Articles | Volume 15, issue 16
https://doi.org/10.5194/amt-15-4735-2022
https://doi.org/10.5194/amt-15-4735-2022
Research article
 | 
22 Aug 2022
Research article |  | 22 Aug 2022

Comparison of planetary boundary layer height from ceilometer with ARM radiosonde data

Damao Zhang, Jennifer Comstock, and Victor Morris

Related authors

Evaluation of Four Ground-based Retrievals of Cloud Droplet Number Concentration in Marine Stratocumulus with Aircraft In Situ Measurements
Damao Zhang, Andrew Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
EGUsphere, https://doi.org/10.5194/egusphere-2023-1364,https://doi.org/10.5194/egusphere-2023-1364, 2023
Short summary
Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic
Annakaisa von Lerber, Mario Mech, Annette Rinke, Damao Zhang, Melanie Lauer, Ana Radovan, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 7287–7317, https://doi.org/10.5194/acp-22-7287-2022,https://doi.org/10.5194/acp-22-7287-2022, 2022
Short summary
A new approach to estimate supersaturation fluctuations in stratocumulus cloud using ground-based remote-sensing measurements
Fan Yang, Robert McGraw, Edward P. Luke, Damao Zhang, Pavlos Kollias, and Andrew M. Vogelmann
Atmos. Meas. Tech., 12, 5817–5828, https://doi.org/10.5194/amt-12-5817-2019,https://doi.org/10.5194/amt-12-5817-2019, 2019
Short summary
Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements
Damao Zhang, Zhien Wang, Pavlos Kollias, Andrew M. Vogelmann, Kang Yang, and Tao Luo
Atmos. Chem. Phys., 18, 4317–4327, https://doi.org/10.5194/acp-18-4317-2018,https://doi.org/10.5194/acp-18-4317-2018, 2018
Short summary
Marine boundary layer structure as observed by A-train satellites
Tao Luo, Zhien Wang, Damao Zhang, and Bing Chen
Atmos. Chem. Phys., 16, 5891–5903, https://doi.org/10.5194/acp-16-5891-2016,https://doi.org/10.5194/acp-16-5891-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Extended validation of Aeolus winds with wind-profiling radars in Antarctica and Arctic Sweden
Sheila Kirkwood, Evgenia Belova, Peter Voelger, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 16, 4215–4227, https://doi.org/10.5194/amt-16-4215-2023,https://doi.org/10.5194/amt-16-4215-2023, 2023
Short summary
The impact of Aeolus winds on near-surface wind forecasts over tropical ocean and high-latitude regions
Haichen Zuo and Charlotte Bay Hasager
Atmos. Meas. Tech., 16, 3901–3913, https://doi.org/10.5194/amt-16-3901-2023,https://doi.org/10.5194/amt-16-3901-2023, 2023
Short summary
Long-term validation of Aeolus L2B wind products at Punta Arenas, Chile, and Leipzig, Germany
Holger Baars, Joshua Walchester, Elizaveta Basharova, Henriette Gebauer, Martin Radenz, Johannes Bühl, Boris Barja, Ulla Wandinger, and Patric Seifert
Atmos. Meas. Tech., 16, 3809–3834, https://doi.org/10.5194/amt-16-3809-2023,https://doi.org/10.5194/amt-16-3809-2023, 2023
Short summary
Daily satellite-based sunshine duration estimates over Brazil: Validation and inter-comparison
Maria Lívia Lins Mattos Gava, Simone Marilene Sievert da Costa Coelho, and Anthony Carlos Silva Porfírio
EGUsphere, https://doi.org/10.5194/egusphere-2023-1195,https://doi.org/10.5194/egusphere-2023-1195, 2023
Short summary
Turbulence kinetic energy dissipation rate: assessment of radar models from comparisons between 1.3 GHz wind profiler radar (WPR) and DataHawk UAV measurements
Hubert Luce, Lakshmi Kantha, Hiroyuki Hashiguchi, Dale Lawrence, Abhiram Doddi, Tyler Mixa, and Masanori Yabuki
Atmos. Meas. Tech., 16, 3561–3580, https://doi.org/10.5194/amt-16-3561-2023,https://doi.org/10.5194/amt-16-3561-2023, 2023
Short summary

Cited articles

Bopape, M.-J. M., Plant, R. S., and Coceal, O.: Resolution Dependence of Turbulent Structures in Convective Boundary Layer Simulations, Atmosphere, 11, 986, https://doi.org/10.3390/atmos11090986, 2020. 
Bradley, R. S., Keimig, F. T., and Diaz, H. F.: Recent changes in the North American Arctic boundary layer in winter, J. Geophys. Res., 98, 8851–8858, https://doi.org/10.1029/93JD00311, 1993. 
Brooks, I. M.: Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles, J. Atmos. Oceanic Technol., 20, 1092–1105, https://doi.org/10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2, 2003. 
Caicedo, V., Rappenglück, B., Lefer, B., Morris, G., Toledo, D., and Delgado, R.: Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data, Atmos. Meas. Tech., 10, 1609–1622, https://doi.org/10.5194/amt-10-1609-2017, 2017. 
Dang, R., Yang, Y., Hu, X.-M., Wang, Z., and Zhang, S.: A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data, Remote Sens, 11, 1590, https://doi.org/10.3390/rs11131590, 2019. 
Download
Short summary
The planetary boundary layer is the lowest part of the atmosphere. Its structure and depth (PBLHT) significantly impact air quality, global climate, land–atmosphere interactions, and a wide range of atmospheric processes. To test the robustness of the ceilometer-estimated PBLHT under different atmospheric conditions, we compared ceilometer- and radiosonde-estimated PBLHTs using multiple years of U.S. DOE ARM measurements at various ARM observatories located around the world.