Articles | Volume 14, issue 4
Atmos. Meas. Tech., 14, 3003–3013, 2021
https://doi.org/10.5194/amt-14-3003-2021
Atmos. Meas. Tech., 14, 3003–3013, 2021
https://doi.org/10.5194/amt-14-3003-2021
Research article
22 Apr 2021
Research article | 22 Apr 2021

Statistically analyzing the effect of ionospheric irregularity on GNSS radio occultation atmospheric measurement

Mingzhe Li and Xinan Yue

Related authors

Interhemispheric transport of metallic ions within ionospheric sporadic E layers by the lower thermospheric meridional circulation
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021,https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Equatorial plasma bubbles developing around sunrise observed by an all-sky imager and global navigation satellite system network during storm time
Kun Wu, Jiyao Xu, Xinan Yue, Chao Xiong, Wenbin Wang, Wei Yuan, Chi Wang, Yajun Zhu, and Ji Luo
Ann. Geophys., 38, 163–177, https://doi.org/10.5194/angeo-38-163-2020,https://doi.org/10.5194/angeo-38-163-2020, 2020
Short summary
The global climatology of the intensity of the ionospheric sporadic E layer
Bingkun Yu, Xianghui Xue, Xin'an Yue, Chengyun Yang, Chao Yu, Xiankang Dou, Baiqi Ning, and Lianhuan Hu
Atmos. Chem. Phys., 19, 4139–4151, https://doi.org/10.5194/acp-19-4139-2019,https://doi.org/10.5194/acp-19-4139-2019, 2019
Short summary
Case study on complex sporadic E layers observed by GPS radio occultations
X. Yue, W. S. Schreiner, Z. Zeng, Y.-H. Kuo, and X. Xue
Atmos. Meas. Tech., 8, 225–236, https://doi.org/10.5194/amt-8-225-2015,https://doi.org/10.5194/amt-8-225-2015, 2015
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Continuous temperature soundings at the stratosphere and lower mesosphere with a ground-based radiometer considering the Zeeman effect
Witali Krochin​​​​​​​, Francisco Navas-Guzmán, David Kuhl, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 15, 2231–2249, https://doi.org/10.5194/amt-15-2231-2022,https://doi.org/10.5194/amt-15-2231-2022, 2022
Short summary
Retrieval of solar-induced chlorophyll fluorescence (SIF) from satellite measurements: comparison of SIF between TanSat and OCO-2
Lu Yao, Yi Liu, Dongxu Yang, Zhaonan Cai, Jing Wang, Chao Lin, Naimeng Lu, Daren Lyu, Longfei Tian, Maohua Wang, Zengshan Yin, Yuquan Zheng, and Sisi Wang
Atmos. Meas. Tech., 15, 2125–2137, https://doi.org/10.5194/amt-15-2125-2022,https://doi.org/10.5194/amt-15-2125-2022, 2022
Short summary
Identification of tropical cyclones via deep convolutional neural network based on satellite cloud images
Biao Tong, Xiangfei Sun, Jiyang Fu, Yuncheng He, and Pakwai Chan
Atmos. Meas. Tech., 15, 1829–1848, https://doi.org/10.5194/amt-15-1829-2022,https://doi.org/10.5194/amt-15-1829-2022, 2022
Short summary
Time evolution of temperature profiles retrieved from 13 years of infrared atmospheric sounding interferometer (IASI) data using an artificial neural network
Marie Bouillon, Sarah Safieddine, Simon Whitburn, Lieven Clarisse, Filipe Aires, Victor Pellet, Olivier Lezeaux, Noëlle A. Scott, Marie Doutriaux-Boucher, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 1779–1793, https://doi.org/10.5194/amt-15-1779-2022,https://doi.org/10.5194/amt-15-1779-2022, 2022
Short summary
Emissivity retrievals with FORUM's end-to-end simulator: challenges and recommendations
Maya Ben-Yami, Hilke Oetjen, Helen Brindley, William Cossich, Dulce Lajas, Tiziano Maestri, Davide Magurno, Piera Raspollini, Luca Sgheri, and Laura Warwick
Atmos. Meas. Tech., 15, 1755–1777, https://doi.org/10.5194/amt-15-1755-2022,https://doi.org/10.5194/amt-15-1755-2022, 2022
Short summary

Cited articles

Angling, M. J., Elvidge, S., and Healy, S. B.: Improved model for correcting the ionospheric impact on bending angle in radio occultation measurements, Atmos. Meas. Tech., 11, 2213–2224, https://doi.org/10.5194/amt-11-2213-2018, 2018. 
Arras, C., Wickert, J., Beyerle, G., Heise, S., Schmidt, T., and Jacobi, C.: A global climatology of ionospheric irregularities derived from GPS radio occultation, Geophys. Res. Lett., 35, L14809, https://doi.org/10.1029/2008gl034158, 2008. 
Arras, C., Jacobi, C., and Wickert, J.: Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at higher midlatitudes, Ann. Geophys., 27, 2555–2563, 2009. 
Axford, W. I.: The formation and vertical movement of dense ionized layers in the ionosphere due to neutral wind shears, J. Geophys. Res., 68, 769–779, https://doi.org/10.1029/JZ068i003p00769, 1963. 
Download
Short summary
In this study, we statistically analyzed the correlation between the ionospheric irregularity and the quality of the GNSS atmospheric radio occultation (RO) products. The results show that the ionospheric irregularity could affect the GNSS atmospheric RO in terms of causing failed inverted RO events and the bending angle oscillation. Awareness of the ionospheric irregularity effect on RO could be beneficial to improve the RO data quality for weather and climate research.