET methodology. The results provide the horizontal, vertical and seasonal distribution of dust aerosols over SE Asia along with the change in dust transport pathways. The dataset is unique for its potential applications, including evaluation and assimilation activities in atmospheric simulations and the estimation of the climatic impact of dust aerosols.
Martin Lainer, Klemens Hocke, Rolf Rüfenacht, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 14905–14917, https://doi.org/10.5194/acp-17-14905-2017, https://doi.org/10.5194/acp-17-14905-2017, 2017
Short summary
Short summary
We report on middle-atmospheric water vapor measurements above Bern from the ground-based microwave radiometer MIAWARA (NDACC affiliated) during two winter periods of 6 months. Quasi 18 h oscillations of mesospheric water vapor above 0.1 hPa are observed. Further, the 18 h wave is seen in a zonal wind data set from the Doppler wind radiometer WIRA. Inertia-gravity-wave-induced fluctuations or a nonlinear coupling between tides and quasi 2-day waves are considered as possible drivers.
Gerald E. Nedoluha, Michael Kiefer, Stefan Lossow, R. Michael Gomez, Niklaus Kämpfer, Martin Lainer, Peter Forkman, Ole Martin Christensen, Jung Jin Oh, Paul Hartogh, John Anderson, Klaus Bramstedt, Bianca M. Dinelli, Maya Garcia-Comas, Mark Hervig, Donal Murtagh, Piera Raspollini, William G. Read, Karen Rosenlof, Gabriele P. Stiller, and Kaley A. Walker
Atmos. Chem. Phys., 17, 14543–14558, https://doi.org/10.5194/acp-17-14543-2017, https://doi.org/10.5194/acp-17-14543-2017, 2017
Short summary
Short summary
As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. In the lower mesosphere, we quantify instrumental differences in the observed trends and annual variations at six sites. We then present a range of observed trends in water vapor over the past 20 years.
Christine Aebi, Julian Gröbner, Niklaus Kämpfer, and Laurent Vuilleumier
Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017, https://doi.org/10.5194/amt-10-4587-2017, 2017
Short summary
Short summary
The current study analyses the cloud radiative effect during the daytime depending on cloud fraction and cloud type at two stations in Switzerland over a time period of 3–5 years. Information about fractional cloud coverage and cloud type is retrieved from images taken by visible all-sky cameras. Cloud cover, cloud type and other atmospheric parameters have an influence on the magnitude of the longwave cloud effect as well as on the shortwave.
Francisco Navas-Guzmán, Niklaus Kämpfer, Franziska Schranz, Wolfgang Steinbrecht, and Alexander Haefele
Atmos. Chem. Phys., 17, 14085–14104, https://doi.org/10.5194/acp-17-14085-2017, https://doi.org/10.5194/acp-17-14085-2017, 2017
Short summary
Short summary
The paper presents assessment of the stratospheric measurements of a relatively new temperature radiometer (TEMPERA) at 60 GHz. The temperature profiles from TEMPERA have been compared with measurements from different techniques such as radiosondes, MLS satellite and Rayleigh lidar and with the temperature outputs from the SD-WACCM model. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes and comparisons, proving the good performance of TEMPERA.
René Stübi, Herbert Schill, Jörg Klausen, Laurent Vuilleumier, Julian Gröbner, Luca Egli, and Dominique Ruffieux
Atmos. Meas. Tech., 10, 4479–4490, https://doi.org/10.5194/amt-10-4479-2017, https://doi.org/10.5194/amt-10-4479-2017, 2017
Short summary
Short summary
Long-term measurement series are the pillars of all climate change analysis. The Arosa total ozone series is the world's longest record, starting in 1926. To secure the future of these measurements, it is foreseen to move the instruments in Davos. To ascertain that the series will not be affected by this change, a multiyear campaign of parallel measurements on both sites has been done. The analysis of these data is presented and it is concluded that no discernible difference can be identified.
Leonie Bernet, Francisco Navas-Guzmán, and Niklaus Kämpfer
Atmos. Meas. Tech., 10, 4421–4437, https://doi.org/10.5194/amt-10-4421-2017, https://doi.org/10.5194/amt-10-4421-2017, 2017
Short summary
Short summary
Microwave radiometry is a suitable technique to measure atmospheric temperature profiles during clear sky and cloudy conditions. However clouds can influence the temperature measurements. In this study we analyse the influence of clouds on temperature measurements in the troposphere from a microwave radiometer. We found that the effect of clouds on the temperature measurements is important and that the measurements can be improved substantially by considering clouds in the retrieval process.
Julian Gröbner, Ingo Kröger, Luca Egli, Gregor Hülsen, Stefan Riechelmann, and Peter Sperfeld
Atmos. Meas. Tech., 10, 3375–3383, https://doi.org/10.5194/amt-10-3375-2017, https://doi.org/10.5194/amt-10-3375-2017, 2017
Short summary
Short summary
We have produced a benchmark high-resolution solar extraterrestrial spectrum from ground-based measurements of direct solar irradiance in the wavelength range 300 to 500 nm. This spectrum can be used for model calculations and for validating solar spectra measured in space. The metrological traceability of this solar spectrum to the International System of Units (SI) is assured by an unbroken chain of calibrations traceable to the primary spectral irradiance standard of PTB.
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Lorena Moreira, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 10259–10268, https://doi.org/10.5194/acp-17-10259-2017, https://doi.org/10.5194/acp-17-10259-2017, 2017
Short summary
Short summary
GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) has provided ozone profiles for the Network for the Detection of Atmospheric Composition Change since 1994. A new retrieval version for ozone profiles aims to improve the altitude range of profiles. We performed a comparison between coincident profiles of GROMOS and Aura MLS, resulting in agreement within 2% in
the mid- and upper stratosphere from 2009 to 2016. We also observed extensions of the tertiary ozone maximum at midlatitudes.
Stephan Nyeki, Stefan Wacker, Julian Gröbner, Wolfgang Finsterle, and Martin Wild
Atmos. Meas. Tech., 10, 3057–3071, https://doi.org/10.5194/amt-10-3057-2017, https://doi.org/10.5194/amt-10-3057-2017, 2017
Short summary
Short summary
A large number of radiometers used to measure solar and terrestrial broadband radiation are traceable to World Standard Groups at PMOD/WRC in Davos, Switzerland. A small correction of each group may be required in the future, and this study examines the methods and implications of this on data sets collected at four remote baseline stations since the 1990s. The goal is to develop a better estimate of the solar and terrestrial radiation budget at the Earth's surface.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Eleni Athanasopoulou, Orestis Speyer, Panagiotis I. Raptis, Eleni Marinou, Emmanouil Proestakis, Stavros Solomos, Evangelos Gerasopoulos, Vassilis Amiridis, Alkiviadis Bais, and Charalabos Kontoes
Atmos. Meas. Tech., 10, 2435–2453, https://doi.org/10.5194/amt-10-2435-2017, https://doi.org/10.5194/amt-10-2435-2017, 2017
Short summary
Short summary
We study the impact of dust on solar energy using remote sensing data in conjunction with synergistic modelling and forecasting techniques. Under high aerosol loads, we found great solar energy losses of the order of 80 and 50% for concentrated solar power and photovoltaic installations, respectively. The 1-day forecast presented an overall accuracy within 10% in direct comparison to the real conditions under high energy potential, optimising the efficient energy planning and policies.
Klemens Hocke, Franziska Schranz, Eliane Maillard Barras, Lorena Moreira, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 3445–3452, https://doi.org/10.5194/acp-17-3445-2017, https://doi.org/10.5194/acp-17-3445-2017, 2017
Short summary
Short summary
Observation and simulation show an Atlantic ozone streamer along the edge region of the polar vortex in the northern middle stratosphere during winter. The Atlantic streamer has wind speeds of about 100 m/s and turns equatorward at a vortex erosion region. We compare the fields of stratospheric ozone and water vapour from ground- and space-based microwave radiometry and SD-WACCM simulations for a better understanding of non-linear transport processes in the middle atmosphere.
Thomas Carlund, Natalia Kouremeti, Stelios Kazadzis, and Julian Gröbner
Atmos. Meas. Tech., 10, 905–923, https://doi.org/10.5194/amt-10-905-2017, https://doi.org/10.5194/amt-10-905-2017, 2017
Short summary
Short summary
Aerosols play an important role in atmospheric processes. Aerosol optical depth is the most common measure of columnar aerosol load. We present a sunphotometer called UVPFR that is able to measure aerosol optical depth in the ultraviolet range, including the calibration, characterization and validation of the instrument/measurements. The instrument will serve as a reference on the intercalibration of Brewer spectrophotometers that are also able to measure aerosol optical depth in the UV region.
Christos S. Zerefos, Kostas Eleftheratos, John Kapsomenakis, Stavros Solomos, Antje Inness, Dimitris Balis, Alberto Redondas, Henk Eskes, Marc Allaart, Vassilis Amiridis, Arne Dahlback, Veerle De Bock, Henri Diémoz, Ronny Engelmann, Paul Eriksen, Vitali Fioletov, Julian Gröbner, Anu Heikkilä, Irina Petropavlovskikh, Janusz Jarosławski, Weine Josefsson, Tomi Karppinen, Ulf Köhler, Charoula Meleti, Christos Repapis, John Rimmer, Vladimir Savinykh, Vadim Shirotov, Anna Maria Siani, Andrew R. D. Smedley, Martin Stanek, and René Stübi
Atmos. Chem. Phys., 17, 551–574, https://doi.org/10.5194/acp-17-551-2017, https://doi.org/10.5194/acp-17-551-2017, 2017
Short summary
Short summary
The paper makes a convincing case that the Brewer network is capable of detecting enhanced SO2 columns, as observed, e.g., after volcanic eruptions. For this reason, large volcanic eruptions of the past decade have been used to detect and forecast SO2 plumes of volcanic origin using the Brewer and other ground-based networks, aided by satellite, trajectory analysis calculations and modelling.
Stelios Kazadzis, Panagiotis Raptis, Natalia Kouremeti, Vassilis Amiridis, Antti Arola, Evangelos Gerasopoulos, and Gregory L. Schuster
Atmos. Meas. Tech., 9, 5997–6011, https://doi.org/10.5194/amt-9-5997-2016, https://doi.org/10.5194/amt-9-5997-2016, 2016
Short summary
Short summary
Aerosols play an important role in the Earth's climate. One of the main aerosol properties is the single scattering albedo which is a measure of the aerosol absorption. In this work we have presented a method to retrieve this aerosol property in the ultraviolet and we presented the results for measurements at the urban environment of Athens, Greece. We show that the spectral dependence of the aerosol absorption in the VIS–IR and the UV range depends on the aerosol composition and type.
Francisco Navas-Guzmán, Niklaus Kämpfer, and Alexander Haefele
Atmos. Meas. Tech., 9, 4587–4600, https://doi.org/10.5194/amt-9-4587-2016, https://doi.org/10.5194/amt-9-4587-2016, 2016
Short summary
Short summary
The paper presents the assessment of the tropospheric measurements of a new temperature radiometer (TEMPERA) at 60 GHz. The temperature profiles from TEMPERA are compared with independent in situ radiosonde measurements. The TEMPERA performance is also compared with that of a commercial microwave radiometer (HATPRO). In addition, the brightness temperatures from both microwave radiometers are compared with the ones simulated using a radiative transfer model, ARTS.
Dimitra Founda, Stelios Kazadzis, Nikolaos Mihalopoulos, Evangelos Gerasopoulos, Maria Lianou, and Panagiotis I. Raptis
Atmos. Chem. Phys., 16, 11219–11236, https://doi.org/10.5194/acp-16-11219-2016, https://doi.org/10.5194/acp-16-11219-2016, 2016
Short summary
Short summary
Historical time series are unique sources of information for past climate and atmospheric composition change. The 82-year time series of visibility data collected at the National Observatory of Athens (NOA) was an excellent proxy for the long-term evolution of particulate pollution in the eastern Mediterranean, at times when direct aerosol measurements were missing. Evolution of particulate pollution of both local and regional origin is nicely reflected on visibility records of NOA.
Lorena Moreira, Klemens Hocke, Francisco Navas-Guzmán, Ellen Eckert, Thomas von Clarmann, and Niklaus Kämpfer
Atmos. Chem. Phys., 16, 10455–10467, https://doi.org/10.5194/acp-16-10455-2016, https://doi.org/10.5194/acp-16-10455-2016, 2016
Short summary
Short summary
The GROMOS radiometer in Bern has been part of the NDACC since 1994. Our time series of stratospheric ozone profiles allow the assessment of natural oscillations, which are essential for the evaluation of detected stratospheric ozone trends. Among our new findings are the link between the upper stratospheric O3-SAO and the polar stratopause warmings in winter. We have also detected a strong peak amplitude of 5 % related to the solar activity cycle and the ENSO effect in ozone at midlatitudes.
Antonis Gkikas, Sara Basart, Nikos Hatzianastassiou, Eleni Marinou, Vassilis Amiridis, Stelios Kazadzis, Jorge Pey, Xavier Querol, Oriol Jorba, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 16, 8609–8642, https://doi.org/10.5194/acp-16-8609-2016, https://doi.org/10.5194/acp-16-8609-2016, 2016
Short summary
Short summary
This study presents the 3-D structures of intense Mediterranean desert dust outbreaks, over the period Mar 2000–Feb 2013. The desert dust (DD) episodes are identified through an objective and dynamic algorithm, which utilizes satellite retrievals (MODIS, TOMS and OMI) as inputs. The performance of the satellite algorithm is evaluated vs. AERONET and PM10 data. The geometrical characteristics of the identified DD episodes are analyzed using the collocated CALIOP profiles as a complementary tool.
Susana Fernandez, Rolf Rüfenacht, Niklaus Kämpfer, Thierry Portafaix, Françoise Posny, and Guillaume Payen
Atmos. Chem. Phys., 16, 7531–7543, https://doi.org/10.5194/acp-16-7531-2016, https://doi.org/10.5194/acp-16-7531-2016, 2016
Short summary
Short summary
We present a new ground based microwave radiometer for campaigns, GROMOS-C. It measures the vertical distribution of ozone in the middle atmosphere by observing spectra at 110.836 GHz. The paper presents a validation campaign that took place on La Réunion Island. The ozone retrieved profiles are validated against ozone profiles from the Microwave Limb Sounder, the ozone lidar located in the observatory, ozone profiles from weekly radiosondes and with ECMWF model data.
Henri Diémoz, Kostas Eleftheratos, Stelios Kazadzis, Vassilis Amiridis, and Christos S. Zerefos
Atmos. Meas. Tech., 9, 1871–1888, https://doi.org/10.5194/amt-9-1871-2016, https://doi.org/10.5194/amt-9-1871-2016, 2016
Short summary
Short summary
A new algorithm allowed to retrieve aerosol optical depths from a Brewer spectrophotometer in Athens with excellent agreement with AERONET. The instrument radiometric stability and the performances of in situ Langley extrapolations as a way to track it are investigated. Potential sources of error and recommendations to operators are reported. MkIV Brewers represent a great source of information about aerosols in the past decades and a promising worldwide network for coordinated AOD measurements.
Rolf Rüfenacht, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 16, 4915–4925, https://doi.org/10.5194/acp-16-4915-2016, https://doi.org/10.5194/acp-16-4915-2016, 2016
Short summary
Short summary
We quantitatively analyze oscillations with periods from 5 to 50 days in horizontal wind profiles between mid-stratosphere and mesopause based on more than 44 months of data from high, mid- and low latitudes measured by a novel instrument. For the first time, long time series of continuous wind measurements allow direct observations of dynamics throughout this altitude range. The observations agree remarkably well with the ECMWF model in the stratosphere but discrepancies exist in the mesosphere.
Luca Egli, Julian Gröbner, Gregor Hülsen, Luciano Bachmann, Mario Blumthaler, Jimmy Dubard, Marina Khazova, Richard Kift, Kees Hoogendijk, Antonio Serrano, Andrew Smedley, and José-Manuel Vilaplana
Atmos. Meas. Tech., 9, 1553–1567, https://doi.org/10.5194/amt-9-1553-2016, https://doi.org/10.5194/amt-9-1553-2016, 2016
Short summary
Short summary
Array spectroradiometers are small, light, robust and cost-effective instruments, and are increasingly used for atmospheric measurements. The quality of array spectroradiometers is assessed for the reliable quantification of ultraviolet radiation (UV) in order to monitor the exposure of UV radiation to human health. The study shows that reliable UV measurements with these instruments are limited for observations around noon and show large biases in the morning and evening.
África Barreto, Emilio Cuevas, María-José Granados-Muñoz, Lucas Alados-Arboledas, Pedro M. Romero, Julian Gröbner, Natalia Kouremeti, Antonio F. Almansa, Tom Stone, Carlos Toledano, Roberto Román, Mikhail Sorokin, Brent Holben, Marius Canini, and Margarita Yela
Atmos. Meas. Tech., 9, 631–654, https://doi.org/10.5194/amt-9-631-2016, https://doi.org/10.5194/amt-9-631-2016, 2016
Short summary
Short summary
This paper presents the new photometer CE318-T, able to perform daytime and
night-time photometric measurements using the sun and the moon as light
sources. This new device permits a complete cycle of diurnal aerosol and water vapour measurements to be extracted, valuable to enhance atmospheric monitoring. We have also highlighted the ability of this new device to capture short-term atmospheric variations, critical for climate studies.
M. B. Korras-Carraca, N. Hatzianastassiou, C. Matsoukas, A. Gkikas, and C. D. Papadimas
Atmos. Chem. Phys., 15, 13113–13132, https://doi.org/10.5194/acp-15-13113-2015, https://doi.org/10.5194/acp-15-13113-2015, 2015
L. Moreira, K. Hocke, E. Eckert, T. von Clarmann, and N. Kämpfer
Atmos. Chem. Phys., 15, 10999–11009, https://doi.org/10.5194/acp-15-10999-2015, https://doi.org/10.5194/acp-15-10999-2015, 2015
Short summary
Short summary
GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) has provided ozone profiles for the NDACC (Network for the Detection of Atmospheric Composition Change) at Bern since 1994. We performed a trend analysis of our 20-year time series of stratospheric ozone profiles with a multilinear parametric trend estimation method. With our estimated ozone trends we are able to support the stratospheric ozone turnaround, besides a statistically significant negative trend in the lower mesosphere.
M. Lainer, N. Kämpfer, B. Tschanz, G. E. Nedoluha, S. Ka, and J. J. Oh
Atmos. Chem. Phys., 15, 9711–9730, https://doi.org/10.5194/acp-15-9711-2015, https://doi.org/10.5194/acp-15-9711-2015, 2015
Short summary
Short summary
We use water vapor profiles from ground-based microwave radiometers at five locations distributed over the Northern Hemisphere and operated in the frame of NDACC (Network for the Detection of Atmospheric Composition Change) to generate hemispheric water vapor maps based on the so-called trajectory mapping technique. The novelty is to show that a mini network of instruments is capable of providing information about the hemispheric distribution of water vapor under most conditions.
S. Fernandez, A. Murk, and N. Kämpfer
Atmos. Meas. Tech., 8, 2649–2662, https://doi.org/10.5194/amt-8-2649-2015, https://doi.org/10.5194/amt-8-2649-2015, 2015
B. Tschanz and N. Kämpfer
Atmos. Chem. Phys., 15, 5099–5108, https://doi.org/10.5194/acp-15-5099-2015, https://doi.org/10.5194/acp-15-5099-2015, 2015
F. Navas-Guzmán, N. Kämpfer, A. Murk, R. Larsson, S. A. Buehler, and P. Eriksson
Atmos. Meas. Tech., 8, 1863–1874, https://doi.org/10.5194/amt-8-1863-2015, https://doi.org/10.5194/amt-8-1863-2015, 2015
Short summary
Short summary
In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O2 energy states which polarizes the emission spectra. A special campaign was carried out in order to measure for the first time the polarization state of the radiation due to the Zeeman effect in the main isotopologue of oxygen from ground-based microwave measurements.
A. Schanz, K. Hocke, N. Kämpfer, S. Chabrillat, A. Inness, M. Palm, J. Notholt, I. Boyd, A. Parrish, and Y. Kasai
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-32667-2014, https://doi.org/10.5194/acpd-14-32667-2014, 2014
Revised manuscript not accepted
Short summary
Short summary
The manuscript describes novel findings in the diurnal variation of stratospheric ozone by means of the MACC reanalysis, the ERA-Interim reanalysis and the WACCM model. The diurnal variation in ozone has dynamical and photochemical origins which lead to substantial amplitudes especially in the polar, stratospheric regions. The unprecedented, global view on diurnal ozone variation strengthens the implication to correct diurnally sampled satellite observations used for ozone trend estimates.
R. Rüfenacht, A. Murk, N. Kämpfer, P. Eriksson, and S. A. Buehler
Atmos. Meas. Tech., 7, 4491–4505, https://doi.org/10.5194/amt-7-4491-2014, https://doi.org/10.5194/amt-7-4491-2014, 2014
Short summary
Short summary
Only very few techniques for wind measurements in the upper stratosphere and lower mesosphere exist. Moreover, none of these instruments is running on a continuous basis. This paper describes the development of ground-based microwave Doppler radiometry. Time series of daily wind profile measurements from four different locations at polar, mid- and tropical latitudes are presented. The agreement with ECMWF model data is good in the stratosphere, but discrepancies were found in the mesosphere.
J. Badosa, J. Wood, P. Blanc, C. N. Long, L. Vuilleumier, D. Demengel, and M. Haeffelin
Atmos. Meas. Tech., 7, 4267–4283, https://doi.org/10.5194/amt-7-4267-2014, https://doi.org/10.5194/amt-7-4267-2014, 2014
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
M. Taylor, S. Kazadzis, A. Tsekeri, A. Gkikas, and V. Amiridis
Atmos. Meas. Tech., 7, 3151–3175, https://doi.org/10.5194/amt-7-3151-2014, https://doi.org/10.5194/amt-7-3151-2014, 2014
A. Schanz, K. Hocke, and N. Kämpfer
Atmos. Chem. Phys., 14, 7645–7663, https://doi.org/10.5194/acp-14-7645-2014, https://doi.org/10.5194/acp-14-7645-2014, 2014
S. Kazadzis, I. Veselovskii, V. Amiridis, J. Gröbner, A. Suvorina, S. Nyeki, E. Gerasopoulos, N. Kouremeti, M. Taylor, A. Tsekeri, and C. Wehrli
Atmos. Meas. Tech., 7, 2013–2025, https://doi.org/10.5194/amt-7-2013-2014, https://doi.org/10.5194/amt-7-2013-2014, 2014
D. Scheiben, B. Tschanz, K. Hocke, N. Kämpfer, S. Ka, and J. J. Oh
Atmos. Chem. Phys., 14, 6511–6522, https://doi.org/10.5194/acp-14-6511-2014, https://doi.org/10.5194/acp-14-6511-2014, 2014
S. Studer, K. Hocke, A. Schanz, H. Schmidt, and N. Kämpfer
Atmos. Chem. Phys., 14, 5905–5919, https://doi.org/10.5194/acp-14-5905-2014, https://doi.org/10.5194/acp-14-5905-2014, 2014
F. Navas-Guzmán, O. Stähli, and N. Kämpfer
Atmos. Meas. Tech., 7, 1619–1628, https://doi.org/10.5194/amt-7-1619-2014, https://doi.org/10.5194/amt-7-1619-2014, 2014
M. Taylor, S. Kazadzis, and E. Gerasopoulos
Atmos. Meas. Tech., 7, 839–858, https://doi.org/10.5194/amt-7-839-2014, https://doi.org/10.5194/amt-7-839-2014, 2014
C. S. Zerefos, P. Tetsis, A. Kazantzidis, V. Amiridis, S. C. Zerefos, J. Luterbacher, K. Eleftheratos, E. Gerasopoulos, S. Kazadzis, and A. Papayannis
Atmos. Chem. Phys., 14, 2987–3015, https://doi.org/10.5194/acp-14-2987-2014, https://doi.org/10.5194/acp-14-2987-2014, 2014
V. Amiridis, U. Wandinger, E. Marinou, E. Giannakaki, A. Tsekeri, S. Basart, S. Kazadzis, A. Gkikas, M. Taylor, J. Baldasano, and A. Ansmann
Atmos. Chem. Phys., 13, 12089–12106, https://doi.org/10.5194/acp-13-12089-2013, https://doi.org/10.5194/acp-13-12089-2013, 2013
A. Gkikas, N. Hatzianastassiou, N. Mihalopoulos, V. Katsoulis, S. Kazadzis, J. Pey, X. Querol, and O. Torres
Atmos. Chem. Phys., 13, 12135–12154, https://doi.org/10.5194/acp-13-12135-2013, https://doi.org/10.5194/acp-13-12135-2013, 2013
A. Stenke, C. R. Hoyle, B. Luo, E. Rozanov, J. Gröbner, L. Maag, S. Brönnimann, and T. Peter
Atmos. Chem. Phys., 13, 9713–9729, https://doi.org/10.5194/acp-13-9713-2013, https://doi.org/10.5194/acp-13-9713-2013, 2013
O. Stähli, A. Murk, N. Kämpfer, C. Mätzler, and P. Eriksson
Atmos. Meas. Tech., 6, 2477–2494, https://doi.org/10.5194/amt-6-2477-2013, https://doi.org/10.5194/amt-6-2477-2013, 2013
D. Scheiben, A. Schanz, B. Tschanz, and N. Kämpfer
Atmos. Chem. Phys., 13, 6877–6886, https://doi.org/10.5194/acp-13-6877-2013, https://doi.org/10.5194/acp-13-6877-2013, 2013
B. Tschanz, C. Straub, D. Scheiben, K. A. Walker, G. P. Stiller, and N. Kämpfer
Atmos. Meas. Tech., 6, 1725–1745, https://doi.org/10.5194/amt-6-1725-2013, https://doi.org/10.5194/amt-6-1725-2013, 2013
S. Studer, K. Hocke, M. Pastel, S. Godin-Beekmann, and N. Kämpfer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-6097-2013, https://doi.org/10.5194/amtd-6-6097-2013, 2013
Revised manuscript has not been submitted
K. Hocke, S. Studer, O. Martius, D. Scheiben, and N. Kämpfer
Ann. Geophys., 31, 755–764, https://doi.org/10.5194/angeo-31-755-2013, https://doi.org/10.5194/angeo-31-755-2013, 2013
T. Egorova, E. Rozanov, J. Gröbner, M. Hauser, and W. Schmutz
Atmos. Chem. Phys., 13, 3811–3823, https://doi.org/10.5194/acp-13-3811-2013, https://doi.org/10.5194/acp-13-3811-2013, 2013
A. V. Lindfors, N. Kouremeti, A. Arola, S. Kazadzis, A. F. Bais, and A. Laaksonen
Atmos. Chem. Phys., 13, 3733–3741, https://doi.org/10.5194/acp-13-3733-2013, https://doi.org/10.5194/acp-13-3733-2013, 2013
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Analysis of 3D cloud effects in OCO-2 XCO2 retrievals
Improving cloud type classification of ground-based images using region covariance descriptors
Global cloud property models for real-time triage on board visible–shortwave infrared spectrometers
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Microwave single-scattering properties of non-spheroidal raindrops
Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
Improved cloud detection over sea ice and snow during Arctic summer using MERIS data
Observation of Cirrus Clouds with GLORIA during the WISE Campaign: Detection Methods and Cirrus Characterization
A study of polarimetric noise induced by satellite motion: Application to the 3MI and similar sensors
A kernel-driven BRDF model to inform satellite-derived visible anvil cloud detection
Cloud-top pressure retrieval with DSCOVR EPIC oxygen A- and B-band observations
Two-dimensional and multi-channel feature detection algorithm for the CALIPSO lidar measurements
Estimating total attenuation using Rayleigh targets at cloud top: applications in multilayer and mixed-phase clouds observed by ground-based multifrequency radars
A robust low-level cloud and clutter discrimination method for ground-based millimeter-wavelength cloud radar
A new Orbiting Carbon Observatory 2 cloud flagging method and rapid retrieval of marine boundary layer cloud properties
CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles
Detection of the cloud liquid water path horizontal inhomogeneity in a coastline area by means of ground-based microwave observations: feasibility study
Synergistic radar and radiometer retrievals of ice hydrometeors
Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion
Radiative transfer simulations and observations of infrared spectra in the presence of polar stratospheric clouds: Detection and discrimination of cloud types
Using two-stream theory to capture fluctuations of satellite-perceived TOA SW radiances reflected from clouds over ocean
Exploration of machine learning methods for the classification of infrared limb spectra of polar stratospheric clouds
Three-dimensional wind profiles using a stabilized shipborne cloud radar in wind profiler mode
Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm
MICRU background map and effective cloud fraction algorithms designed for UV/vis satellite instruments with large viewing angles
A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations
SegCloud: a novel cloud image segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation
Spatial distribution of cloud droplet size properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) measurements
Towards objective identification and tracking of convective outflow boundaries in next-generation geostationary satellite imagery
Cloud detection over snow and ice with oxygen A- and B-band observations from the Earth Polychromatic Imaging Camera (EPIC)
Ground-based observations of cloud and drizzle liquid water path in stratocumulus clouds
Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: evaluation of candidate approaches with MODIS observations
Towards an operational Ice Cloud Imager (ICI) retrieval product
Ice crystal number concentration from lidar, cloud radar and radar wind profiler measurements
Retrieval of cloud properties from spectral zenith radiances observed by sky radiometers
A new approach to estimate supersaturation fluctuations in stratocumulus cloud using ground-based remote-sensing measurements
ELIFAN, an algorithm for the estimation of cloud cover from sky imagers
Estimating solar irradiance using sky imagers
Toward autonomous surface-based infrared remote sensing of polar clouds: retrievals of cloud optical and microphysical properties
Use of spectral cloud emissivities and their related uncertainties to infer ice cloud boundaries: methodology and assessment using CALIPSO cloud products
The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow
Calibration of the 2007–2017 record of Atmospheric Radiation Measurements cloud radar observations using CloudSat
All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud
peakTree: a framework for structure-preserving radar Doppler spectra analysis
Development and validation of a supervised machine learning radar Doppler spectra peak-finding algorithm
Footprint-scale cloud type mixtures and their impacts on Atmospheric Infrared Sounder cloud property retrievals
Estimation of liquid water path below the melting layer in stratiform precipitation systems using radar measurements during MC3E
Correlated observation error models for assimilating all-sky infrared radiances
Cloud identification and classification from high spectral resolution data in the far infrared and mid-infrared
Investigating the liquid water path over the tropical Atlantic with synergistic airborne measurements
Steven T. Massie, Heather Cronk, Aronne Merrelli, Christopher O'Dell, K. Sebastian Schmidt, Hong Chen, and David Baker
Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021, https://doi.org/10.5194/amt-14-1475-2021, 2021
Short summary
Short summary
The OCO-2 science team is working to retrieve CO2 measurements that can be used by the carbon cycle community to calculate regional sources and sinks of CO2. The retrieved data, however, are in need of improvements in accuracy. This paper discusses several ways in which 3D cloud metrics (such as the distance of a measurement to the nearest cloud) can be used to account for cloud effects in the OCO-2 CO2 data files.
Yuzhu Tang, Pinglv Yang, Zeming Zhou, Delu Pan, Jianyu Chen, and Xiaofeng Zhao
Atmos. Meas. Tech., 14, 737–747, https://doi.org/10.5194/amt-14-737-2021, https://doi.org/10.5194/amt-14-737-2021, 2021
Short summary
Short summary
An automatic cloud classification method on whole-sky images is presented. We first extract multiple pixel-level features to form region covariance descriptors (RCovDs) and then encode RCovDs by the Riemannian bag-of-feature (BoF) method to output the histogram representation. Reults show that a very high prediction accuracy can be obtained with a small number of training samples, which validate the proposed method and exhibit the competitive performance against state-of-the-art methods.
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, and Winston Olson-Duvall
Atmos. Meas. Tech., 13, 7047–7057, https://doi.org/10.5194/amt-13-7047-2020, https://doi.org/10.5194/amt-13-7047-2020, 2020
Short summary
Short summary
We demonstrate an onboard cloud-screening approach to significantly reduce the amount of cloud-contaminated data transmitted from orbit. We have produced location-specific models that improve performance by taking into account the unique cloud statistics in different latitudes. We have shown that screening clouds based on their location or surface type will improve the ability for a cloud-screening tool to improve the volume of usable science data.
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020, https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Short summary
We use deep transfer learning techniques to classify satellite cloud images into different morphology types. It achieves the state-of-the-art results and can automatically process a large amount of satellite data. The algorithm will help low-cloud researchers to better understand their mesoscale organizations.
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020, https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary
Short summary
Raindrops become flattened due to aerodynamic drag as they increase in mass and fall speed. This study calculated the electromagnetic interaction between microwave radiation and non-spheroidal raindrops. The calculations are made publicly available to the scientific community, in order to promote accurate representations of raindrops in measurements. Tests show that the drop shape can have a noticeable effect on microwave observations of heavy rainfall.
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020, https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary
Short summary
In this work, the authors describe a process to determine the thermodynamic cloud phase using the Micro Pulse Lidar Network volume depolarization ratio measurements and temperature profiles from the Global Modeling and Assimilation Office GEOS-5 model. A multi-year analysis and comparisons to supercooled liquid water fractions derived from CALIPSO satellite measurements are used to demonstrate the efficacy of the method.
Larysa Istomina, Henrik Marks, Marcus Huntemann, Georg Heygster, and Gunnar Spreen
Atmos. Meas. Tech., 13, 6459–6472, https://doi.org/10.5194/amt-13-6459-2020, https://doi.org/10.5194/amt-13-6459-2020, 2020
Irene Bartolome Garcia, Reinhold Spang, Jörn Ungermann, Sabine Griessbach, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-394, https://doi.org/10.5194/amt-2020-394, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
Cirrus clouds contribute to the general radiation budget of the Earth. Measuring optically thin clouds is challenging but the IR limb sounder GLORIA possess the necessary technical characteristics to make it possible. This study analyses data from the WISE campaign obtained with GLORIA. We developed a cloud detection method and derived characteristics of the observed cirrus like cloud top, cloud bottom or position with respect to the tropopause.
Souichiro Hioki, Jérôme Riedi, and Mohamed S. Djellali
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-407, https://doi.org/10.5194/amt-2020-407, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
This research estimates the magnitude of a motion-induced noise in the measurement of polarimetric state of light by a planned instrument on a future satellite. We discovered that the motion-induced noise can not be cancelled out by spatio-temporal averaging, but it can be predicted from the along-track change of the intensity of light. With the estimated statistics and the simulation model, this research paves a way to provide pixel-level quality information in the future satellite products.
Benjamin R. Scarino, Kristopher Bedka, Rajendra Bhatt, Konstantin Khlopenkov, David R. Doelling, and William L. Smith Jr.
Atmos. Meas. Tech., 13, 5491–5511, https://doi.org/10.5194/amt-13-5491-2020, https://doi.org/10.5194/amt-13-5491-2020, 2020
Short summary
Short summary
This paper highlights a technique for facilitating anvil cloud detection based on visible observations that relies on comparative analysis with expected cloud reflectance for a given set of angles. A 1-year database of anvil-identified pixels, as determined from IR observations, from several geostationary satellites was used to construct a bidirectional reflectance distribution function model to quantify typical anvil reflectance across almost all expected viewing, solar, and azimuth angles.
Bangsheng Yin, Qilong Min, Emily Morgan, Yuekui Yang, Alexander Marshak, and Anthony B. Davis
Atmos. Meas. Tech., 13, 5259–5275, https://doi.org/10.5194/amt-13-5259-2020, https://doi.org/10.5194/amt-13-5259-2020, 2020
Short summary
Short summary
Cloud-top pressure (CTP) is an important cloud property for climate and weather studies. Based on differential oxygen absorption, both oxygen A-band and B-band pairs can be used to retrieve CTP. However, it is currently very challenging to perform a CTP retrieval accurately due to the complicated in-cloud penetration effect. To address this issue, we propose an analytic transfer inverse model for DSCOVR EPIC observations to retrieve CTP considering in-cloud photon penetration.
Thibault Vaillant de Guélis, Mark A. Vaughan, David M. Winker, and Zhaoyan Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-369, https://doi.org/10.5194/amt-2020-369, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
We introduce a new lidar feature detection algorithm that dramatically improves the fine details of layers identified in the CALIOP data. By applying our two-dimensional scanning technique to the measurements in all three channels, we minimize false positives while accurately identifying previously undetected features such as subvisible cirrus and the full vertical extent of dense smoke plumes. Multiple comparisons to version 4.2 CALIOP retrievals illustrate the scope of the improvements made.
Frédéric Tridon, Alessandro Battaglia, and Stefan Kneifel
Atmos. Meas. Tech., 13, 5065–5085, https://doi.org/10.5194/amt-13-5065-2020, https://doi.org/10.5194/amt-13-5065-2020, 2020
Short summary
Short summary
The droplets and ice crystals composing clouds and precipitation interact with microwaves and can therefore be observed by radars, but they can also attenuate the signal they emit. By combining the observations made by two ground-based radars, this study describes an original approach for estimating such attenuation. As a result, the latter can be not only corrected in the radar observations but also exploited for providing an accurate characterization of droplet and ice crystal properties.
Xiaoyu Hu, Jinming Ge, Jiajing Du, Qinghao Li, Jianping Huang, and Qiang Fu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-230, https://doi.org/10.5194/amt-2020-230, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
Cloud radars are powerful instruments that can probe detailed cloud structures. However, radar echoes in the lower atmosphere are always contaminated by clutters. We proposed a multi-dimensional probability distribution function that can effectively discriminate low-level clouds from clutters by considering their different features in several variables. We applied this method to the radar observations at SACOL site and found the results have a good agreement with lidar detections.
Mark Richardson, Matthew D. Lebsock, James McDuffie, and Graeme L. Stephens
Atmos. Meas. Tech., 13, 4947–4961, https://doi.org/10.5194/amt-13-4947-2020, https://doi.org/10.5194/amt-13-4947-2020, 2020
Short summary
Short summary
We previously combined CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar data and reflected-sunlight measurements from OCO-2 (Orbiting Carbon Observatory 2) for information about low clouds over oceans. The satellites are no longer formation-flying, so this work is a step towards getting new information about these clouds using only OCO-2. We can rapidly and accurately identify liquid oceanic clouds and obtain their height better than a widely used passive sensor.
Melody A. Avery, Robert A. Ryan, Brian J. Getzewich, Mark A. Vaughan, David M. Winker, Yongxiang Hu, Anne Garnier, Jacques Pelon, and Carolus A. Verhappen
Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020, https://doi.org/10.5194/amt-13-4539-2020, 2020
Short summary
Short summary
CALIOP data users will find more cloud layers detected in V4, with edges that extend further than in V3, for an increase in total atmospheric cloud volume of 6 %–9 % for high-confidence cloud phases and 1 %–2 % for all cloudy bins, including cloud fringes and unknown cloud phases. In V4 there are many fewer cloud layers identified as horizontally oriented ice, particularly in the 3° off-nadir view. Depolarization at 532 nm is the predominant parameter determining cloud thermodynamic phase.
Vladimir S. Kostsov, Dmitry V. Ionov, and Anke Kniffka
Atmos. Meas. Tech., 13, 4565–4587, https://doi.org/10.5194/amt-13-4565-2020, https://doi.org/10.5194/amt-13-4565-2020, 2020
Short summary
Short summary
Previously, observations from satellites provided evidence for systematic differences between the values of the cloud liquid water path over land and water areas in northern Europe. An attempt is made to detect such differences by means of ground-based microwave measurements performed near the coastline of the Gulf of Finland. The results demonstrate the existence of the cloud liquid water path gradient, which is positive as in the case of the satellite measurements (larger values over land).
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020, https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary
Short summary
The next generation of European operational weather satellites will carry a novel microwave sensor, the Ice Cloud Imager (ICI), which will provide observations of clouds at microwave frequencies that were not available before. We investigate the potential benefits of combining observations from ICI with that of a radar. We find that such combined observations provide additional information on the properties of the cloud and help to reduce uncertainties in retrieved mass and number densities.
Yue Li, Bryan A. Baum, Andrew K. Heidinger, W. Paul Menzel, and Elisabeth Weisz
Atmos. Meas. Tech., 13, 4035–4049, https://doi.org/10.5194/amt-13-4035-2020, https://doi.org/10.5194/amt-13-4035-2020, 2020
Short summary
Short summary
Use of VIIRS+CrIS fusion products, which provide VIIRS with MODIS-like IR sounding channels, improves cloud mask, cloud phase, and cloud top height retrievals when compared to those using VIIRS data only. NOAA CLAVR-x cloud retrievals for both S-NPP and NOAA-20 data are evaluated through comparisons to the CALIPSO v4 and MODIS Collection 6.1 cloud products. Cloud height retrievals show significant improvement for semitransparent ice clouds, with a reduction in retrieval uncertainties.
Christoph Kalicinsky, Sabine Griessbach, and Reinhold Spang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-144, https://doi.org/10.5194/amt-2020-144, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
For an airborne viewing geometry radiative transfer simulations of infrared limb emission spectra in the presence of PSCs (NAT, STS, ice, and mixtures) were used to develop a size sensitive NAT detection algorithm. Characteristic size dependent spectral features in the region 810–820 cm−1 were exploited to subgroup the NAT into three size regimes: small NAT (≤ 1.0 μm), medium NAT (1.5–4.0 μm), and large NAT(≥ 3.5 μm).
Florian Tornow, Carlos Domenech, Howard W. Barker, René Preusker, and Jürgen Fischer
Atmos. Meas. Tech., 13, 3909–3922, https://doi.org/10.5194/amt-13-3909-2020, https://doi.org/10.5194/amt-13-3909-2020, 2020
Short summary
Short summary
Clouds reflect sunlight unevenly, which makes it difficult to quantify the portion reflected back to space via satellite observation. To improve quantification, we propose a new statistical model that incorporates more satellite-inferred cloud and atmospheric properties than state-of-the-art models. We use concepts from radiative transfer theory that we statistically optimize to fit observations. The new model often explains past satellite observations better and predicts reflection plausibly.
Rocco Sedona, Lars Hoffmann, Reinhold Spang, Gabriele Cavallaro, Sabine Griessbach, Michael Höpfner, Matthias Book, and Morris Riedel
Atmos. Meas. Tech., 13, 3661–3682, https://doi.org/10.5194/amt-13-3661-2020, https://doi.org/10.5194/amt-13-3661-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) play a key role in polar ozone depletion in the stratosphere. In this paper, we explore the potential of applying machine learning (ML) methods to classify PSC observations of infrared spectra to classify PSC types. ML methods have proved to reach results in line with those obtained using well-established approaches. Among the considered ML methods, random forest (RF) seems to be the most promising one, being able to produce explainable classification results.
Alain Protat and Ian McRobert
Atmos. Meas. Tech., 13, 3609–3620, https://doi.org/10.5194/amt-13-3609-2020, https://doi.org/10.5194/amt-13-3609-2020, 2020
Short summary
Short summary
Three-dimensional (3D) wind motions play a major role in driving the life cycle of clouds. In this pilot study we have developed a technique to measure the 3D winds in clouds, using a shipborne Doppler cloud radar on a stabilized platform. The stabilized platform is driven to point in a series of predefined directions to collect the required measurements. Comparisons with radiosondes demonstrate that accurate 1 min resolution 3D wind motions can be obtained from this instrumental setup.
Daniel J. Miller, Michal Segal-Rozenhaimer, Kirk Knobelspiesse, Jens Redemann, Brian Cairns, Mikhail Alexandrov, Bastiaan van Diedenhoven, and Andrzej Wasilewski
Atmos. Meas. Tech., 13, 3447–3470, https://doi.org/10.5194/amt-13-3447-2020, https://doi.org/10.5194/amt-13-3447-2020, 2020
Short summary
Short summary
A neural network (NN) is developed and used to retrieve cloud microphysical properties from multiangular and multispectral polarimetric remote sensing observations. The NN is applied to research scanning polarimeter (RSP) observations obtained during the ORACLES field campaign and compared to other co-located remote sensing retrievals of cloud effective radius and optical thickness. A NN approach can advance more complex iterative search retrieval algorithms by providing a quick initial guess.
Holger Sihler, Steffen Beirle, Steffen Dörner, Marloes Gutenstein-Penning de Vries, Christoph Hörmann, Christian Borger, Simon Warnach, and Thomas Wagner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-182, https://doi.org/10.5194/amt-2020-182, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
MICRU is an algorithm for the retrieval of effective cloud fractions (CF) from satellite measurements. CF describe the amount of clouds, which have a significant impact on the vertical sensitivity profile of trace-gases like NO2 and HCHO. MICRU retrieves small CF with an accuracy of 0.04 over the entire satellite swath. It features an empirical surface reflectivity model accounting for physical anisotropy (BRDF, sun glitter) and instrumental effects. MICRU is also applicable to imager data.
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020, https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary
Short summary
A machine-learning (ML)-based approach that can be used for cloud mask and phase detection is developed. An all-day model that uses infrared (IR) observations and a daytime model that uses shortwave and IR observations from a passive instrument are trained separately for different surface types. The training datasets are selected by using reference pixel types from collocated space lidar. The ML approach is validated carefully and the overall performance is better than traditional methods.
Wanyi Xie, Dong Liu, Ming Yang, Shaoqing Chen, Benge Wang, Zhenzhu Wang, Yingwei Xia, Yong Liu, Yiren Wang, and Chaofang Zhang
Atmos. Meas. Tech., 13, 1953–1961, https://doi.org/10.5194/amt-13-1953-2020, https://doi.org/10.5194/amt-13-1953-2020, 2020
Brent A. McBride, J. Vanderlei Martins, Henrique M. J. Barbosa, William Birmingham, and Lorraine A. Remer
Atmos. Meas. Tech., 13, 1777–1796, https://doi.org/10.5194/amt-13-1777-2020, https://doi.org/10.5194/amt-13-1777-2020, 2020
Short summary
Short summary
Clouds play a large role in the way our Earth system distributes energy. The measurement of cloud droplet size distribution (DSD) is one way to connect small-scale cloud processes to scattered radiation. Our small satellite instrument, the Airborne Hyper-Angular Rainbow Polarimeter, is the first to infer DSDs over a wide spatial cloud field using polarized light. This study improves the way we interpret cloud properties and shows that high-quality science does not require a large taxpayer cost.
Jason M. Apke, Kyle A. Hilburn, Steven D. Miller, and David A. Peterson
Atmos. Meas. Tech., 13, 1593–1608, https://doi.org/10.5194/amt-13-1593-2020, https://doi.org/10.5194/amt-13-1593-2020, 2020
Short summary
Short summary
Objective identification of deep convection outflow boundaries (OFBs) in next-generation geostationary satellite imagery is explored here using motion derived from a tuned advanced optical flow algorithm. Motion discontinuity preservation within the derivation is found crucial for successful OFB tracking between images, which yields new meteorological data for objective systems to use. These results provide the first step towards a fully automated satellite-based OFB identification algorithm.
Yaping Zhou, Yuekui Yang, Meng Gao, and Peng-Wang Zhai
Atmos. Meas. Tech., 13, 1575–1591, https://doi.org/10.5194/amt-13-1575-2020, https://doi.org/10.5194/amt-13-1575-2020, 2020
Short summary
Short summary
Satellite cloud detection over snow and ice has been difficult for passive remote sensing instruments due to the lack of contrast between clouds and the bright and cold surfaces; the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) has very limited channels. This study investigates the methodology of applying EPIC's two oxygen absorption band pair ratios for cloud detection over snow and ice surfaces.
Maria P. Cadeddu, Virendra P. Ghate, and Mario Mech
Atmos. Meas. Tech., 13, 1485–1499, https://doi.org/10.5194/amt-13-1485-2020, https://doi.org/10.5194/amt-13-1485-2020, 2020
Short summary
Short summary
A combination of ground-based active and passive observations is used to partition cloud and precipitation liquid water path in precipitating stratocumulous clouds. Results show that neglecting scattering effects from drizzle drops leads to 8–15 % overestimation of the liquid amount in the cloud. In closed-cell systems only ~20 % of the available drizzle in the cloud falls below the cloud base, compared to ~40 % in open-cell systems.
Frank Werner and Hartwig Deneke
Atmos. Meas. Tech., 13, 1089–1111, https://doi.org/10.5194/amt-13-1089-2020, https://doi.org/10.5194/amt-13-1089-2020, 2020
Short summary
Short summary
The reliability of remotely sensed cloud variables from space depends on the horizontal resolution of the instrument. This study presents and evaluates several candidate approaches for increasing the spatial resolution of observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) from the native 3 km scale to a horizontal resolution of 1 km. It is shown that uncertainties in the derived cloud products can be significantly mitigated by applying an appropriate downscaling scheme.
Patrick Eriksson, Bengt Rydberg, Vinia Mattioli, Anke Thoss, Christophe Accadia, Ulf Klein, and Stefan A. Buehler
Atmos. Meas. Tech., 13, 53–71, https://doi.org/10.5194/amt-13-53-2020, https://doi.org/10.5194/amt-13-53-2020, 2020
Short summary
Short summary
The Ice Cloud Imager (ICI) will be the first operational satellite sensor operating at sub-millimetre wavelengths and this novel mission will thus provide important new data to weather forecasting and climate studies. The series of ICI instruments will together cover about 20 years. This article presents the basic technical characteristics of the sensor and outlines the day-one operational retrievals. An updated estimation of the expected retrieval performance is also presented.
Johannes Bühl, Patric Seifert, Martin Radenz, Holger Baars, and Albert Ansmann
Atmos. Meas. Tech., 12, 6601–6617, https://doi.org/10.5194/amt-12-6601-2019, https://doi.org/10.5194/amt-12-6601-2019, 2019
Short summary
Short summary
In the present paper, we present a novel remote-sensing technique for the measurement of ice crystal number concentrations in clouds. The fall velocity of ice crystals measured with values from cloud radar and a radar wind profiler is used in order to derive information about ice crystal size and number concentration. In contrast to existing methods based on the combination of lidar and cloud radar, the present method can also be used in optically thick clouds.
Pradeep Khatri, Hironobu Iwabuchi, Tadahiro Hayasaka, Hitoshi Irie, Tamio Takamura, Akihiro Yamazaki, Alessandro Damiani, Husi Letu, and Qin Kai
Atmos. Meas. Tech., 12, 6037–6047, https://doi.org/10.5194/amt-12-6037-2019, https://doi.org/10.5194/amt-12-6037-2019, 2019
Short summary
Short summary
In an attempt to make cloud retrievals from the surface more common and convenient, we developed a cloud retrieval algorithm applicable for sky radiometers. It is based on an optimum method by fitting measured transmittances with modeled values. Further, a cost-effective and easy-to-use calibration procedure is proposed and validated using data obtained from the standard method. A detailed error analysis and quality assessment are also performed.
Fan Yang, Robert McGraw, Edward P. Luke, Damao Zhang, Pavlos Kollias, and Andrew M. Vogelmann
Atmos. Meas. Tech., 12, 5817–5828, https://doi.org/10.5194/amt-12-5817-2019, https://doi.org/10.5194/amt-12-5817-2019, 2019
Short summary
Short summary
In-cloud supersaturation is crucial for droplet activation, growth, and drizzle initiation but is poorly known and hardly measured. Here we provide a novel method to estimate supersaturation fluctuation in stratocumulus clouds using remote-sensing measurements, and results show that our estimated supersaturation agrees reasonably well with in situ measurements. Our method provides a unique way to estimate supersaturation in stratocumulus clouds from long-term ground-based observations.
Marie Lothon, Paul Barnéoud, Omar Gabella, Fabienne Lohou, Solène Derrien, Sylvain Rondi, Marjolaine Chiriaco, Sophie Bastin, Jean-Charles Dupont, Martial Haeffelin, Jordi Badosa, Nicolas Pascal, and Nadège Montoux
Atmos. Meas. Tech., 12, 5519–5534, https://doi.org/10.5194/amt-12-5519-2019, https://doi.org/10.5194/amt-12-5519-2019, 2019
Short summary
Short summary
In the context of an atmospheric network of instrumented sites equipped with sky cameras for cloud monitoring, we present an algorithm named ELIFAN, which aims to estimate the cloud cover amount from full-sky visible daytime images. ELIFAN is based on red-to-blue ratio thresholding applied on the image pixels and on the use of a blue-sky library. We present its principle and its performance and highlight the interest of combining several complementary instruments.
Soumyabrata Dev, Florian M. Savoy, Yee Hui Lee, and Stefan Winkler
Atmos. Meas. Tech., 12, 5417–5429, https://doi.org/10.5194/amt-12-5417-2019, https://doi.org/10.5194/amt-12-5417-2019, 2019
Short summary
Short summary
Ground-based whole-sky cameras are now extensively used for the localized monitoring of clouds. In this paper, we derive a model for estimating solar irradiance using the pictures taken by those imagers. Unlike pyranometers, these sky images contain information about cloud coverage and can be used to derive cloud movement. An accurate estimation of solar irradiance using solely those images is thus a first step towards short-term solar energy generation forecasting.
Penny M. Rowe, Christopher J. Cox, Steven Neshyba, and Von P. Walden
Atmos. Meas. Tech., 12, 5071–5086, https://doi.org/10.5194/amt-12-5071-2019, https://doi.org/10.5194/amt-12-5071-2019, 2019
Short summary
Short summary
A better understanding of polar clouds is needed for predicting climate change, including cloud thickness and the sizes and amounts of liquid droplets and ice crystals. These properties can be estimated from an instrument (an infrared spectrometer) that sits on the surface and measures how much infrared radiation is emitted by the cloud. In this work we use model data to investigate how well such an instrument could retrieve cloud properties for different instrument and error characteristics.
Hye-Sil Kim, Bryan A. Baum, and Yong-Sang Choi
Atmos. Meas. Tech., 12, 5039–5054, https://doi.org/10.5194/amt-12-5039-2019, https://doi.org/10.5194/amt-12-5039-2019, 2019
Short summary
Short summary
This study demonstrates that ice cloud emissivity uncertainties at 11, 12, and 13.3 µm can be used to provide a reasonable range of ice cloud layer boundaries. We test this methodology using MODIS Collection 6 cloud properties over the western North Pacific Ocean during August 2015. The cloud boundaries for single-layer optically thin ice clouds show good agreement with those from CALIOP version 4 products, with biases increasing for optically thick and multilayered clouds.
Shannon L. Mason, Robin J. Hogan, Christopher D. Westbrook, Stefan Kneifel, Dmitri Moisseev, and Leonie von Terzi
Atmos. Meas. Tech., 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019, https://doi.org/10.5194/amt-12-4993-2019, 2019
Short summary
Short summary
The mass contents of snowflakes are critical to remotely sensed estimates of snowfall. The signatures of snow measured at three radar frequencies can distinguish fluffy, fractal snowflakes from dense and more homogeneous rimed snow. However, we show that the shape of the particle size spectrum also has a significant impact on triple-frequency radar signatures and must be accounted for when making triple-frequency radar estimates of snow that include variations in particle structure and density.
Pavlos Kollias, Bernat Puigdomènech Treserras, and Alain Protat
Atmos. Meas. Tech., 12, 4949–4964, https://doi.org/10.5194/amt-12-4949-2019, https://doi.org/10.5194/amt-12-4949-2019, 2019
Short summary
Short summary
Profiling millimeter-wavelength radars are the cornerstone instrument of surface-based observatories. Calibrating these radars is important for establishing a long record of observations suitable for model evaluation and improvement. Here, the CloudSat CPR is used to assess the calibration of a record over 10 years long of ARM cloud radar observations (a total of 44 years). The results indicate that correction coefficients are needed to improve record reliability and usability.
Alan J. Geer, Stefano Migliorini, and Marco Matricardi
Atmos. Meas. Tech., 12, 4903–4929, https://doi.org/10.5194/amt-12-4903-2019, https://doi.org/10.5194/amt-12-4903-2019, 2019
Short summary
Short summary
Satellite radiance observations have only recently become usable in conditions of cloud and precipitation for the initialization of weather forecasts. The move to
all-skyassimilation started with data from the microwave part of the spectrum, with substantial benefit to the quality of operational forecasts. The current work shows a framework in which cloudy infrared data, with its stronger and more non-linear sensitivity, can also benefit operational-quality forecasts.
Martin Radenz, Johannes Bühl, Patric Seifert, Hannes Griesche, and Ronny Engelmann
Atmos. Meas. Tech., 12, 4813–4828, https://doi.org/10.5194/amt-12-4813-2019, https://doi.org/10.5194/amt-12-4813-2019, 2019
Short summary
Short summary
Clouds may be composed of more than one particle population even at the smallest scales. Cloud radar observations can contain information on multiple particle species, showing up as distinct peaks and subpeaks in the Doppler spectrum. We propose the use of binary tree structures to recursively structure these peaks. Two case studies from different locations and instruments illustrate how this approach can be used to disentangle particle populations in multilayered mixed-phase clouds.
Heike Kalesse, Teresa Vogl, Cosmin Paduraru, and Edward Luke
Atmos. Meas. Tech., 12, 4591–4617, https://doi.org/10.5194/amt-12-4591-2019, https://doi.org/10.5194/amt-12-4591-2019, 2019
Short summary
Short summary
In a cloud, different particles like liquid water droplets and ice particles can exist simultaneously. To study the evolution of cloud particles from cloud top to bottom one has to find out how many different types of particles with different fall velocities are present. This can be done by analyzing the number of peaks in upward-looking cloud radar Doppler spectra. A new machine-learning algorithm (named PEAKO) that determines the number of peaks is introduced and compared to existing methods.
Alexandre Guillaume, Brian H. Kahn, Eric J. Fetzer, Qing Yue, Gerald J. Manipon, Brian D. Wilson, and Hook Hua
Atmos. Meas. Tech., 12, 4361–4377, https://doi.org/10.5194/amt-12-4361-2019, https://doi.org/10.5194/amt-12-4361-2019, 2019
Short summary
Short summary
A method is described to classify cloud mixtures of cloud top types, termed cloud scenes, using cloud type classification derived from the CloudSat radar. The scale dependence of the cloud scenes is quantified. The cloud scenes are used to assess the characteristics of spatially collocated Atmospheric Infrared Sounder (AIRS) thermodynamic-phase and ice cloud property retrievals within scenes of varying cloud type complexity.
Jingjing Tian, Xiquan Dong, Baike Xi, Christopher R. Williams, and Peng Wu
Atmos. Meas. Tech., 12, 3743–3759, https://doi.org/10.5194/amt-12-3743-2019, https://doi.org/10.5194/amt-12-3743-2019, 2019
Short summary
Short summary
Liquid water path (LWP) is a combination of rain liquid water path (RLWP) and cloud liquid water path (CLWP) in stratiform precipitation systems. LWP partitioning is important but poorly understood. Here we estimate the RLWP and CLWP below the melting base simultaneously and separately using ceilometer and radar measurements. Results show that the occurrence of cloud particles below the melting base is low; however, when cloud particles exist, the CLWP value is much larger than the RLWP.
Alan J. Geer
Atmos. Meas. Tech., 12, 3629–3657, https://doi.org/10.5194/amt-12-3629-2019, https://doi.org/10.5194/amt-12-3629-2019, 2019
Short summary
Short summary
Using more satellite data in cloudy areas helps improve weather forecasts, but all-sky assimilation is still tricky, particularly for infrared data. To allow the use of hyperspectral infrared sounder radiances in all-sky conditions, an error model is developed that, in the presence of cloud, broadens the correlations between channels and increases error variances. After fixing problems of gravity wave and bias amplification, the results of all-sky assimilation trials were promising.
Tiziano Maestri, William Cossich, and Iacopo Sbrolli
Atmos. Meas. Tech., 12, 3521–3540, https://doi.org/10.5194/amt-12-3521-2019, https://doi.org/10.5194/amt-12-3521-2019, 2019
Short summary
Short summary
An innovative and flexible methodology for cloud identification and classification, CIC, is tested on a synthetic dataset of high spectral resolution radiances in the far- and mid-infrared part of the spectrum, simulating measurements from the FORUM (Far Infrared Outgoing Radiation Understanding and Monitoring) mission. Results show that classification scores are greatly increased when far-infrared channels are accounted for and the identification of thin cirrus clouds is improved.
Marek Jacob, Felix Ament, Manuel Gutleben, Heike Konow, Mario Mech, Martin Wirth, and Susanne Crewell
Atmos. Meas. Tech., 12, 3237–3254, https://doi.org/10.5194/amt-12-3237-2019, https://doi.org/10.5194/amt-12-3237-2019, 2019
Short summary
Short summary
Tropical clouds are a key climate component but are still not fully understood. Therefore, we analyze airborne remote sensing measurements that were taken in the dry and wet seasons over the Atlantic east of Barbados. From these we derive sub-kilometer resolution data of vertically integrated atmospheric water vapor and liquid water. Results show that although the humidity is lower in the dry season, clouds are more frequent, contain more water, and produce more rain than in the wet season.
Cited articles
Ackerman, T. P., Flynn, D. M., and Marchand, R. T.: Quantifying the magnitude
of anomalous solar absorption, J. Geophys. Res.-Atmos., 108,
4273, https://doi.org/10.1029/2002JD002674, 2003. a
Aebi, C., Gröbner, J., Kämpfer, N., and Vuilleumier, L.: Cloud radiative effect, cloud fraction and cloud type at two stations in Switzerland using hemispherical sky cameras, Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017, 2017. a, b, c, d
Aebi, C., Gröbner, J., and Kämpfer, N.: Cloud fraction determined by thermal infrared and visible all-sky cameras, Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018, 2018. a
Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, 2015. a
Anderson, G. P.: AFGL atmospheric constituent profiles (0–120km), Hanscom
AFB, MA: Optical Physics Division, Air Force Geophysics Laboratory,
AFGL-TR; 86-0110, U.S. Air Force Geophysics Laboratory, Optical
Physics Division, 1986. a
Antón, M., López, M., Vilaplana, J. M., Kroon, M., McPeters, R., Bañón,
M., and Serrano, A.: Validation of OMI-TOMS and OMI-DOAS total ozone column
using five Brewer spectroradiometers at the Iberian peninsula, J. Geophys.
Res.-Atmos., 114, D14307, https://doi.org/10.1029/2009JD012003, 2009. a
Baran, A. J.: A review of the light scattering properties of cirrus, J. Quant. Spectrosc. Ra., 110, 1239–1260,
https://doi.org/10.1016/j.jqsrt.2009.02.026, 2009. a
Baran, A. J.: From the single-scattering properties of ice crystals to climate
prediction: A way forward, Atmos. Res., 112, 45–69,
https://doi.org/10.1016/j.atmosres.2012.04.010, 2012. a
Barker, H. W., Curtis, T. J., Leontieva, E., and Stamnes, K.: Optical Depth of
Overcast Cloud across Canada: Estimates Based on Surface Pyranometer and
Satellite Measurements, J. Climate, 11, 2980–2994,
https://doi.org/10.1175/1520-0442(1998)011<2980:ODOOCA>2.0.CO;2,
1998. a, b, c
Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Cole, B. H., Merrelli,
A., Schmitt, C., and Wang, C.: Ice cloud single-scattering property models
with the full phase matrix at wavelengths from 0.2 to 100 µm, J.
Quant. Spectrosc. Ra., 146, 123–139,
https://doi.org/10.1016/j.jqsrt.2014.02.029, 2014. a
BIPM: Guide to the Expression of Uncertainty in Measurement, available at: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (last access: 18 February 2020), 2008. a
Blanc, P., Espinar, B., Geuder, N., Gueymard, C., Meyer, R., Pitz-Paal, R.,
Reinhardt, B., Rennè, D., Sengupta, M., Wald, L., and Wilbert, S.: Direct
normal irradiance related definitions and applications: The circumsolar
issue, Sol. Energy, 110, 561–577,
https://doi.org/10.1016/j.solener.2014.10.001,
2014. a, b
Bohren, C. F., Linskens, J. R., and Churma, M. E.: At What Optical Thickness
Does a Cloud Completely Obscure the Sun?, J. Atmos.
Sci., 52, 1257–1259,
https://doi.org/10.1175/1520-0469(1995)052<1257:AWOTDA>2.0.CO;2, 1995. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, book
section 7, 571–658, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Ceppi, P., Brient, F., Zelinka, M. D., and Hartmann, D. L.: Cloud feedback
mechanisms and their representation in global climate models, Wiley
Interdisciplinary Reviews: Climate Change, 8, e465, https://doi.org/10.1002/wcc.465,
2017. a
Chen, T., Rossow, W. B., and Zhang, Y. C.: Radiative effects of cloud-type
variations, J. Climate, 13, 264–286,
https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2, 2000. a
Chiu, J. C., Huang, C.-H., Marshak, A., Slutsker, I., Giles, D. M., Holben,
B. N., Knyazikhin, Y., and Wiscombe, W. J.: Cloud optical depth retrievals
from the Aerosol Robotic Network (AERONET) cloud mode observations, J.
Geophys. Res.-Atmos., 115, D14202, https://doi.org/10.1029/2009JD013121,
2010. a, b
Dolinar, E. K., Dong, X., Xi, B., Jiang, J. H., and Loeb, N. G.: A clear-sky
radiation closure study using a one-dimensional radiative transfer model and
collocated satellite-surface-reanalysis data sets, J. Geophys. Res.-Atmos.,
121, 13698–13714, https://doi.org/10.1002/2016JD025823, 2016. a
Dong, X., Minnis, P., Ackerman, T. P., Clothiaux, E. E., Mace, G. G., Long,
C. N., and Liljegren, J. C.: A 25-month database of stratus cloud properties
generated from ground-based measurements at the Atmospheric Radiation
Measurement Southern Great Plains Site, J. Geophys. Res.-Atmos., 105,
4529–4537, https://doi.org/10.1029/1999JD901159, 2000. a
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018. a
Dupont, J.-C., Haeffelin, M., Wærsted, E., Delanoe, J., Renard, J.-B.,
Preissler, J., and O-Dowd, C.: Evaluation of Fog and Low Stratus Cloud
Microphysical Properties Derived from In Situ Sensor, Cloud Radar and SYRSOC
Algorithm, Atmosphere, 9, 169, https://doi.org/10.3390/atmos9050169,
2018. a
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016. a
Finger, F., Werner, F., Klingebiel, M., Ehrlich, A., Jäkel, E., Voigt, M., Borrmann, S., Spichtinger, P., and Wendisch, M.: Spectral optical layer properties of cirrus from collocated airborne measurements and simulations, Atmos. Chem. Phys., 16, 7681–7693, https://doi.org/10.5194/acp-16-7681-2016, 2016. a
Gasteiger, J., Emde, C., Mayer, B., Buras, R., Buehler, S., and Lemke, O.:
Representative wavelengths absorption parameterization applied to satellite
channels and spectral bands, J. Quant. Spectrosc.
Ra., 148, 99–115, https://doi.org/10.1016/j.jqsrt.2014.06.024, 2014. a
Giannakaki, E., Balis, D. S., Amiridis, V., and Kazadzis, S.: Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station, Atmos. Chem. Phys., 7, 5519–5530, https://doi.org/10.5194/acp-7-5519-2007, 2007. a, b
Gouveia, D. A., Barja, B., Barbosa, H. M. J., Seifert, P., Baars, H., Pauliquevis, T., and Artaxo, P.: Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements, Atmos. Chem. Phys., 17, 3619–3636, https://doi.org/10.5194/acp-17-3619-2017, 2017. a
Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and
Clouds: The Software Package OPAC, B. Am. Meteorol. Soc., 79, 831–844,
https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998. a, b, c
Hong, Y. and Liu, G.: The Characteristics of Ice Cloud Properties Derived from
CloudSat and CALIPSO Measurements, J. Climate, 28, 3880–3901,
https://doi.org/10.1175/JCLI-D-14-00666.1,
2015. a, b, c
Hu, Y. X. and Stamnes, K.: An Accurate Parameterization of the Radiative
Properties of Water Clouds Suitable for Use in Climate Models, J. Climate, 6,
728–742, https://doi.org/10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2, 1993. a
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, 2013. a
Jensen, E. J., Kinne, S., and Toon, O. B.: Tropical Cirrus Cloud Radiative
Forcing – Sensitivity Studies, Geophys. Res. Lett., 21, 2023–2026,
https://doi.org/10.1029/94GL01358, 1994. a
Kato, S., Ackerman, T. P., Clothiaux, E. E., Mather, J. H., Mace, G. G.,
Wesely, M. L., Murcray, F., and Michalsky, J.: Uncertainties in modeled and
measured clear-sky surface shortwave irradiances, J. Geophys. Res.-Atmos.,
102, 25881–25898, https://doi.org/10.1029/97JD01841, 1997. a
Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., and Holben,
B. N.: Operational remote sensing of tropospheric aerosol over land from EOS
moderate resolution imaging spectroradiometer, J. Geophys. Res.-Atmos., 102,
17051–17067, https://doi.org/10.1029/96JD03988, 1997. a
Kazadzis, S., Kouremeti, N., Diémoz, H., Gröbner, J., Forgan, B. W., Campanelli, M., Estellés, V., Lantz, K., Michalsky, J., Carlund, T., Cuevas, E., Toledano, C., Becker, R., Nyeki, S., Kosmopoulos, P. G., Tatsiankou, V., Vuilleumier, L., Denn, F. M., Ohkawara, N., Ijima, O., Goloub, P., Raptis, P. I., Milner, M., Behrens, K., Barreto, A., Martucci, G., Hall, E., Wendell, J., Fabbri, B. E., and Wehrli, C.: Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements, Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, 2018. a
Key, J. R., Yang, P., Baum, B. A., and Nasiri, S. L.: Parameterization of
shortwave ice cloud optical properties for various particle habits, J.
Geophys. Res.-Atmos., 107, AAC 7-1–AAC 7-10, https://doi.org/10.1029/2001JD000742,
2002. a, b, c, d
Kokhanovsky, A.: Optical properties of terrestrial clouds, Earth-Sci.
Rev., 64, 189–241, https://doi.org/10.1016/S0012-8252(03)00042-4,
2004. a
König-Langlo, G., Sieger, R., Schmithüsen, H., Bücker, A., Richter, F., and Dutton, E.: The Baseline Surface Radiation Network and its World Radiation Monitoring Centre at the Alfred Wegener Institute, GCOS – 174, WCRP Report 24/2013, available at:
https://bsrn.awi.de/fileadmin/user_upload/bsrn.awi.de/Publications/gcos-174.pdf (last access: 18 February 2020), 2013. a
Korolev, A. V., Isaac, G. A., Strapp, J. W., Cober, S. G., and Barker, H. W.:
In situ measurements of liquid water content profiles in midlatitude
stratiform clouds, Q. J. Roy. Meteor. Soc.,
133, 1693–1699, https://doi.org/10.1002/qj.147, 2007. a
Kox, S., Bugliaro, L., and Ostler, A.: Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing, Atmos. Meas. Tech., 7, 3233–3246, https://doi.org/10.5194/amt-7-3233-2014, 2014. a
Krisna, T. C., Wendisch, M., Ehrlich, A., Jäkel, E., Werner, F., Weigel, R., Borrmann, S., Mahnke, C., Pöschl, U., Andreae, M. O., Voigt, C., and Machado, L. A. T.: Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds, Atmos. Chem. Phys., 18, 4439–4462, https://doi.org/10.5194/acp-18-4439-2018, 2018. a
Leontyeva, E. and Stamnes, K.: Estimations of Cloud Optical Thickness from
Ground-Based Measurements of Incoming Solar Radiation in the Arctic, J. Climate, 7, 566–578,
https://doi.org/10.1175/1520-0442(1994)007<0566:EOCOTF>2.0.CO;2,
1994. a, b
Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Malkki, A., Visser, H.,
de Vries, J., Stammes, P., Lundell, J. O. V., and Saari, H.: The ozone
monitoring instrument, IEEE T. Geosci. Remote,
44, 1093–1101, https://doi.org/10.1109/TGRS.2006.872333, 2006. a
Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Stein Zweers, D. C., Duncan, B. N., Streets, D. G., Eskes, H., van der A, R., McLinden, C., Fioletov, V., Carn, S., de Laat, J., DeLand, M., Marchenko, S., McPeters, R., Ziemke, J., Fu, D., Liu, X., Pickering, K., Apituley, A., González Abad, G., Arola, A., Boersma, F., Chan Miller, C., Chance, K., de Graaf, M., Hakkarainen, J., Hassinen, S., Ialongo, I., Kleipool, Q., Krotkov, N., Li, C., Lamsal, L., Newman, P., Nowlan, C., Suleiman, R., Tilstra, L. G., Torres, O., Wang, H., and Wargan, K.: The Ozone Monitoring Instrument: overview of 14 years in space, Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, 2018. a, b
Li, X., Che, H., Wang, H., Xia, X., Chen, Q., Gui, K., Zhao, H., An, L., Zheng,
Y., Sun, T., Sheng, Z., Liu, C., and Zhang, X.: Spatial and temporal
distribution of the cloud optical depth over China based on MODIS satellite
data during 2003–2016, J. Environ. Sci., 80, 66–81,
https://doi.org/10.1016/j.jes.2018.08.010,
2019. a, b, c
Lindfors, A. and Vuilleumier, L.: Erythemal UV at Davos (Switzerland),
1926-2003, estimated using total ozone, sunshine duration, and snow depth,
J. Geophys. Res.-Atmos., 110,
D02104, https://doi.org/10.1029/2004JD005231,
2005. a
Löhnert, U. and Crewell, S.: Accuracy of cloud liquid water path from
ground-based microwave radiometry 1. Dependency on cloud model statistics,
Radio Science, 38, 8041, https://doi.org/10.1029/2002RS002654,
2003. a
Manninen, T., Siljamo, N., Poutiainen, J., Vuilleumier, L., Bosveld, F., and
Gratzki, A.: Cloud statistics-based estimation of land surface albedo from
AVHRR data, https://doi.org/10.1117/12.565133,
2004. a
Matamoros, S., Gonzàlez, J.-A., and Calbò, J.: A Simple Method to
Retrieve Cloud Properties from Atmospheric Transmittance and Liquid Water
Column Measurements, J. Appl. Meteorol. Clim., 50,
283–295, 2011. a
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005. a
McFarlane, S. A. and Evans, K. F.: Clouds and Shortwave Fluxes at Nauru. Part
I: Retrieved Cloud Properties, J. Atmos. Sci., 61,
733–744, https://doi.org/10.1175/1520-0469(2004)061<0733:CASFAN>2.0.CO;2, 2004. a
McHardy, T. M., Dong, X., Xi, B., Thieman, M. M., Minnis, P., and Palikonda,
R.: Comparison of Daytime Low-Level Cloud Properties Derived From GOES and
ARM SGP Measurements, J. Geophys. Res.-Atmos., 123,
8221–8237, https://doi.org/10.1029/2018JD028911,
2018. a
Michalsky, J. J., Anderson, G. P., Barnard, J., Delamere, J., Gueymard, C.,
Kato, S., Kiedron, P., McComiskey, A., and Ricchiazzi, P.: Shortwave
radiative closure studies for clear skies during the Atmospheric Radiation
Measurement 2003 Aerosol Intensive Observation Period, J. Geophys. Res.-Atmos., 111, d14S90, https://doi.org/10.1029/2005JD006341, 2006. a
Min, Q. and Harrison, L. C.: Cloud properties derived from surface MFRSR
measurements and comparison with GOES results at the ARM SGP Site,
Geophys. Res. Lett., 23, 1641–1644, https://doi.org/10.1029/96GL01488,
1996. a
Minnis, P., Hong, G., Sun-Mack, S., Smith, W. L., Chen, Y., and Miller, S. D.:
Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral
infrared radiances using a neural network method, J. Geophys. Res.-Atmos.,
121, 4907–4932, https://doi.org/10.1002/2015JD024456, 2016. a
Morland, J., Deuber, B., Feist, D. G., Martin, L., Nyeki, S., Kämpfer, N., Mätzler, C., Jeannet, P., and Vuilleumier, L.: The STARTWAVE atmospheric water database, Atmos. Chem. Phys., 6, 2039–2056, https://doi.org/10.5194/acp-6-2039-2006, 2006a. a
Morland, J., Liniger, M. A., Kunz, H., Balin, I., Nyeki, S., Mätzler, C., and
Kämpfer, N.: Comparison of GPS and ERA40 IWV in the Alpine region, including
correction of GPS observations at Jungfraujoch (3584 m), J. Geophys. Res.-Atmos., 111, d04102, https://doi.org/10.1029/2005JD006043,
2006b. a
Nakajima, T. and King, M. D.: Determination of the Optical Thickness and
Effective Particle Radius of Clouds from Reflected Solar Radiation
Measurements. Part I: Theory, J. Atmos. Sci., 47,
1878–1893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990. a, b
Navas-Guzmán, F., Stähli, O., and Kämpfer, N.: An integrated approach toward the incorporation of clouds in the temperature retrievals from microwave measurements, Atmos. Meas. Tech., 7, 1619–1628, https://doi.org/10.5194/amt-7-1619-2014, 2014. a
Nowak, D., Vuilleumier, L., Long, C. N., and Ohmura, A.: Solar irradiance
computations compared with observations at the Baseline Surface Radiation
Network Payerne site, J. Geophys. Res., 113, d14206,
https://doi.org/10.1029/2007JD009441, 2008a. a
Nowak, D., Vuilleumier, L., and Ohmura, A.: Radiation transfer in stratus clouds at the BSRN Payerne site, Atmos. Chem. Phys. Discuss., 8, 11453–11485, https://doi.org/10.5194/acpd-8-11453-2008, 2008b. a, b
Ohmura, A., Dutton, E. G., Forgan, B., Fröhlich, C., Gilgen, H., Hegner, H.,
Heimo, A., König-Langlo, G., McArthur, B., Müller, G., Philipona, R.,
Pinker, R., Whitlock, C. H., Dehne, K., and Wild, M.: Baseline Surface
Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research,
B. Am. Meteorol. Soc., 79, 2115–2136,
https://doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2, 1998. a
Painemal, D. and Zuidema, P.: Assessment of MODIS cloud effective radius and
optical thickness retrievals over the Southeast Pacific with VOCALS-REx in
situ measurements, J. Geophys. Res.-Atmos., 116,
D24206, https://doi.org/10.1029/2011JD016155,
2011. a
Philipona, R.: Underestimation of solar global and diffuse radiation measured
at Earth's surface, J. Geophys. Res.-Atmos., 107, ACL 15-1–ACL 15-8,
https://doi.org/10.1029/2002JD002396, 2002. a
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant,
B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P., Ridgway,
W. L., and Riedi, J.: The MODIS Cloud Optical and Microphysical Products:
Collection 6 Updates and Examples From Terra and Aqua, IEEE T.
Geosci. Remote, 55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522,
2017. a, b
Qiu, J.: Cloud optical thickness retrievals from ground-based pyranometer
measurements, J. Geophys. Res.-Atmos., 111, D22206, https://doi.org/10.1029/2005JD006792, 2006. a, b
Rawlins, F. and Foot, J. S.: Remotely Sensed Measurements of Stratocumulus
Properties during FIRE Using the C130 Aircraft Multi-channel Radiometer,
J. Atmos. Sci., 47, 2488–2504,
https://doi.org/10.1175/1520-0469(1990)047<2488:RSMOSP>2.0.CO;2, 1990. a, b, c, d
Ruiz-Arias, J. A., Dudhia, J., Santos-Alamillos, F. J., and Pozo-Vázquez, D.:
Surface clear-sky shortwave radiative closure intercomparisons in the Weather
Research and Forecasting model, J. Geophys. Res.-Atmos., 118, 9901–9913,
https://doi.org/10.1002/jgrd.50778, 2013. a
Schäfer, M., Loewe, K., Ehrlich, A., Hoose, C., and Wendisch, M.: Simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus, Atmos. Chem. Phys., 18, 13115–13133, https://doi.org/10.5194/acp-18-13115-2018, 2018. a
Serrano, D., Núñez, M., Utrillas, M. P., Marín, M. J., Marcos, C., and
Martínez-Lozano, J. A.: Effective cloud optical depth for overcast
conditions determined with a UV radiometers, Int. J. Climatol., 34,
3939–3952, https://doi.org/10.1002/joc.3953, 2014. a, b
Shettle, E.: Models of aerosols, clouds, and precipitation for atmospheric
propagation studies, in: Atmospheric propagation in the uv, visible, ir and
mm-region and related system aspects, no. 454 in AGARD Conference
Proceedings, 1989. a
Slingo, A. and Schrecker, H. M.: On the shortwave radiative properties of
stratiform water clouds, Q. J. Roy. Meteor.
Soc., 108, 407–426, https://doi.org/10.1002/qj.49710845607,
1982. a, b
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically stable
algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Optics, 27, 2502–2509,
https://doi.org/10.1364/AO.27.002502, 1988. a
Stephens, G. L.: Radiation Profiles in Extended Water Clouds. II:
Parameterization Schemes, J. Atmos. Sci., 35,
2123–2132, https://doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2,
1978. a
Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G.,
Chepfer, H., Di Girolamo, L., Getzewich, B., Guignard, A., Heidinger, A.,
Maddux, B. C., Menzel, W. P., Minnis, P., Pearl, C., Platnick, S., Poulsen,
C., Riedi, J., Sun-Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao, G.:
Assessment of Global Cloud Datasets from Satellites: Project and Database
Initiated by the GEWEX Radiation Panel, B. Am.
Meteorol. Soc., 94, 1031–1049, https://doi.org/10.1175/BAMS-D-12-00117.1,
2013. a
Taylor, P. C.: Tropical Outgoing Longwave Radiation and Longwave Cloud Forcing
Diurnal Cycles from CERES, J. Atmos. Sci., 69, 3652–3669,
https://doi.org/10.1175/JAS-D-12-088.1, 2012. a
Vanicek, K.: Differences between ground Dobson, Brewer and satellite TOMS-8, GOME-WFDOAS total ozone observations at Hradec Kralove, Czech, Atmos. Chem. Phys., 6, 5163–5171, https://doi.org/10.5194/acp-6-5163-2006, 2006.
a
Wacker, S., Gröbner, J., Nowak, D., Vuilleumier, L., and Kämpfer, N.:
Cloud effect of persistent stratus nebulosus at the Payerne BSRN site,
Atmos. Res., 102, 1–9, https://doi.org/10.1016/j.atmosres.2011.06.007, 2011. a
Wacker, S., Gröbner, J., Zysset, C., Diener, L., Tzoumanikas, P.,
Kazantzidis, A., Vuilleumier, L., Stoeckli, R., Nyeki, S., and Kämpfer,
N.: Cloud observations in Switzerland using hemispherical sky cameras, J.
Geophys. Res., 120, 695–707, https://doi.org/10.1002/2014JD022643, 2015. a, b, c
Waliser, D. E., Li, J.-L. F., Woods, C. P., Austin, R. T., Bacmeister, J.,
Chern, J., Del Genio, A., Jiang, J. H., Kuang, Z., Meng, H., Minnis, P.,
Platnick, S., Rossow, W. B., Stephens, G. L., Sun-Mack, S., Tao, W.-K.,
Tompkins, A. M., Vane, D. G., Walker, C., and Wu, D.: Cloud ice: A climate
model challenge with signs and expectations of progress, J. Geophys. Res.-Atmos., 114, D00A21, https://doi.org/10.1029/2008JD010015, 2009. a
Wang, P., Knap, W. H., Kuipers Munneke, P., and Stammes, P.: Clear-sky
shortwave radiative closure for the Cabauw Baseline Surface Radiation Network
site, Netherlands, J. Geophys. Res.-Atmos., 114, d14206,
https://doi.org/10.1029/2009JD011978, 2009. a
Wang, P., Knap, W. H., and Stammes, P.: Cloudy sky shortwave radiative closure
for a Baseline Surface Radiation Network site, J. Geophys. Res.-Atmos., 116, d08202,
https://doi.org/10.1029/2010JD015141, 2011. a, b
Wehrli, C.: Calibrations of filter radiometers for determination of atmospheric
optical depth, Metrologia, 37, 419–422,
https://doi.org/10.1088/0026-1394/37/5/16, 2000. a
Wiegner, M. and Geiß, A.: Aerosol profiling with the Jenoptik ceilometer CHM15kx, Atmos. Meas. Tech., 5, 1953–1964, https://doi.org/10.5194/amt-5-1953-2012, 2012. a
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP Data
Processing Algorithms, J. Atmos. Ocean. Tech., 26,
2310–2323, https://doi.org/10.1175/2009JTECHA1281.1,
2009. a
Zelinka, M. D., Klein, S. A., Taylor, K. E., Andrews, T., Webb, M. J., Gregory,
J. M., and Forster, P. M.: Contributions of Different Cloud Types to
Feedbacks and Rapid Adjustments in CMIP5, J. Climate, 26, 5007–5027, 2013. a
Zeng, S., Cornet, C., Parol, F., Riedi, J., and Thieuleux, F.: A better understanding of cloud optical thickness derived from the passive sensors MODIS/AQUA and POLDER/PARASOL in the A-Train constellation, Atmos. Chem. Phys., 12, 11245–11259, https://doi.org/10.5194/acp-12-11245-2012, 2012. a
Short summary
Clouds are one of the largest sources of uncertainties in climate models. The current study estimates the cloud optical thickness (COT), the effective droplet radius and the single scattering albedo of stratus–altostratus and cirrus–cirrostratus clouds in Payerne, Switzerland, by combining ground- and satellite-based measurements and radiative transfer models. The estimated values are thereafter compared with data retrieved from other methods. The mean COT is distinct for different seasons.
Clouds are one of the largest sources of uncertainties in climate models. The current study...