Articles | Volume 15, issue 15
Research article
15 Aug 2022
Research article |  | 15 Aug 2022

Behavior and mechanisms of Doppler wind lidar error in varying stability regimes

Rachel Robey and Julie K. Lundquist

Related authors

Influences of lidar scanning parameters on wind turbine wake retrievals in complex terrain
Rachel Robey and Julie K. Lundquist
Wind Energ. Sci. Discuss.,,, 2024
Preprint under review for WES
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
GPROF V7 and beyond: assessment of current and potential future versions of the GPROF passive microwave precipitation retrievals against ground radar measurements over the continental US and the Pacific Ocean
Simon Pfreundschuh, Clément Guilloteau, Paula J. Brown, Christian D. Kummerow, and Patrick Eriksson
Atmos. Meas. Tech., 17, 515–538,,, 2024
Short summary
Assessing sampling and retrieval errors of GPROF precipitation estimates over the Netherlands
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 247–259,,, 2024
Short summary
Comparisons and quality control of wind observations in a mountainous city using wind profile radar and the Aeolus satellite
Hua Lu, Min Xie, Wei Zhao, Bojun Liu, Tijian Wang, and Bingliang Zhuang
Atmos. Meas. Tech., 17, 167–179,,, 2024
Short summary
On the use of routine airborne observations for evaluation and monitoring of satellite observations of thermodynamic profiles
Timothy J. Wagner, Thomas August, Tim Hultberg, and Ralph A. Petersen
Atmos. Meas. Tech., 17, 1–14,,, 2024
Short summary
Daily satellite-based sunshine duration estimates over Brazil: validation and intercomparison
Maria Lívia L. M. Gava, Simone M. S. Costa, and Anthony C. S. Porfírio
Atmos. Meas. Tech., 16, 5429–5441,,, 2023
Short summary

Cited articles

Aitken, M. L. and Lundquist, J. K.: Utility-Scale Wind Turbine Wake Characterization Using Nacelle-Based Long-Range Scanning Lidar, J. Atmos. Ocean. Technol., 31, 1529–1539,, 2014. a
Aitken, M. L., Rhodes, M. E., and Lundquist, J. K.: Performance of a Wind-Profiling Lidar in the Region of Wind Turbine Rotor Disks, J. Atmos. Ocean. Technol., 29, 347–355,, 2012. a, b
Banakh, V., Smalikho, I., Köpp, F., and Werner, C.: Turbulent Energy Dissipation Rate Measurement Using Doppler Lidar, in: Advances in Atmospheric Remote Sensing with Lidar, edited by: Ansmann, A., Neuber, R., Rairoux, P., and Wandinger, U., 255–258, Springer, Berlin, Heidelberg,, 1997. a
Barad, M. L.: Project Prairie Grass, a Field Program in Diffusion, Tech. Rep. AFCRC-TR-58-235(I), Air Force Cambridge Research Center Geophysics Research Directorate Geophysical Research Papers 59, 1958. a
Basu, S., Holtslag, B., Van de Wiel, B., Moene, A., and Steeneveld, G.-J.: An Inconvenient ”Truth” about Using Sensible Heat Flux as a Surface Boundary Condition in Models under Stably Stratified Regimes, Acta Geophys., 56, 88–99,, 2007. a
Short summary
Our work investigates the behavior of errors in remote-sensing wind lidar measurements due to turbulence. Using a virtual instrument, we measured winds in simulated atmospheric flows and decomposed the resulting error. Dominant error mechanisms, particularly vertical velocity variations and interactions with shear, were identified in ensemble data over three test cases. By analyzing the underlying mechanisms, the response of the error behavior to further varying flow conditions may be projected.