Articles | Volume 15, issue 23
https://doi.org/10.5194/amt-15-6949-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-6949-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the consistency of satellite-derived upper tropospheric humidity measurements
Lei Shi
CORRESPONDING AUTHOR
NOAA NESDIS National Centers for Environmental Information (NCEI), Asheville, NC, USA
Carl J. Schreck III
Cooperative Institute for Satellite Earth System Studies (CISESS), North Carolina State University, Asheville, NC, USA
Viju O. John
EUMETSAT and Met Office Hadley Centre, Exeter, UK
Eui-Seok Chung
Korea Polar Research Institute, Incheon, South Korea
Theresa Lang
Meteorological Institute, Universität Hamburg, Hamburg, Germany
International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology, Hamburg, Germany
Stefan A. Buehler
Meteorological Institute, Universität Hamburg, Hamburg, Germany
Brian J. Soden
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
Related authors
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Lukas Kluft, Bjorn Stevens, Manfred Brath, and Stefan A. Buehler
Atmos. Chem. Phys., 25, 9075–9084, https://doi.org/10.5194/acp-25-9075-2025, https://doi.org/10.5194/acp-25-9075-2025, 2025
Short summary
Short summary
Using a single-column model, we investigate the effect of the vertical distribution of clouds on climate sensitivity. We show that, depending on their height, clouds can mask or unmask the radiative response of the clear-sky atmosphere. Our single-column model yields an all-sky climate sensitivity of 2.2 K, slightly less than the clear-sky value. This value can be interpreted as a baseline to which changes in surface albedo and an assumed reduction in cloud albedo would add.
Kaah P. Menang, Stefan A. Buehler, Lukas Kluft, Robin J. Hogan, and Florian E. Roemer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3051, https://doi.org/10.5194/egusphere-2024-3051, 2024
Short summary
Short summary
We investigated how the uncertainty in representing water vapour continuum absorption in the shortwave affects clear-sky shortwave radiative feedback. For current surface temperature, the impact is modest (<2 %). In a warmer world, continuum induced error in estimated shortwave feedback is up to ~5 %. Using the MT_CKD model in radiative transfer calculations may lead to an underestimation of the shortwave feedback. Constraining shortwave continuum will contribute to reducing these discrepancies.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Hauke Schmidt, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih-Wei Fang, Diego Jimenez-de la Cuesta, Paul Keil, Lukas Kluft, Clarissa Kroll, Theresa Lang, Ulrike Niemeier, Andrea Schneidereit, Andrew I. L. Williams, and Bjorn Stevens
Geosci. Model Dev., 17, 1563–1584, https://doi.org/10.5194/gmd-17-1563-2024, https://doi.org/10.5194/gmd-17-1563-2024, 2024
Short summary
Short summary
A recent development in numerical simulations of the global atmosphere is the increase in horizontal resolution to grid spacings of a few kilometers. However, the vertical grid spacing of these models has not been reduced at the same rate as the horizontal grid spacing. Here, we assess the effects of much finer vertical grid spacings, in particular the impacts on cloud quantities and the atmospheric energy balance.
Marc Prange, Stefan A. Buehler, and Manfred Brath
Atmos. Chem. Phys., 23, 725–741, https://doi.org/10.5194/acp-23-725-2023, https://doi.org/10.5194/acp-23-725-2023, 2023
Short summary
Short summary
We investigate the representation of elevated moist layers (EMLs) in two satellite retrieval products and ERA5 reanalysis. EMLs occur in the vicinity of tropical convective storms and are thought to have an impact on their evolution through radiative heating. We provide a first dedicated assessment of EMLs in long-term data products in terms of moist layer strength, vertical thickness and altitude by comparing to collocated radiosondes over the western Pacific, a region where EMLs often occur.
Ákos Horváth, James L. Carr, Dong L. Wu, Julia Bruckert, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 12311–12330, https://doi.org/10.5194/acp-22-12311-2022, https://doi.org/10.5194/acp-22-12311-2022, 2022
Short summary
Short summary
We estimate plume heights for the April 2021 La Soufrière daytime eruptions using GOES-17 near-limb side views and GOES-16–MODIS stereo views. These geometric heights are then compared with brightness-temperature-based radiometric height estimates to characterize the biases of the latter. We also show that the side view method can be applied to infrared imagery and thus nighttime eruptions, albeit with larger uncertainty.
Theresa Mieslinger, Bjorn Stevens, Tobias Kölling, Manfred Brath, Martin Wirth, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 6879–6898, https://doi.org/10.5194/acp-22-6879-2022, https://doi.org/10.5194/acp-22-6879-2022, 2022
Short summary
Short summary
The trades are home to a plethora of small cumulus clouds that are often barely visible to the human eye and difficult to detect with active and passive remote sensing methods. With the help of a new method and by means of high-resolution data we can detect small and particularly thin clouds. We find that optically thin clouds are a common phenomenon in the trades, covering a large area and influencing the radiative effect of clouds if they are undetected and contaminate the cloud-free signal.
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022, https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Short summary
We test a novel method to remotely measure ice particles in clouds. This is important because such measurements are required to improve climate and weather models. The method combines a radar with newly developed sensors measuring microwave radiation at very short wavelengths. We use observations made from aircraft flying above the cloud and compare them to real measurements from inside the cloud. This works well given that one can model the ice particles in the cloud sufficiently well.
Heike Konow, Florian Ewald, Geet George, Marek Jacob, Marcus Klingebiel, Tobias Kölling, Anna E. Luebke, Theresa Mieslinger, Veronika Pörtge, Jule Radtke, Michael Schäfer, Hauke Schulz, Raphaela Vogel, Martin Wirth, Sandrine Bony, Susanne Crewell, André Ehrlich, Linda Forster, Andreas Giez, Felix Gödde, Silke Groß, Manuel Gutleben, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Theresa Lang, Bernhard Mayer, Mario Mech, Marc Prange, Sabrina Schnitt, Jessica Vial, Andreas Walbröl, Manfred Wendisch, Kevin Wolf, Tobias Zinner, Martin Zöger, Felix Ament, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 5545–5563, https://doi.org/10.5194/essd-13-5545-2021, https://doi.org/10.5194/essd-13-5545-2021, 2021
Short summary
Short summary
The German research aircraft HALO took part in the research campaign EUREC4A in January and February 2020. The focus area was the tropical Atlantic east of the island of Barbados. We describe the characteristics of the 15 research flights, provide auxiliary information, derive combined cloud mask products from all instruments that observe clouds on board the aircraft, and provide code examples that help new users of the data to get started.
Marc Prange, Manfred Brath, and Stefan A. Buehler
Atmos. Meas. Tech., 14, 7025–7044, https://doi.org/10.5194/amt-14-7025-2021, https://doi.org/10.5194/amt-14-7025-2021, 2021
Short summary
Short summary
We investigate the ability of the hyperspectral infrared satellite instrument IASI to resolve moist layers in the tropical free troposphere in a model framework. Previous observational results indicated major deficiencies of passive satellite instruments in resolving moist layers around the freezing level. We conduct a first systematic hyperspectral infrared retrieval analysis of such moist layers and conclude that no inherent satellite blind spot for moist layers exists.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Ákos Horváth, James L. Carr, Olga A. Girina, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12189–12206, https://doi.org/10.5194/acp-21-12189-2021, https://doi.org/10.5194/acp-21-12189-2021, 2021
Short summary
Short summary
We give a detailed description of a new technique to estimate the height of volcanic eruption columns from near-limb geostationary imagery. Such oblique angle observations offer spectacular side views of eruption columns protruding from the Earth ellipsoid and thereby facilitate a height-by-angle estimation method. Due to its purely geometric nature, the new technique is unaffected by the limitations of traditional brightness-temperature-based height retrievals.
Ákos Horváth, Olga A. Girina, James L. Carr, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12207–12226, https://doi.org/10.5194/acp-21-12207-2021, https://doi.org/10.5194/acp-21-12207-2021, 2021
Short summary
Short summary
We demonstrate the side view plume height estimation technique described in Part 1 on seven volcanic eruptions from 2019 and 2020, including the 2019 Raikoke eruption. We explore the strengths and limitations of the new technique in comparison to height estimation from brightness temperatures, stereo observations, and ground-based video footage.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation
Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present),
J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:Tvgpcp>2.0.Co;2, 2003.
Allan, R. P., Ringer, M. A., and Slingo, A.: Evaluation of moisture in the
Hadley Centre climate model using simulations of HIRS water-vapour channel
radiances, Q. J. Roy. Meteor. Soc., 129, 3371–3389, https://doi.org/10.1256/qj.02.217, 2003.
Allan, R. P., Willett, K. M., John, V. O., and Trent, T.: Global Changes in
Water Vapor 1979–2020, J. Geophys. Res.-Atmos., 127, e2022JD036728, https://doi.org/10.1029/2022JD036728, 2022.
Bates, J. J., Wu, X., and Jackson, D. L.: Interannual variability of
upper-troposphere water vapor band brightness temperature, J. Climate, 9, 427–438, 1996.
Brogniez, H. and Pierrehumbert, R. T.: Using microwave observations to
assess large-scale control of free tropospheric water vapor in the
mid-latitudes, Geophys. Res. Lett., 33, L14801, https://doi.org/10.1029/2006gl026240,
2006.
Brogniez, H., Roca, R., and Picon, L.: A clear-sky radiance archive from
Meteosat “water vapor” observations, J. Geophys. Res., 111, D21109,
https://doi.org/10.1029/2006jd007238, 2006.
Brogniez, H., Roca, R., and Picon, L.: Study of the Free Tropospheric
Humidity Interannual Variability Using Meteosat Data and an
Advection-Condensation Transport Model, J. Climate, 22, 6773–6787,
https://doi.org/10.1175/2009jcli2963.1, 2009.
Brogniez, H., Clain, G., and Roca, R.: Validation of Upper-Tropospheric
Humidity from SAPHIR on board Megha-Tropiques Using Tropical Soundings, J. Appl. Meteorol. Clim., 54, 896–908, 2015.
Buehler, S. A. and John, V. O.: A simple method to relate microwave
radiances to upper tropospheric humidity, J. Geophys. Res., 110, D02110, https://doi.org/10.1029/2004jd005111, 2005.
Buehler, S. A., Kuvatov, M., John, V. O., Milz, M., Soden, B. J., Jackson,
D. L., and Notholt, J.: An upper tropospheric humidity data set from
operational satellite microwave data, J. Geophys. Res., 113, D14110, https://doi.org/10.1029/2007jd009314, 2008.
Chung, E.-S., Soden, B. J., and John, V. O.: Intercalibrating Microwave
Satellite Observations for Monitoring Long-Term Variations in Upper- and
Midtropospheric Water Vapor, J. Atmos. Ocean. Tech., 30, 2303–2319,
https://doi.org/10.1175/JTECH-D-13-00001.1, 2013.
Chung, E. S., Soden, B., Sohn, B. J., and Shi, L.: Upper-tropospheric
moistening in response to anthropogenic warming, P. Natl. Acad. Sci. USA, 111, 11636-11641, https://doi.org/10.1073/pnas.1409659111, 2014.
Chung, E. S., Sohn, B. J., Schmetz, J., and Koenig, M.: Diurnal variation of upper tropospheric humidity and its relations to convective activities over tropical Africa, Atmos. Chem. Phys., 7, 2489–2502, https://doi.org/10.5194/acp-7-2489-2007, 2007.
Chung, E.-S., Soden, B. J., Huang, X. L., Shi, L., and John, V. O.: An
assessment of the consistency between satellite measurements of upper
tropospheric water vapor, J. Geophys. Res.-Atmos., 121, 2874–2887,
https://doi.org/10.1002/2015jd024496, 2016.
Durre, I., Yin, X., Vose, R. S., Applequist, S., and Arnfield, J.: Enhancing
the Data Coverage in the Integrated Global Radiosonde Archive, J. Atmos. Ocean. Tech., 35, 1753–1770, https://doi.org/10.1175/jtech-d-17-0223.1, 2018.
Ferreira, A. P., Nieto, R., and Gimeno, L.: Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive, Earth Syst. Sci. Data, 11, 603–627, https://doi.org/10.5194/essd-11-603-2019, 2019.
Gierens, K., Eleftheratos, K., and Shi, L.: Technical Note: 30 years of HIRS data of upper tropospheric humidity, Atmos. Chem. Phys., 14, 7533–7541, https://doi.org/10.5194/acp-14-7533-2014, 2014.
Gierens, K., Eleftheratos, K., and Sausen, R.: Intercalibration between HIRS/2 and HIRS/3 channel 12 based on physical considerations, Atmos. Meas. Tech., 11, 939–948, https://doi.org/10.5194/amt-11-939-2018, 2018.
Hans, I., Burgdorf, M., Buehler, S. A., Prange, M., Lang, T., and John, V.
O.: An Uncertainty Quantified Fundamental Climate Data Record for Microwave
Humidity Sounders, Remote Sensing, 11, 548, https://doi.org/10.3390/rs11050548, 2019.
Held, I. M. and Soden, B. J.: WATER VAPOR FEEDBACK AND GLOBAL WARMING,
Annu. Rev. Energ. Env., 25, 441–475, https://doi.org/10.1146/annurev.energy.25.1.441, 2000.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/jcli-d-16-0836.1, 2017.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., and Clough, S. A.: Evaluation
of upper tropospheric water vapor in the NCAR Community Climate Model (CCM3)
using modeled and observed HIRS radiances, J. Geophys. Res., 108, 4037, https://doi.org/10.1029/2002JD002539, 2003.
Jackson, D. L. and Bates, J. J.: Upper tropospheric humidity algorithm
assessment, J. Geophys. Res.-Atmos., 106, 32259–32270, 2001.
John, V. O., Buehler, S. A., and Courcoux, N.: A cautionary note on the use
of Gaussian statistics in Satellite-based UTH climatologies, IEEE T. Geosci
Remote, 3, 130–134, https://doi.org/10.1109/LGRS.2005.859350, 2006.
John, V. O., Allan, R. P., Bell, W., Buehler, S. A., and Kottayil, A.:
Assessment of intercalibration methods for satellite microwave humidity
sounders, J. Geophys. Res.-Atmos., 118, 4906–4918, https://doi.org/10.1002/jgrd.50358, 2013.
John, V. O., Shi, L., Chung, E. S., Allan, R. P., Buehler, S. A., and Soden,
B.: Upper tropospheric humidity, in: “State of the Climate in 2020”, B.
Am. Meteorol. Soc., 102, 55–56, https://doi.org/10.1175/BAMS-D-21-0098.1, 2021.
Lang, T., Buehler, S., Burgdorf, M., and Hans, I.: FIDUCEO: Microwave Upper Troposheric Humidity and Uncertainties, Climate Data Record, 1994-2017, V1.2, Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/2083b33b5c3d4cf0acb9a49226789caa, 2020a.
Lang, T., Buehler, S. A., Burgdorf, M., Hans, I., and John, V. O.: A new
climate data record of upper-tropospheric humidity from microwave
observations, Scientific Data, 7, 218, https://doi.org/10.1038/s41597-020-0560-1, 2020b.
Lim, Y. K., Kovach, R. M., Pawson, S., and Vernieres, G.: The 2015/16 El
Nino Event in Context of the MERRA-2 Reanalysis: A Comparison of the
Tropical Pacific with 1982/83 and 1997/98, J. Climate, 30, 4819–4842, https://doi.org/10.1175/Jcli-D-16-0800.1, 2017.
Luo, Z. and Rossow, W. B.: Characterizing Tropical Cirrus Life Cycle,
Evolution, and Interaction with Upper-Tropospheric Water Vapor Using
Lagrangian Trajectory Analysis of Satellite Observations, J. Climate, 17, 4541–4563, https://doi.org/10.1175/3222.1, 2004.
Luo, Z., Kley, D., Johnson, R. H., and Smit, H.: Ten Years of Measurements
of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology,
Variability, Transport, and Relation to Deep Convection, J. Climate, 20, 418–435, https://doi.org/10.1175/jcli3997.1, 2007.
Mantsis, D. F., Sherwood, S., Allen, R., and Shi, L.: Natural variations of
tropical width and recent trends, Geophys. Res. Lett., 44, 3825–3832, https://doi.org/10.1002/2016gl072097, 2017.
McCarthy, M. P. and Toumi, R.: Observed interannual variability of tropical
troposphere relative humidity, J. Climate, 17, 3181–3191, 2004.
McPhaden, M. J.: Genesis and evolution of the 1997–98 El Niño, Science, 283, 950–954, https://doi.org/10.1126/science.283.5404.950, 1999.
Moradi, I., Arkin, P., Ferraro, R., Eriksson, P., and Fetzer, E.: Diurnal variation of tropospheric relative humidity in tropical regions, Atmos. Chem. Phys., 16, 6913–6929, https://doi.org/10.5194/acp-16-6913-2016, 2016.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-y., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou,
C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge,
G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058, https://doi.org/10.1175/2010bams3001.1, 2010.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer,
D., Hou, Y.-T., Chuang, H.-y., Iredell, M., Ek, M., Meng, J., Yang, R.,
Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker,
E.: The NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208, https://doi.org/10.1175/jcli-d-12-00823.1, 2014.
Santoso, A., Mcphaden, M. J., and Cai, W.: The Defining Characteristics of
ENSO Extremes and the Strong 2015/2016 El Niño, Rev. Geophys., 55, 1079–1129, https://doi.org/10.1002/2017RG000560, 2017.
Saunders, R. W., Blackmore, T. A., Candy, B., Francis, P. N., and Hewison,
T. J.: Monitoring Satellite Radiance Biases Using NWP Models, IEEE T. Geosci.
Remote, 51, 1124–1138, https://doi.org/10.1109/TGRS.2012.2229283, 2013.
Schreck, C. J., Shi, L., Kossin, J. P., and Bates, J. J.: Identifying the
MJO, Equatorial Waves, and Their Impacts Using 32 Years of HIRS
Upper-Tropospheric Water Vapor, J. Climate, 26, 1418–1431,
https://doi.org/10.1175/Jcli-D-12-00034.1, 2013.
Schröder, M., Roca, R., Picon, L., Kniffka, A., and Brogniez, H.: Climatology of free-tropospheric humidity: extension into the SEVIRI era, evaluation and exemplary analysis, Atmos. Chem. Phys., 14, 11129–11148, https://doi.org/10.5194/acp-14-11129-2014, 2014.
Schröder, M., Lockhoff, M., Shi, L., August, T., Bennartz, R., Borbas,
E., Brogniez, H., Calbet, X., Crewell, S., Eikenberg, S., Fell, F.,
Forsythe, J., Gambacorta, A., Graw, K., Ho, S.-P., Höschen, H., Kinzel,
J., Kursinski, E. R., Reale, A., Roman, J., Scott, N., Steinke, S., Sun, B.,
Trent, T., Walther, A., Willen, U., and Yang, Q.: GEWEX water vapor
assessment (G-VAP), WCRP Report No. 16/2017, 216 pp, https://www.wcrp-climate.org/WCRP-publications/2017/WCRP-Report-16-2017-GVAP-v1.3_web.pdf (last access: 17 November 2022), 2017.
Shi, L. and Bates, J. J.: Three decades of intersatellite-calibrated
High-Resolution Infrared Radiation Sounder upper tropospheric water vapor, J.
Geophys. Res., 116, D04108, https://doi.org/10.1029/2010jd014847, 2011.
Shi, L. and NOAA CDR Program: NOAA Climate Data Record (CDR) of Intersatellite Calibrated Clear-Sky HIRS Channel 12 Brightness Temperature, Version 3.2, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/zqqa-ks18, 2021.
Shi, L., Schreck, C. J., and Schroder, M.: Assessing the Pattern Differences
between Satellite-Observed Upper Tropospheric Humidity and Total Column
Water Vapor during Major El Nino Events, Remote Sensing, 10, 1188,
https://doi.org/10.3390/rs10081188, 2018.
Soden, B. J. and Bretherton, F. P.: Upper-tropospheric relative-humidity
from the GOES 6.7 µm channel: Method and climatology for July 1987, J. Geophys. Res., 98, 16669–16688, https://doi.org/10.1029/93jd01283, 1993.
Soden, B. J. and Bretherton, F. P.: Interpretation of TOVS water vapor
radiances in terms of layer-average relative humidities: Method and
climatology for the upper, middle, and lower troposphere, J. Geophys.
Res.-Atmos, 101, 9333–9343, 1996.
Soden, B. J. and Fu, R.: A Satellite Analysis of Deep Convection,
Upper-Tropospheric Humidity, and the Greenhouse-Effect, J. Climate, 8, 2333–2351, https://doi.org/10.1175/1520-0442(1995)008<2333:ASAODC>2.0.CO;2, 1995.
Soden, B. J. and Lanzante, J. R.: An assessment of satellite and radiosonde
climatologies of upper-tropospheric water vapor, J. Climate, 9, 1235–1250, 1996.
Soden, B. J., Jackson, D. L., Ramaswamy, V., Schwarzkopf, M. D., and Huang,
X. L.: The radiative signature of upper tropospheric moistening, Science,
310, 841–844, https://doi.org/10.1126/science.1115602, 2005.
Sohn, B. J. and Park, S.-C.: Strengthened tropical circulations in past
three decades inferred from water vapor transport, J. Geophys. Res., 115,
D15112, https://doi.org/10.1029/2009jd013713, 2010.
Sohn, B. J., Schmetz, J., Tjemkes, S., Koenig, M., Lutz, H., Arriaga, A.,
and Chung, E. S.: Intercalibration of the Meteosat-7 water vapor channel
with SSM/T-2, J. Geophys. Res.-Atmos., 105, 15673–15680, https://doi.org/10.1029/2000JD900188, 2000.
Tivig, M., Grützun, V., John, V. O., and Buehler, S. A.: Trends in
Upper-Tropospheric Humidity: Expansion of the Subtropical Dry Zones?,
J. Climate, 33, 2149–2161, https://doi.org/10.1175/jcli-d-19-0046.1, 2020.
Trenberth, K. E.: The definition of El Nino, B. Am. Meteorol. Soc., 78, 2771–2777, 1997.
Tsamalis, C., King, R., Good, E., Viju, J., Hollmann, R., Selbach, N., Kaiser, J., and Werscheck, M.: CM SAF Microwave Upper Tropospheric Humidity (UTH) Data Record – Edition 1, Satellite Application Facility on Climate Monitoring [data set], https://doi.org/10.5676/EUM_SAF_CM/UTH/V001, 2019.
Wolter, K. and Timlin, M. S.: El Niño/Southern Oscillation behaviour
since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext),
Int. J. Climatol., 31, 1074–1087, https://doi.org/10.1002/joc.2336, 2011.
Zelinka, M. D. and Hartmann, D. L.: Response of Humidity and Clouds to
Tropical Deep Convection, J. Climate, 22, 2389–2404,
https://doi.org/10.1175/2008jcli2452.1, 2009.
Short summary
Four upper tropospheric humidity (UTH) datasets derived from satellite microwave and infrared sounders are evaluated to assess their consistency as part of the activities for the Global Energy and Water Exchanges (GEWEX) water vapor assessment project. The study shows that the four datasets are consistent in the interannual temporal and spatial variability of the tropics. However, differences are found in the magnitudes of the anomalies and in the changing rates during the common period.
Four upper tropospheric humidity (UTH) datasets derived from satellite microwave and infrared...