Articles | Volume 14, issue 12
https://doi.org/10.5194/amt-14-7579-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-7579-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A semi-automated instrument for cellular oxidative potential evaluation (SCOPE) of water-soluble extracts of ambient particulate matter
Sudheer Salana
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
Yixiang Wang
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
Joseph V. Puthussery
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
Vishal Verma
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
Related authors
No articles found.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Varun Kumar, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee, Dongyu S. Wang, Deepika Bhattu, Giulia Stefenelli, Jay S. Dave, Joseph V. Puthussery, Lu Qi, Pawan Vats, Pragati Rai, Roberto Casotto, Rangu Satish, Suneeti Mishra, Veronika Pospisilova, Claudia Mohr, David M. Bell, Dilip Ganguly, Vishal Verma, Neeraj Rastogi, Urs Baltensperger, Sachchida N. Tripathi, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 22, 7739–7761, https://doi.org/10.5194/acp-22-7739-2022, https://doi.org/10.5194/acp-22-7739-2022, 2022
Short summary
Short summary
Here we present source apportionment results from the first field deployment in Delhi of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF is a recently developed instrument capable of providing uniquely detailed online chemical characterization of organic aerosol (OA), in particular the secondary OA (SOA) fraction. Here, we are able to apportion not only primary OA but also SOA to specific sources, which is performed for the first time in Delhi.
Haoran Yu, Joseph Varghese Puthussery, Yixiang Wang, and Vishal Verma
Atmos. Chem. Phys., 21, 16363–16386, https://doi.org/10.5194/acp-21-16363-2021, https://doi.org/10.5194/acp-21-16363-2021, 2021
Short summary
Short summary
We assessed the oxidative potential (OP) of ambient PM2.5 collected from many sites in the US Midwest through multiple acellular endpoints. Compared to homogeneously distributed PM2.5, OP showed higher spatiotemporal variation. Poor correlations for the regression between mass and OP indicated a limited role of mass in determining the OP. Moreover, weak correlations among different OP endpoints justify the need for using multiple assays to determine oxidative levels of particles.
Cited articles
Abe, K. and Saito, H: Characterization of t-butyl hydroperoxide toxicity in
cultured rat cortical neurones and astrocytes, Pharmacol. Toxicol., 83, 40–46, https://doi.org/10.1111/j.1600-0773.1998.tb01440.x, 1998.
Alía, M., Ramos, S., Mateos, R., Bravo, L., and Goya, L.: Response of
the antioxidant defense system to tert-butyl hydroperoxide and hydrogen
peroxide in a human hepatoma cell line (HepG2), J. Biochem. Mol. Toxic.,
19, 119–128, https://doi.org/10.1002/jbt.20061, 2005.
Berg, K. E., Clark, K. M., Li, X., Carter, E. M., Volckens, J., and Henry,
C. S.: High-throughput, semi-automated dithiothreitol (DTT) assays for
oxidative potential of fine particulate matter, Atmos. Environ., 222,
117132, https://doi.org/10.1016/j.atmosenv.2019.117132, 2020.
Breitner, S., Peters, A., Zareba, W., Hampel, R., Oakes, D., Wiltshire, J.,
Frampton, M. W., Hopke, P. K., Cyrys, J., Utell, M. J., Kane, C., Schneider,
A., and Rich, D. Q.: Ambient and controlled exposures to particulate air
pollution and acute changes in heart rate variability and repolarization,
Sci. Rep., 9, 1–12, https://doi.org/10.1038/s41598-019-38531-9, 2019.
Brown, R. A., Stevanovic, S., Bottle, S., and Ristovski, Z. D.: An instrument for the rapid quantification of PM-bound ROS: the Particle Into Nitroxide Quencher (PINQ), Atmos. Meas. Tech., 12, 23872401, https://doi.org/10.5194/amt-12-2387-2019, 2019.
Castro-Alférez, M., Polo-López, M., and Fernández-Ibáñez, P.: Intracellular mechanisms of solar water disinfection, Sci. Rep., 6, 1–10, https://doi.org/10.1038/srep38145, 2016.
Charrier, J. G. and Anastasio, C.: On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals, Atmos. Chem. Phys., 12, 9321–9333, https://doi.org/10.5194/acp-12-9321-2012, 2012.
Chen, X., Zhong, Z., Xu, Z., Chen, L., and Wang, Y.: 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen
species measurement: Forty years of application and controversy, Free Radical
Res., 44, 587–604, https://doi.org/10.3109/10715761003709802, 2010.
Crobeddu, B., Aragao-Santiago, L., Bui, L. C., Boland, S., and Baeza
Squiban, A.: Oxidative potential of particulate matter 2.5 as predictive
indicator of cellular stress, Environ. Pollut., 230, 125–133,
https://doi.org/10.1016/j.envpol.2017.06.051, 2017.
Den Hartigh, L. J., Lamé, M. W., Ham, W., Kleeman, M. J., Tablin, F.,
and Wilson, D. W.: Endotoxin and polycyclic aromatic hydrocarbons in ambient
fine particulate matter from Fresno, California initiate human monocyte
inflammatory responses mediated by reactive oxygen species, Toxicol. In
Vitro, 24, 1993–2002, https://doi.org/10.1016/j.tiv.2010.08.017, 2010.
Dierickx, P. J., Van Nuffel, G., and Alvarez, I.: Glutathione protection
against hydrogen peroxide, tert-butyl hydroperoxide and diamide cytotoxicity
in rat hepatoma-derived Fa32 cells, Hum. Exp. Toxicol., 18, 627–633,
https://doi.org/10.1191/096032799678839482,1999.
Dikalov, S. I. and Harrison, D. G.: Methods for detection of mitochondrial
and cellular reactive oxygen species, Antioxid. Redox Sign., 20, 372–382, https://doi.org/10.1089/ars.2012.4886, 2014.
Dikalov, S. I., Polienko, Y. F., and Kirilyuk, I.: Electron Paramagnetic
Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine
Spin Probes, Antioxid. Redox Sign., 28, 1433–1443, https://doi.org/10.1089/ars.2017.7396, 2018.
Doiron, D., de Hoogh, K., Probst-Hensch, N., Mbatchou, S., Eeftens, M., Cai,
Y., Schindler, C., Fortier, I., Hodgson, S., Gaye, A., Stolk, R., and
Hansell, A.: Residential air pollution and associations with wheeze and
shortness of breath in adults: A combined analysis of cross-sectional data
from two large European cohorts, Environ. Health Persp., 125, 1–10,
https://doi.org/10.1289/EHP1353, 2017.
Fang, T., Verma, V., Guo, H., King, L. E., Edgerton, E. S., and Weber, R. J.: A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE), Atmos. Meas. Tech., 8, 471–482, https://doi.org/10.5194/amt-8-471-2015, 2015.
Fatemi, N., Sanati, M. H., Jamali Zavarehei, M., Ayat, H., Esmaeili, V.,
Golkar-Narenji, A., Zarabi, M., and Gourabi, H.: Effect of tertiary-butyl
hydroperoxide (TBHP)-induced oxidative stress on mice sperm quality and
testis histopathology, Andrologia, 45, 232–239.
https://doi.org/10.1111/j.1439-0272.2012.01335.x, 2013.
Gao, D., Fang, T., Verma, V., Zeng, L., and Weber, R. J.: A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP, Atmos. Meas. Tech., 10, 2821–2835, https://doi.org/10.5194/amt-10-2821-2017, 2017.
Gao, Y., Jiang, R., Qie, J., Chen, Y., Xu, D., Liu, W., and Gao, Q.: Studies
on the characteristic and activity of low-molecular fragments from zymosan,
Carbohyd. Polym., 90, 1411–1414, https://doi.org/10.1016/j.carbpol.2012.05.096, 2012.
Guidarelli, A., Cattabeni, F., and Cantoni, O.: Alternative mechanisms for
hydroperoxide-induced DNA single strand breakage, Free Radical Res., 26,
537–547, https://doi.org/10.3109/10715769709097825, 1997.
Helmke, R. J., Boyd, R. L., German, V. F., and Mangos, J. A.: From growth
factor dependence to growth factor responsiveness: The genesis of an
alveolar macrophage cell line, In Vitro Cell. Dev. B., 23, 567–574, https://doi.org/10.1007/BF02620974, 1987.
Holm, S. M., Balmes, J., Gillette, D., Hartin, K., Seto, E., Lindeman, D.,
Polanco, D., and Fong, E.: Cooking behaviors are related to household
particulate matter exposure in children with asthma in the urban East Bay
Area of Northern California, PLoS ONE, 13, 1–15, https://doi.org/10.1371/journal.pone.0197199, 2018.
Hu, S., Polidori, A., Arhami, M., Shafer, M. M., Schauer, J. J., Cho, A., and Sioutas, C.: Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles-Long Beach harbor, Atmos. Chem. Phys., 8, 6439–6451, https://doi.org/10.5194/acp-8-6439-2008, 2008.
Huang, W., Zhang, Y., Zhang, Y., Zeng, L., Dong, H., Huo, P., Fang D., and
Schauer, J. J.: Development of an automated sampling-analysis system for
simultaneous measurement of reactive oxygen species (ROS) in gas and
particle phases: GAC-ROS, Atmos. Environ., 134, 18–26,
https://doi.org/10.1016/j.atmosenv.2016.03.038, 2016.
Ikeda, Y., Nakano, M., Ihara, H., Ito, R., Taniguchi, N., and Fujii, J.:
Different consequences of reactions with hydrogen peroxide and t-butyl
hydroperoxide in the hyperoxidative inactivation of rat peroxiredoxin-4, J.
Biochem., 149, 443–453, https://doi.org/10.1093/jb/mvq156, 2011.
Jaguin, M., Houlbert, N., Fardel, O., and Lecureur, V.: Polarization
profiles of human M-CSF-generated macrophages and comparison of M1-markers
in classically activated macrophages from GM-CSF and M-CSF origin, Cell.
Immunol., 281, 51–61, https://doi.org/10.1016/j.cellimm.2013.01.010, 2013.
Janssen, N. A. H., Strak, M., Yang, A., Hellack, B., Kelly, F. J.,
Kuhlbusch, T. A. J., Harrison, R. M., Brunekreef, B., Cassee, F. R.,
Steenhof, M., and Hoek, G.: Associations between three specific a-cellular
measures of the oxidative potential of particulate matter and markers of
acute airway and nasal inflammation in healthy volunteers, Occup. Environ.
Med., 72, 49–56, https://doi.org/10.1136/oemed-2014-102303, 2015.
Jeong, M. S., Yu, K. N., Chung, H. H., Park, S. J., Lee, A. Y., Song, M. R.,
Cho, M. H., and Kim, J. S.: Methodological considerations of electron spin
resonance spin trapping techniques for measuring reactive oxygen species
generated from metal oxide nanomaterials, Sci. Rep., 6, 1–10,
https://doi.org/10.1038/srep26347, 2016.
Jesch, N. K., Dörger, M., Enders, G., Rieder, G., Vogelmeier, C.,
Messmer, K., and Krombach, F.: Expression of inducible nitric oxide synthase
and formation of nitric oxide by alveolar macrophages: an interspecies
comparison, Environ. Health Persp., 105, Suppl. 5, 1297–1300,
https://doi.org/10.1289/ehp.97105s51297, 1997.
Kam, W., Ning, Z., Shafer, M. M., Schauer, J. J., and Sioutas, C.: Chemical
characterization and redox potential of coarse and fine particulate matter
(PM) in underground and ground-level rail systems of the Los Angeles Metro,
Environ. Sci. Technol., 45, 6769–6776, https://doi.org/10.1021/es201195e, 2011.
Karakatsani, A., Analitis, A., Perifanou, D., Ayres, J. G., Harrison, R. M.,
Kotronarou, A., Kavouras, I. G., Pekkanen, J., Hämeri, K., Kos, G. P.,
De Hartog, J. J., Hoek, G., and Katsouyanni, K.: Particulate matter air
pollution and respiratory symptoms in individuals having either asthma or
chronic obstructive pulmonary disease: A European multicentre panel study,
Environ. Health, 11, 1–16, https://doi.org/10.1186/1476-069X-11-75, 2012.
Klein, C. B., Su, L., Bowser, D., and Leszcynska, J.: Chromate-induced
epimutations in mammalian cells, Environ. Health Persp., 110, Suppl. 5,
739–743, https://doi.org/10.1289/ehp.02110s5739, 2002.
Klotz, L. O., Hou, X., and Jacob, C.: 1,4-naphthoquinones: From oxidative
damage to cellular and inter-cellular signaling, Molecules, 19, 14902–14918, https://doi.org/10.3390/molecules190914902, 2014.
Krombach, F., Münzing, S., Allmeling, A. M., Gerlach, J. T., Behr, J.,
and Dörger, M.: Cell size of alveolar macrophages: an interspecies
comparison, Environ. Health Persp., 105, Suppl. 5, 1261–1263,
https://doi.org/10.1289/ehp.97105s51261, 1997.
Kryston, T. B., Georgiev, A. B., Pissis, P., and Georgakilas, A. G.: Role of
oxidative stress and DNA damage in human carcinogenesis, Mutat. Res.-Fund. Mol. M., 711, 193–201, https://doi.org/10.1016/j.mrfmmm.2010.12.016, 2011.
Kučera, O., Endlicher, R., Roušar, T., Lotková, H., Garnol, T.,
Drahota, Z., and Červinková, Z.: The effect of tert-butyl
hydroperoxide-induced oxidative stress on lean and steatotic rat hepatocytes
in vitro, Oxid. Med. Cell. Longev., 2014, 752506, https://doi.org/10.1155/2014/752506, 2014.
Künzli, N., Mudway, I. S., Götschi, T., Shi, T., Kelly, F. J., Cook,
S., Burney, P., Forsberg, B., Gauderman, J. W., Hazenkamp, M. E., Heinrich,
J., Jarvis, D., Norbäck, D., Payo-Losa, F., Poli, A., Sunyer, J., and
Borm, P. J. A.: Comparison of oxidative properties, light absorbance, and
total and elemental mass concentration of ambient PM2.5 collected at 20
European sites, Environ. Health Persp., 114, 684–690,
https://doi.org/10.1289/ehp.8584, 2006.
Kuznetsov, A. V., Kehrer, I., Kozlov, A. V., Haller, M., Redl, H., Hermann,
M., Grimm, M., and Troppmair, J.: Mitochondrial ROS production under
cellular stress: Comparison of different detection methods, Anal. Bioanal.
Chem., 400, 2383–2390, https://doi.org/10.1007/s00216-011-4764-2, 2011.
Landkocz, Y., Ledoux, F., André, V., Cazier, F., Genevray, P., Dewaele,
D., Martin, P. J., Lepers, C., Verdin, A., Courcot, L., Boushina, S.,
Sichel, F., Gualtieri, M., Shirali, P., Courcot, D., and Billet, S.: Fine
and ultrafine atmospheric particulate matter at a multi-influenced urban
site: Physicochemical characterization, mutagenicity and cytotoxicity,
Environ. Pollut., 221, 130–140, https://doi.org/10.1016/j.envpol.2016.11.054, 2017.
Landreman, A. P., Shafer, M. M., Hemming, J. C., Hannigan, M. P., and
Schauer, J. J.: A macrophage-based method for the assessment of the reactive
oxygen species (ROS) activity of atmospheric particulate matter (PM) and
application to routine (daily-24 h) aerosol monitoring studies, Aerosol Sci.
Technol., 42, 946–957, https://doi.org/10.1080/02786820802363819, 2008.
Li, N., Xia, T., and Nel, A. E.: The role of oxidative stress in ambient
particulate matter-induced lung diseases and its implications in the
toxicity of engineered nanoparticles, Free Radical Bio. Med., 44,
1689–1699, https://doi.org/10.1016/j.freeradbiomed.2008.01.028, 2008.
Libalova, H., Milcova, A., Cervena, T., Vrbova, K., Rossnerova, A.,
Novakova, Z., Topinka, J., and Rossner, P.: Kinetics of ROS generation
induced by polycyclic aromatic hydrocarbons and organic extracts from
ambient air particulate matter in model human lung cell lines, Mutat. Res.-Gen. Tox. En., 827, 50–58, https://doi.org/10.1016/j.mrgentox.2018.01.006, 2018.
Lin, T. J., Hirji, N., Stenton, G. R., Gilchrist, M., Grill, B. J.,
Schreiber, A. D., and Befus, A. D.: Activation of macrophage CD8:
pharmacological studies of TNF and IL-1β production, J. Immunol.,
164, 1783–1792, https://doi.org/10.4049/jimmunol.164.4.1783, 2000.
Lopes, V. R., Sanchez-Martinez, C., Strømme, M., and Ferraz, N.: In vitro
biological responses to nanofibrillated cellulose by human dermal, lung and
immune cells: Surface chemistry aspect, Part. Fibre Toxicol., 14, 1–13,
https://doi.org/10.1186/s12989-016-0182-0, 2017.
Miljevic, B., Hedayat, F., Stevanovic, S., Fairfull-Smith, K. E., Bottle, S.
E., and Ristovski, Z. D.: To sonicate or not to sonicate PM filters:
Reactive oxygen species generation upon ultrasonic irradiation, Aerosol Sci.
Tech., 48, 1276–1284, https://doi.org/10.1080/02786826.2014.981330, 2014.
Møller, P., Jacobsen, N. R., Folkmann, J. K., Danielsen, P. H.,
Mikkelsen, L., Hemmingsen, J. G., Vesterdal, L. K., Forchhammer, L., Wallin,
H., and Loft, S.: Role of oxidative damage in toxicity of particulate, Free
Radical Res., 44, 1–46, https://doi.org/10.3109/10715760903300691, 2010.
Mudway, I. S., Duggan, S. T., Venkataraman, C., Habib, G., Kelly, F. J., and
Grigg, J.: Combustion of dried animal dung as biofuel results in the
generation of highly redox active fine particulates, Part. Fibre Toxicol.,
2, 1–11, https://doi.org/10.1186/1743-8977-2-6, 2005.
OECD/SIDS: Screening Information Data Set (SIDS) for High Production
Volume Chemicals, Organization for Economic Co-operation and Development, OECD Initial Assessment, IRPTC/UNEP, Volume 1, Part 2, 1995.
Øvrevik, J.: Oxidative potential versus biological effects: A review on
the relevance of cell-free/abiotic assays as predictors of toxicity from
airborne particulate matter, Int. J. Mol. Sci., 20, 4772,
https://doi.org/10.3390/ijms20194772, 2019.
Pieters, N., Plusquin, M., Cox, B., Kicinski, M., Vangronsveld, J., and
Nawrot, T. S.: An epidemiological appraisal of the association between heart
rate variability and particulate air pollution: A meta-analysis, Heart,
98, 1127–1135, https://doi.org/10.1136/heartjnl-2011-301505, 2012.
Pope, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E.,
Krewski, D., and Godleski, J. J.: Cardiovascular Mortality and Long-Term
Exposure to Particulate Air Pollution: Epidemiological Evidence of General
Pathophysiological Pathways of Disease, Circulation, 109, 71–77,
https://doi.org/10.1161/01.CIR.0000108927.80044.7F, 2004.
Prasad, D., Ram, M. S., Sawhney, R. C., Ilavazhagan, G., and Banerjee, P.
K.: Mechanism of tert-butylhydroperoxide induced cytotoxicity in U-937 macrophages by alteration of mitochondrial function and generation of ROS, Toxicol. In Vitro, 21, 846–854, https://doi.org/10.1016/j.tiv.2007.02.007, 2007.
Puthussery, J. V., Zhang, C., and Verma, V.: Development and field testing of an online instrument for measuring the real-time oxidative potential of ambient particulate matter based on dithiothreitol assay, Atmos. Meas. Tech., 11, 5767–5780, https://doi.org/10.5194/amt-11-5767-2018, 2018.
Rao, X., Zhong, J., Brook, R. D., and Rajagopalan, S.: Effect of particulate
matter air pollution on cardiovascular oxidative stress pathways, Antioxid.
Redox Sign., 28, 797–818, https://doi.org/10.1089/ars.2017.7394, 2018.
Reuter, S., Gupta, S. C., Chaturvedi, M. M., and Aggarwal, B. B.:
Oxidative stress, inflammation, and cancer: How are they linked?, Free
Radical Bio. Med., 49, 1603–1616, https://doi.org/10.1016/j.freeradbiomed.2010.09.006, 2010.
Riojas-Rodríguez, H., Escamilla-Cejudo, J. A., González-Hermosillo,
J. A., Téllez-Rojo, M. M., Vallejo, M., Santos-Burgoa, C., and
Rojas-Bracho, L.: Personal PM2.5 and CO exposures and heart rate
variability in subjects with known ischemic heart disease in Mexico City, J.
Expo. Sci. Env. Epid., 16 131–137, https://doi.org/10.1038/sj.jea.7500453, 2006.
Rosenkranz, A. R., Schmaldienst, S., Stuhlmeier, K. M., Chen, W., Knapp, W.,
and Zlabinger, G. J.: A microplate assay for the detection of oxidative
products using 2′,7′-dichlorofluorescin-diacetate, J. Immunol. Methods, 156, 39–45, https://doi.org/10.1016/0022-1759(92)90008-h, 1992.
Rossner, P., Libalova, H., Vrbova, K., Cervena, T., Rossnerova, A.,
Elzeinova, F., Milcova, A., Novakova, Z., and Topinka, J.: Genotoxicant
exposure, activation of the aryl hydrocarbon receptor, and lipid
peroxidation in cultured human alveolar type II A549 cells, Mutat. Res.-Gen. Tox. En., 853, 503173, https://doi.org/10.1016/j.mrgentox.2020.503173, 2020.
Roux, C., Jafari, S. M., Shinde, R., Duncan, G., Cescon, D. W., Silvester,
J., Chu, M. F., Hodgson, K., Berger, T., Wakeham, A., Palomero, L.,
Garcia-Valero, M., Pujana, M. A., Mak, T. W., McGaha, T. L., Cappello, P.,
and Gorrini, C.: Reactive oxygen species modulate macrophage
immunosuppressive phenotype through the up-regulation of PD-L1, P. Natl. Acad. Sci. USA, 116, 4326–4335, https://doi.org/10.1073/pnas.1819473116, 2019.
Sameenoi, Y., Koehler, K., Shapiro, J., Boonsong, K., Sun, Y., Collett Jr.,
J., Volckens, J., and Henry, C. S.: Microfluidic electrochemical sensor for
on-line monitoring of aerosol oxidative activity, J. Am. Chem. Soc., 134, 10562–10568, https://doi.org/10.1021/ja3031104, 2012.
Shang, Y., Zhang, L., Jiang, Y., Li, Y., and Lu, P.: Airborne quinones
induce cytotoxicity and DNA damage in human lung epithelial A549 cells: The
role of reactive oxygen species, Chemosphere, 100, 42–49,
https://doi.org/10.1016/j.chemosphere.2013.12.079, 2014.
Shinkai, Y., Iwamoto, N., Miura, T., Ishii, T., Cho, A. K., and Kumagai, Y.:
Redox cycling of 1,2-naphthoquinone by thioredoxin1 through Cys32 and Cys35
causes inhibition of its catalytic activity and activation of ASK1/p38
signaling, Chem. Res. Toxicol., 25(6), 1222–1230,
https://doi.org/10.1021/tx300069r, 2012.
Slamenova, D., Kozics, K., Hunakova, L., Melusova, M., Navarova, J., and
Horvathova, E.: (2013). Comparison of biological processes induced in HepG2
cells by tert-butyl hydroperoxide (t-BHP) and hydroperoxide (H2O2): The influence of carvacrol, Mutat. Res.-Gen. Tox. En., 757, 15–22, https://doi.org/10.1016/j.mrgentox.2013.03.014, 2013.
Steenhof, M., Gosens, I., Strak, M., Godri, K. J., Hoek, G., Cassee, F. R.,
Mudway, I. S., Kelly, F. J., Harrison, R. M., Lebret, E., Brunekreef, B.,
Janssen, N. A. H., and Pieters, R. H. H.: In vitro toxicity of particulate
matter (PM) collected at different sites in the Netherlands is associated
with PM composition, size fraction and oxidative potential – the RAPTES
project, Part. Fibre Toxicol., 8, 1–15,
https://doi.org/10.1186/1743-8977-8-26, 2011.
Sun, J., Wang, S., Zhao, D., Hun, F. H., Weng, L., and Liu, H.:
Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in
human cardiac microvascular endothelial cells: Cytotoxicity, permeability,
and inflammation of metal oxide nanoparticles, Cell Biol. Toxicol., 27,
333–342, https://doi.org/10.1007/s10565-011-9191-9, 2011.
Sung, S. S. J., Nelson, R. S., and Silverstein, S. C.: Yeast mannans inhibit
binding and phagocytosis of zymosan by mouse peritoneal macrophages, J. Cell
Biol., 96, 160–166, https://doi.org/10.1083/jcb.96.1.160, 1983.
Thayyullathil, F., Chathoth, S., Hago, A., Patel, M., and Galadari, S.:
Rapid reactive oxygen species (ROS) generation induced by curcumin leads to
caspase-dependent and -independent apoptosis in L929 cells, Free Radical
Bio. Med., 45, 1403–1412, https://doi.org/10.1016/j.freeradbiomed.2008.08.014, 2008.
Thomas, C. A., Li, Y., Kodama, T., Suzuki, H., Silverstein, S. C., and El Khoury, J.: Protection from lethal Gram-positive infection by macrophage scavenger receptor–dependent phagocytosis, J. Exp. Med., 191, 147–156, https://doi.org/10.1084/jem.191.1.147, 2000.
Tsai, J. H., Chen, S. J., Huang, K. L., Lin, T. C., Chaung, H. C., Chiu, C.
H., Chiu, J. Y., Lin, C. C., and Tsai, P. Y.: PM, carbon, PAH, and
particle-extract-induced cytotoxicity Emissions from a diesel generator
fueled with waste-edible-oil-biodiesel, Aerosol Air Qual. Res., 12,
843–855, https://doi.org/10.4209/aaqr.2012.07.0181, 2012.
Underhill, D. M.: Macrophage recognition of zymosan particles, J. Endotoxin
Res., 9, 176–180, https://doi.org/10.1179/096805103125001586, 2003.
Venkatachalam, G., Arumugam, S., and Doble, M.: Synthesis, Characterization,
and Biological Activity of Aminated Zymosan, ACS Omega, 5, 15973–15982,
https://doi.org/10.1021/acsomega.0c01243, 2020.
Venkatachari, P. and Hopke, P. K.: Development and laboratory testing of an
automated monitor for the measurement of atmospheric particle-bound reactive
oxygen species (ROS), Aerosol Sci. Technol., 42, 629–635,
https://doi.org/10.1080/02786820802227345, 2008.
Verma, V., Ning, Z., Cho, A. K., Schauer, J. J., Shafer, M. M., and Sioutas,
C.: Redox activity of urban quasi-ultrafine particles from primary and
secondary sources, Atmos. Environ., 43, 6360–6368,
https://doi.org/10.1016/j.atmosenv.2009.09.019, 2009.
Vidrio, E., Phuah, C. H., Dillner, A. M., and Anastasio, C.: Generation of
hydroxyl radicals from ambient fine particles in a surrogate lung fluid
solution, Environ. Sci. Technol., 43, 922–927, https://doi.org/10.1021/es801653u, 2009.
Visentin, M., Pagnoni, A., Sarti, E., and Pietrogrande, M. C.: Urban
PM2.5 oxidative potential: Importance of chemical species and
comparison of two spectrophotometric cell-free assays, Environ. Pollut.,
219, 72–79, https://doi.org/10.1016/j.envpol.2016.09.047, 2016.
Vondráček, J., Pěnčíková, K., Neča, J., Ciganek, M., Grycová, A., Dvořák, Z., and Machala, M.: Assessment of the aryl hydrocarbon receptor-mediated activities of polycyclic aromatic hydrocarbons in a human cell-based reporter gene assay, Environ. Pollut., 220, 307–316, https://doi.org/10.1016/j.envpol.2016.09.064, 2017.
Wan, C. P., Myung, E., and Lau, B. H. S.: An automated micro-fluorometric
assay for monitoring oxidative burst activity of phagocytes, J. Immunol.
Methods, 159, 131–138, https://doi.org/10.1016/0022-1759(93)90150-6, 1993.
Wan, R., Mo, Y., Feng, L., Chien, S., Tollerud, D. J., and Zhang, Q.: DNA
damage caused by metal nanoparticles: Involvement of oxidative stress and
activation of ATM, Chem. Res. Toxicol., 25, 1402–1411,
https://doi.org/10.1021/tx200513t, 2012.
Wang, D., Pakbin, P., Shafer, M. M., Antkiewicz, D., Schauer, J. J., and
Sioutas, C.: Macrophage reactive oxygen species activity of water-soluble
and water-insoluble fractions of ambient coarse, PM2.5 and ultrafine
particulate matter (PM) in Los Angeles, Atmos.Environ., 77, 301–310,
https://doi.org/10.1016/j.atmosenv.2013.05.031, 2013.
Wang, Y., Puthussery, J. V., Yu, H., and Verma, V.: Synergistic and
antagonistic interactions among organic and metallic components of the
ambient particulate matter (PM) for the cytotoxicity measured by Chinese
hamster ovary cells, Sci. Total Environ., 736, 139511,
https://doi.org/10.1016/j.scitotenv.2020.139511, 2020.
Wang, Z., Li, N., Zhao, J., White, J. C., Qu, P., and Xing, B.: CuO
nanoparticle interaction with human epithelial cells: Cellular uptake,
location, export, and genotoxicity, Chem. Res. Toxicol., 25, 1512–1521,
https://doi.org/10.1021/tx3002093, 2012.
Wragg, F. P. H., Fuller, S. J., Freshwater, R., Green, D. C., Kelly, F. J., and Kalberer, M.: An automated online instrument to quantify aerosol-bound reactive oxygen species (ROS) for ambient measurement and health-relevant aerosol studies, Atmos. Meas. Tech., 9, 4891–4900, https://doi.org/10.5194/amt-9-4891-2016, 2016.
Wu, J., Zhong, T., Zhu, Y., Ge, D., Lin, X., and Li, Q.: Effects of
particulate matter (PM) on childhood asthma exacerbation and control in
Xiamen, China, BMC Pediatr., 19, 1–11, https://doi.org/10.1186/s12887-019-1530-7, 2019.
Xiong, Q., Yu, H., Wang, R., Wei, J., and Verma, V.: Rethinking
Dithiothreitol-Based Particulate Matter Oxidative Potential: Measuring
Dithiothreitol Consumption versus Reactive Oxygen Species Generation,
Environ. Sci. Technol., 51, 6507–6514, https://doi.org/10.1021/acs.est.7b01272, 2017.
Xu, F., Shi, X., Qiu, X., Jiang, X., Fang, Y., Wang, J., Hu, D. and Zhu, T.:
Investigation of the chemical components of ambient fine particulate matter
(PM2.5) associated with in vitro cellular responses to oxidative stress and inflammation, Environ. Int., 136, 105475, https://doi.org/10.1016/j.envint.2020.105475, 2020.
Yang, B. Y., Guo, Y., Morawska, L., Bloom, M. S., Markevych, I., Heinrich,
J., Dharmage, S. C., Knibbs, L. D., Lin, S., Yim, S. H. L., Chen, G., Li,
S., Zeng, X. W., Liu, K. K., Hu, L. W., and Dong, G. H.: Ambient PM1 air
pollution and cardiovascular disease prevalence: Insights from the 33
Communities Chinese Health Study, Environ. Int., 123, 310–317,
https://doi.org/10.1016/j.envint.2018.12.012, 2019.
Yang, M., Ahmed, H., Wu, W., Jiang, B., and Jia, Z.: Cytotoxicity of Air
Pollutant 9,10-Phenanthrenequinone: Role of Reactive Oxygen Species and
Redox Signaling, BioMed Res. Int., 2018, 9523968, https://doi.org/10.1155/2018/9523968, 2018.
Yu, H., Puthussery, J. V., and Verma, V.: A semi-automated multi-endpoint
reactive oxygen species activity analyzer (SAMERA) for measuring the
oxidative potential of ambient PM2.5 aqueous extracts, Aerosol Sci.
Technol., 54, 304–320, https://doi.org/10.1080/02786826.2019.1693492, 2019.
Yu, H., Wei, J., Cheng, Y., Subedi, K., and Verma, V.: Synergistic and
Antagonistic Interactions among the Particulate Matter Components in
Generating Reactive Oxygen Species Based on the Dithiothreitol Assay,
Environ. Sci. Technol., 52, 2261–2270, https://doi.org/10.1021/acs.est.7b04261, 2018.
Zhou, J., Bruns, E. A., Zotter, P., Stefenelli, G., Prévôt, A. S. H., Baltensperger, U., El-Haddad, I., and Dommen, J.: Development, characterization and first deployment of an improved online reactive oxygen species analyzer, Atmos. Meas. Tech., 11, 65–80, https://doi.org/10.5194/amt-11-65-2018, 2018.
Zmirou, D., Gauvin, S., Pin, I., Momas, I., Just, J., Sahraoui, F., Moullec,
Y. L., Bremont, F., Cassadou, S., Albertini, M., Lauvergne, N., Chiron, M.,
and Labbe, A.: Five epidemiological studies on transport and asthma:
objectives, design and descriptive results, J. Expo. Sci. Env. Epid., 12, 186–196, https://doi.org/10.1038/sj.jea.7500217, 2002.
Short summary
Oxidative potential (OP) of particulate matter (PM) is an important indicator of PM toxicity. However, no automated instrument has ever been developed to provide a rapid high-throughput analysis of cell-based OP measurements. Here, we developed a semi-automated instrument, the first of its kind, for measuring oxidative potential using rat alveolar cells. We also developed a dataset on the intrinsic cellular OP of several compounds commonly known to be present in ambient PM.
Oxidative potential (OP) of particulate matter (PM) is an important indicator of PM toxicity....