Articles | Volume 15, issue 21
https://doi.org/10.5194/amt-15-6309-2022
https://doi.org/10.5194/amt-15-6309-2022
Research article
 | 
02 Nov 2022
Research article |  | 02 Nov 2022

Calibrating networks of low-cost air quality sensors

Priyanka deSouza, Ralph Kahn, Tehya Stockman, William Obermann, Ben Crawford, An Wang, James Crooks, Jing Li, and Patrick Kinney

Related authors

Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications
Priyanka deSouza, Ralph A. Kahn, James A. Limbacher, Eloise A. Marais, Fábio Duarte, and Carlo Ratti
Atmos. Meas. Tech., 13, 5319–5334, https://doi.org/10.5194/amt-13-5319-2020,https://doi.org/10.5194/amt-13-5319-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Inversion algorithm of black carbon mixing state based on machine learning
Zeyuan Tian, Jiandong Wang, Jiaping Wang, Chao Liu, Jia Xing, Jinbo Wang, Zhouyang Zhang, Yuzhi Jin, Sunan Shen, Bin Wang, Wei Nie, Xin Huang, and Aijun Ding
Atmos. Meas. Tech., 18, 1149–1162, https://doi.org/10.5194/amt-18-1149-2025,https://doi.org/10.5194/amt-18-1149-2025, 2025
Short summary
Implementation of Real-Time Source Apportionment Approaches Using the ACSM-Xact-Aethalometer (AXA) Set-Up with SoFi RT: The Athens Case Study
Manousos Ioannis Manousakas, Olga Zografou, Francesco Canonaco, Evangelia Diapouli, Stefanos Papagiannis, Maria Gini, Vasiliki Vasilatou, Anna Tobler, Stergios Vratolis, Jay G. Slowik, Kaspar R. Daellenbach, André S. H. Prevot, and Konstantinos Eleftheriadis
EGUsphere, https://doi.org/10.5194/egusphere-2025-542,https://doi.org/10.5194/egusphere-2025-542, 2025
Short summary
Performance evaluation of Atmotube PRO sensors for air quality measurements in an urban location
Aishah I. Shittu, Kirsty J. Pringle, Stephen R. Arnold, Richard J. Pope, Ailish M. Graham, Carly Reddington, Richard Rigby, and James B. McQuaid
Atmos. Meas. Tech., 18, 817–828, https://doi.org/10.5194/amt-18-817-2025,https://doi.org/10.5194/amt-18-817-2025, 2025
Short summary
Development and validation of a NOx+ ratio method for the quantitative separation of inorganic and organic nitrate aerosol using CV-UMR-ToF-ACSM
Farhan R. Nursanto, Douglas A. Day, Roy Meinen, Rupert Holzinger, Harald Saathoff, Jinglan Fu, Jan Mulder, Ulrike Dusek, and Juliane L. Fry
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-191,https://doi.org/10.5194/amt-2024-191, 2025
Revised manuscript accepted for AMT
Short summary
Retrieval of Bulk Hygroscopicity From PurpleAir PM2.5 Sensor Measurements
Jillian Psotka, Emily Tracey, and Robert Sica
EGUsphere, https://doi.org/10.5194/egusphere-2024-3618,https://doi.org/10.5194/egusphere-2024-3618, 2024
Short summary

Cited articles

Anderson, G. B. and Peng, R. D.: weathermetrics: Functions to convert between weather metrics (R package), http://cran.r-project.org/web/packages/weathermetrics/index.html (last access: 26 October 2022), 2012. 
Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, R. C. H., and Hamburg, S. P.: High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data, Environ. Sci. Technol., 51, 6999–7008, https://doi.org/10.1021/acs.est.7b00891, 2017. 
Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor, Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021. 
Bean, J. K.: Evaluation methods for low-cost particulate matter sensors, Atmos. Meas. Tech., 14, 7369–7379, https://doi.org/10.5194/amt-14-7369-2021, 2021. 
Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale, Environ. Sci. Technol., 54, 2152–2162, https://doi.org/10.1021/acs.est.9b06046, 2020. 
Download
Short summary
How sensitive are the spatial and temporal trends of PM2.5 derived from a network of low-cost sensors to the calibration adjustment used? How transferable are calibration equations developed at a few co-location sites to an entire network of low-cost sensors? This paper attempts to answer this question and offers a series of suggestions on how to develop the most robust calibration function for different end uses. It uses measurements from the Love My Air network in Denver as a test case.
Share