Articles | Volume 15, issue 23
https://doi.org/10.5194/amt-15-7171-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-7171-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ particle sampling relationships to surface and turbulent fluxes using large eddy simulations with Lagrangian particles
Hyungwon John Park
CORRESPONDING AUTHOR
National Research Council Postdoctoral Fellow, US Naval Research Laboratory, Monterey, CA, USA
Jeffrey S. Reid
Marine Meteorology Division, US Naval Research Laboratory, Monterey, CA, USA
Livia S. Freire
Instituto de Ciências Matemáticas e de Computação, University of São Paulo, São Carlos, Brazil
Christopher Jackson
Consultant, Global Science and Technology Inc., College Park, MD, USA
David H. Richter
Department of Civil and Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
Related authors
No articles found.
Sujan Shrestha, Robert E. Holz, Willem J. Marais, Zachary Buckholtz, Ilya Razenkov, Edwin Eloranta, Jeffrey S. Reid, Hope E. Elliott, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Edmund Blades, Albert D. Ortiz, Rebecca Chewitt-Lucas, Alyson Allen, Devon Blades, Ria Agrawal, Elizabeth A. Reid, Jesus Ruiz-Plancarte, Anthony Bucholtz, Ryan Yamaguchi, Qing Wang, Thomas Eck, Elena Lind, Mira L. Pöhlker, Andrew P. Ault, and Cassandra J. Gaston
EGUsphere, https://doi.org/10.5194/egusphere-2025-4584, https://doi.org/10.5194/egusphere-2025-4584, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Coordinated observations from MAGPIE 2023 show that Saharan dust in the marine atmospheric boundary layer becomes internally mixed with sea spray. This mixing increases particle sphericity and hygroscopicity, likely leading to suppressed lidar linear depolarization ratios despite high dust concentrations. The findings have key implications for interpreting lidar-derived dust retrievals, estimating surface dust from satellite products, and improving dust representation in models.
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024, https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
Short summary
This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke (black carbon and brown carbon) using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Blake T. Sorenson, Jeffrey S. Reid, Jianglong Zhang, Robert E. Holz, William L. Smith Sr., and Amanda Gumber
Atmos. Chem. Phys., 24, 1231–1248, https://doi.org/10.5194/acp-24-1231-2024, https://doi.org/10.5194/acp-24-1231-2024, 2024
Short summary
Short summary
Smoke particles are typically submicron in size and assumed to have negligible impacts at the thermal infrared spectrum. However, we show that infrared signatures can be observed over dense smoke plumes from satellites. We found that giant particles are unlikely to be the dominant cause. Rather, co-transported water vapor injected to the middle to upper troposphere and surface cooling beneath the plume due to shadowing are significant, with the surface cooling effect being the most dominant.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Blake T. Sorenson, Jianglong Zhang, Jeffrey S. Reid, Peng Xian, and Shawn L. Jaker
Atmos. Chem. Phys., 23, 7161–7175, https://doi.org/10.5194/acp-23-7161-2023, https://doi.org/10.5194/acp-23-7161-2023, 2023
Short summary
Short summary
We quality-control Ozone Monitoring Instrument (OMI) aerosol index data by identifying row anomalies and removing systematic biases, using the data to quantify trends in UV-absorbing aerosols over the Arctic region. We found decreasing trends in UV-absorbing aerosols in spring months and increasing trends in summer months. For the first time, observational evidence of increasing trends in UV-absorbing aerosols over the North Pole is found using the OMI data, especially over the last half decade.
Jianglong Zhang, Jeffrey S. Reid, Steven D. Miller, Miguel Román, Zhuosen Wang, Robert J. D. Spurr, and Shawn Jaker
Atmos. Meas. Tech., 16, 2531–2546, https://doi.org/10.5194/amt-16-2531-2023, https://doi.org/10.5194/amt-16-2531-2023, 2023
Short summary
Short summary
We adapted the spherical harmonics discrete ordinate method 3-dimentional radiative transfer model (3-D RTM) and developed a nighttime 3-D RTM capability for simulating top-of-atmosphere radiances from artificial light sources for aerosol retrievals. Our study suggests that both aerosol optical depth and aerosol plume height can be effectively retrieved using nighttime observations over artificial light sources, through the newly developed radiative transfer modeling capability.
Amanda Gumber, Jeffrey S. Reid, Robert E. Holz, Thomas F. Eck, N. Christina Hsu, Robert C. Levy, Jianglong Zhang, and Paolo Veglio
Atmos. Meas. Tech., 16, 2547–2573, https://doi.org/10.5194/amt-16-2547-2023, https://doi.org/10.5194/amt-16-2547-2023, 2023
Short summary
Short summary
The purpose of this study is to create and evaluate a gridded dataset composed of multiple satellite instruments and algorithms to be used for data assimilation. An important part of aerosol data assimilation is having consistent measurements, especially for severe aerosol events. This study evaluates 4 years of data from MODIS, VIIRS, and AERONET with a focus on aerosol severe event detection from a regional and global perspective.
Juli I. Rubin, Jeffrey S. Reid, Peng Xian, Christopher M. Selman, and Thomas F. Eck
Atmos. Chem. Phys., 23, 4059–4090, https://doi.org/10.5194/acp-23-4059-2023, https://doi.org/10.5194/acp-23-4059-2023, 2023
Short summary
Short summary
This work aims to quantify the covariability between aerosol optical depth/extinction with water vapor (PW) globally, using NASA AERONET observations and NAAPS model data. Findings are important for data assimilation and radiative transfer. The study shows statistically significant and positive AOD–PW relationships are found across the globe, varying in strength with location and season and tied to large-scale aerosol events. Hygroscopic growth was also found to be an important factor.
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Thomas F. Eck, Jeffrey S. Reid, David M. Giles, Daniel Pérez-Ramírez, and Jai Prakash Chaubey
Atmos. Meas. Tech., 16, 1103–1120, https://doi.org/10.5194/amt-16-1103-2023, https://doi.org/10.5194/amt-16-1103-2023, 2023
Short summary
Short summary
Aerosols are atmospheric particles that vary in size (radius) from a fraction of a micrometer (µm) to around 20 µm. They tend to be either smaller than 1 µm (like smoke or pollution) or larger than 1 µm (like dust or sea salt). Their optical effect (scattering and absorbing sunlight) can be divided into FM (fine-mode) and CM (coarse-mode) parts using a cutoff radius around 1 µm or a spectral (color) technique. We present and validate a theoretical link between the types of FM and CM divisions.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022, https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Short summary
The study provides baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Jeffrey S. Reid, Travis D. Toth, Blake Sorenson, Edward J. Hyer, James R. Campbell, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9949–9967, https://doi.org/10.5194/acp-22-9949-2022, https://doi.org/10.5194/acp-22-9949-2022, 2022
Short summary
Short summary
The study provides a baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Matthew S. Norgren, John Wood, K. Sebastian Schmidt, Bastiaan van Diedenhoven, Snorre A. Stamnes, Luke D. Ziemba, Ewan C. Crosbie, Michael A. Shook, A. Scott Kittelman, Samuel E. LeBlanc, Stephen Broccardo, Steffen Freitag, and Jeffrey S. Reid
Atmos. Meas. Tech., 15, 1373–1394, https://doi.org/10.5194/amt-15-1373-2022, https://doi.org/10.5194/amt-15-1373-2022, 2022
Short summary
Short summary
A new spectral instrument (SPN-S), with the ability to partition solar radiation into direct and diffuse components, is used in airborne settings to study the optical properties of aerosols and cirrus. It is a low-cost and mechanically simple system but has higher measurement uncertainty than existing standards. This challenge is overcome by utilizing the unique measurement capabilities to develop new retrieval techniques. Validation is done with data from two NASA airborne research campaigns.
Sujung Go, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, Arlindo da Silva, Brent Holben, and Jeffrey S. Reid
Atmos. Chem. Phys., 22, 1395–1423, https://doi.org/10.5194/acp-22-1395-2022, https://doi.org/10.5194/acp-22-1395-2022, 2022
Short summary
Short summary
This paper presents a retrieval algorithm of iron-oxide species (hematite, goethite) content in the atmosphere from DSCOVR EPIC observations. Our results display variations within the published range of hematite and goethite over the main dust-source regions but show significant seasonal and spatial variability. This implies a single-viewing satellite instrument with UV–visible channels may provide essential information on shortwave dust direct radiative effects for climate modeling.
Connor Stahl, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Zenn Marie Cainglet, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Julie Mae Dado, Miguel Ricardo A. Hilario, Gabrielle Frances Leung, Alexander B. MacDonald, Angela Monina Magnaye, Jeffrey Reid, Claire Robinson, Michael A. Shook, James Bernard Simpas, Shane Marie Visaga, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021, https://doi.org/10.5194/acp-21-14109-2021, 2021
Short summary
Short summary
A total of 159 cloud water samples were collected and measured for total organic carbon (TOC) during CAMP2Ex. On average, 30 % of TOC was speciated based on carboxylic/sulfonic acids and dimethylamine. Results provide a critical constraint on cloud composition and vertical profiles of TOC and organic species ranging from ~250 m to ~ 7 km and representing a variety of cloud types and air mass source influences such as biomass burning, marine emissions, anthropogenic activity, and dust.
Genevieve Rose Lorenzo, Paola Angela Bañaga, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Mojtaba AzadiAghdam, Avelino Arellano, Grace Betito, Rachel Braun, Andrea F. Corral, Hossein Dadashazar, Eva-Lou Edwards, Edwin Eloranta, Robert Holz, Gabrielle Leung, Lin Ma, Alexander B. MacDonald, Jeffrey S. Reid, James Bernard Simpas, Connor Stahl, Shane Marie Visaga, and Armin Sorooshian
Atmos. Chem. Phys., 21, 6155–6173, https://doi.org/10.5194/acp-21-6155-2021, https://doi.org/10.5194/acp-21-6155-2021, 2021
Short summary
Short summary
Firework emissions change the physicochemical and optical properties of water-soluble particles, which subsequently alters the background aerosol’s respirability, influence on surroundings, ability to uptake gases, and viability as cloud condensation nuclei (CCN). There was heavy aerosol loading due to fireworks in the boundary layer. The aerosol constituents were largely water-soluble and submicrometer in size due to both inorganic salts in firework materials and gas-to-particle conversion.
Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard B. Simpas, Luke Ziemba, Joshua P. DiGangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, and Armin Sorooshian
Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021, https://doi.org/10.5194/acp-21-3777-2021, 2021
Short summary
Short summary
This study characterizes long-range transport from major Asian pollution sources into the tropical northwest Pacific and the impact of scavenging on these air masses. We combined aircraft observations, HYSPLIT trajectories, reanalysis, and satellite retrievals to reveal distinct composition and size distribution profiles associated with specific emission sources and wet scavenging. The results of this work have implications for international policymaking related to climate and health.
Jianglong Zhang, Robert J. D. Spurr, Jeffrey S. Reid, Peng Xian, Peter R. Colarco, James R. Campbell, Edward J. Hyer, and Nancy L. Baker
Geosci. Model Dev., 14, 27–42, https://doi.org/10.5194/gmd-14-27-2021, https://doi.org/10.5194/gmd-14-27-2021, 2021
Short summary
Short summary
A first-of-its-kind scheme has been developed for assimilating Ozone Monitoring Instrument (OMI) aerosol index (AI) measurements into the Naval Aerosol Analysis and Predictive System. Improvements in model simulations demonstrate the utility of OMI AI data assimilation for improving the accuracy of aerosol model analysis over cloudy regions and bright surfaces. This study can be considered one of the first attempts at direct radiance assimilation in the UV spectrum for aerosol analyses.
Peng Xian, Philip J. Klotzbach, Jason P. Dunion, Matthew A. Janiga, Jeffrey S. Reid, Peter R. Colarco, and Zak Kipling
Atmos. Chem. Phys., 20, 15357–15378, https://doi.org/10.5194/acp-20-15357-2020, https://doi.org/10.5194/acp-20-15357-2020, 2020
Short summary
Short summary
Using dust AOD (DAOD) data from three aerosol reanalyses, we explored the correlative relationships between DAOD and multiple indices representing seasonal Atlantic TC activities. A robust negative correlation with Caribbean DAOD and Atlantic TC activity was found. We documented for the first time the regional differences of this relationship for over the Caribbean and the tropical North Atlantic. We also evaluated the impacts of potential confounding climate factors in this relationship.
Willem J. Marais, Robert E. Holz, Jeffrey S. Reid, and Rebecca M. Willett
Atmos. Meas. Tech., 13, 5459–5480, https://doi.org/10.5194/amt-13-5459-2020, https://doi.org/10.5194/amt-13-5459-2020, 2020
Short summary
Short summary
Space agencies use moderate-resolution satellite imagery to study how smoke, dust, pollution (aerosols) and cloud types impact the Earth's climate; these space agencies include NASA, ESA and the China Meteorological Administration. We demonstrate in this paper that an algorithm with convolutional neural networks can greatly enhance the automated detection of aerosols and cloud types from satellite imagery. Our algorithm is an improvement on current aerosol and cloud detection algorithms.
Cited articles
Andreas, E. L.:
A new spray generation function for wind speeds up to 32 m s−1, J. Phys. Oceanogr., 28, 10, https://doi.org/10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2, 1998. a
Andreas, E. L., Mahrt, L., and Vickers, D.:
An improved bulk air–sea surface flux algorithm, including spray-mediated transfer, Q. J. Roy. Meteor. Soc., 141, 642–654, https://doi.org/10.1002/qj.2424, 2015. a
Balachandar, S. and Eaton, J. K.:
Turbulent dispersed multiphase flow, Annu. Rev. Fluid Mech., 42, 111–133, https://doi.org/10.1146/annurev.fluid.010908.165243, 2010. a
Bian, H., Froyd, K., Murphy, D. M., Dibb, J., Darmenov, A., Chin, M., Colarco, P. R., da Silva, A., Kucsera, T. L., Schill, G., Yu, H., Bui, P., Dollner, M., Weinzierl, B., and Smirnov, A.:
Observationally constrained analysis of sea salt aerosol in the marine atmosphere, Atmos. Chem. Phys., 19, 10773–10785, https://doi.org/10.5194/acp-19-10773-2019, 2019. a, b
Blanchard, D. C., Woodcock, A. H., and Cipriano, R. J.:
The vertical distribution of the concentration of sea salt in the marine atmosphere near Hawaii, Tellus B, 36 B, 118–125, https://doi.org/10.1111/j.1600-0889.1984.tb00233.x, 1984. a, b, c
Chamberlain, A. C.:
Transport of lycopodium spores and other small particles to rough surfaces, P. Roy. Soc. Lond. A-Math., 296, 45–70, https://doi.org/10.1098/rspa.1967.0005, 1967. a
Chen, S., Yau, M.-K., Bartello, P., and Xue, L.:
Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds, Atmos. Chem. Phys., 18, 7251–7262, https://doi.org/10.5194/acp-18-7251-2018, 2018. a
Davidson, P.: Turbulence, an introduction for scientists and engineers, Oxford University Press, Oxford, https://doi.org/10.1093/acprof:oso/9780198722588.001.0001, 2004. a
de Leeuw, G.: Vertical profiles of giant particles close above the sea surface, Tellus B, 38, 51–61, https://doi.org/10.1111/j.1600-0889.1986.tb00087.x, 1986. a
de Leeuw, G., Andreas, E., Anguelova, M., Fairall, C., Ernie, R., O'Dowd, C., Schulz, M., and Schwartz, S.: Production Flux of Sea Spray Aerosol, Rev. Geophys., 49, RG2001, https://doi.org/10.1029/2010RG000349, 2011. a
de Szoeke, S. P., Skyllingstad, E. D., Zuidema, P., and Chandra, A. S.:
Cold pools and their influence on the tropical marine boundary layer, J. Atmos. Sci., 74, 1149–1168, https://doi.org/10.1175/JAS-D-16-0264.1, 2017. a
Deardorff, J. W.:
Numerical Investigation of Neutral and Unstable Planetary Boundary Layers, J. Atmos. Sci., 29, 91–115, 1972. a
Deardorff, J. W.:
Stratocumulus-capped mixed layers derived from a three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527, https://doi.org/10.1007/BF00119502, 1980. a
Deike, L., Ghabache, E., Liger-Belair, G., Das, A. K., Zaleski, S., Popinet, S., and Séon, T.:
Dynamics of jets produced by bursting bubbles, Physical Review Fluids, 3, 1–20, https://doi.org/10.1103/PhysRevFluids.3.013603, 2018. a
Delay, F., Ackerer, P., and Danquigny, C.:
Simulating solute transport in porous or fractured formations using random walk particle tracking: A review, Vadose Zone J., 4, 360–379, https://doi.org/10.2136/vzj2004.0125, 2005. a
Desjardins, R. L., MacPherson, J. I., Schuepp, P. H., and Karanja, F.:
An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat, Bound.-Lay. Meteorol., 47, 55–69, https://doi.org/10.1007/BF00122322, 1989. a
de Szoeke, S. P., Marke, T., and Brewer, W. A.: Diurnal Ocean Surface Warming Drives Convective Turbulence and Clouds in the Atmosphere, Geophys. Res. Lett., 48, e2020GL091299, https://doi.org/10.1029/2020GL091299, 2021. a
Eaton, J. K. and Fessler, J. R.:
Preferential Concentration of Particles by Turbulence, Int. J. Multiphas. Flow, 20, 169–209, 1994. a
Fairall, C., Kepert, J., and Holland, G.:
The effect of sea spray on surface energy transports over the ocean, Global Atmos. Ocean Syst., 2, 121–142, 1994. a
Friehe, C. A.:
Air–sea fluxes and surface layer turbulence around a sea surface temperature front, J. Geophys. Res., 96, 8593–8609, https://doi.org/10.1029/90JC02062, 1991. a
Geever, M., O'Dowd, C. D., van Ekeren, S., Flanagan, R., Nilsson, E. D., de Leeuw, G., and Rannik, Ü.:
Submicron sea spray fluxes, Geophys. Res. Lett., 32, 2–5, https://doi.org/10.1029/2005GL023081, 2005. a
Gillette, D. A., Blifford, I. H., and Fenster, C. R.:
Measurements of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion, J. Appl. Meteorol., 11, 977–987, https://doi.org/10.1175/1520-0450(1972)011<0977:MOASDA>2.0.CO;2, 1972. a
Gillies, J. and Berkofsky, L.:
Eolian suspension above the saltation layer, the concentration profile, J. Sediment. Res., 74, 176–183, https://doi.org/10.1306/091303740176, 2004. a
Gong, S. L., Barrie, L. A., Prospero, J. M., Savoie, D. L., Ayers, G. P., Blanchet, J.-P., and Spacek, L.:
Modeling sea-salt aerosol in the atmosphere 2. Atmospheric concentrations and fluxes, J. Geophys. Res., 102, 3819–3830, https://doi.org/10.1029/96JD03401, 1997. a
Grossman, R. L.:
An analysis of vertical velocity spectra obtained in the bomex fair-weather, trade-wind boundary layer, Bound.-Lay. Meteorol., 23, 323–357, https://doi.org/10.1007/BF00121120, 1982. a
Grythe, H., Ström, J., Krejci, R., Quinn, P., and Stohl, A.:
A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements, Atmos. Chem. Phys., 14, 1277–1297, https://doi.org/10.5194/acp-14-1277-2014, 2014. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.:
The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hulst, H. C. and van de Hulst, H. C.: Light scattering by small particles, Courier Corporation, New York, https://doi.org/10.1002/qj.49708436025, 1981. a
Hutjes, R. W., Vellinga, O. S., Gioli, B., and Miglietta, F.:
Dis-aggregation of airborne flux measurements using footprint analysis, Agr. Forest Meteorol., 150, 966–983, https://doi.org/10.1016/j.agrformet.2010.03.004, 2010. a, b
Irwin, J. S. and Binkowski, F. S.:
Estimation of the Monin–Obukhov scaling length using on-site instrumentation, Atmos. Environ. (1967), 15, 1091–1094, https://doi.org/10.1016/0004-6981(81)90111-6, 1981. a
Jacob, C. and Anderson, W.:
Conditionally Averaged Large-Scale Motions in the Neutral Atmospheric Boundary Layer: Insights for Aeolian Processes, Bound.-Lay. Meteorol., 162, 21–41, https://doi.org/10.1007/s10546-016-0183-4, 2017. a, b
Jensen, J. B. and Lee, S.:
Giant sea-salt aerosols and warm rain formation in marine stratocumulus, J. Atmos. Sci., 65, 3678–3694, https://doi.org/10.1175/2008jas2617.1, 2008. a, b
Kapustin, V. N., Clarke, A. D., Howell, S. G., Mcnaughton, C. S., Brekhovskikh, V. L., and Zhou, J.:
Evaluating primary marine aerosol production and atmospheric roll structures in Hawaii's natural oceanic wind tunnel, J. Atmos. Ocean. Tech., 29, 668–682, https://doi.org/10.1175/JTECH-D-11-00079.1, 2012. a, b, c
Keene, W. C., Long, M. S., Reid, J. S., Frossard, A. A., Kieber, D. J., Maben, J. R., Russell, L. M., Kinsey, J. D., Quinn, P. K., and Bates, T. S.:
Factors that modulate properties of primary marine aerosol generated from ambient seawater on ships at sea, J. Geophys. Res.-Atmos., 122, 11,961–11,990, https://doi.org/10.1002/2017JD026872, 2017. a, b
Kemppinen, O., Laning, J. C., Mersmann, R. D., Videen, G., and Berg, M. J.:
Imaging atmospheric aerosol particles from a UAV with digital holography, Sci. Rep.-UK, 10, 1–12, https://doi.org/10.1038/s41598-020-72411-x, 2020. a
Khanna, S. and Brasseur, J. G.:
Three-dimensional buoyancy- and shear-induced local structure of the atmospheric boundary layer, J. Atmos. Sci., 55, 710–743, https://doi.org/10.1175/1520-0469(1998)055<0710:TDBASI>2.0.CO;2, 1998. a
Klemp, J. B. and Durran, D. R.:
An Upper Boundary Condition Permitting Internal Gravity Wave Radiation in Numerical Mesoscale Models, Mon. Weather Rev., 111, 430–444, https://doi.org/10.1175/1520-0493(1983)111<0430:aubcpi>2.0.co;2, 1983. a
Lauros, J., Sogachev, A., Smolander, S., Vuollekoski, H., Sihto, S.-L., Mammarella, I., Laakso, L., Rannik, Ü., and Boy, M.:
Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism, Atmos. Chem. Phys., 11, 5591–5601, https://doi.org/10.5194/acp-11-5591-2011, 2011. a
Lee, S. H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., and Zhang, R.:
New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate, J. Geophys. Res.-Atmos., 124, 7098–7146, https://doi.org/10.1029/2018JD029356, 2019. a
LeMone, M.: The Structure and Dynamics of Horizontal Roll Vortices in the Planetary Boundary Layer, J. Atmos. Sci., 30, 1077–1091, https://doi.org/10.1175/1520-0469(1973)030<1077:TSADOH>2.0.CO;2, 1973. a, b
Li, D., Wei, A., Luo, K., and Fan, J.:
Direct numerical simulation of a particle-laden flow in a flat plate boundary layer, Int. J. Multiphas. Flow, 79, 124–143, https://doi.org/10.1016/j.ijmultiphaseflow.2015.10.011, 2016. a
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., and Zhu, B.:
Aerosol and boundary-layer interactions and impact on air quality, Natl. Sci. Rev., 4, 810–833, https://doi.org/10.1093/nsr/nwx117, 2017. a
Mehta, M., Khushboo, R., Raj, R., and Singh, N.:
Spaceborne observations of aerosol vertical distribution over Indian mainland (2009–2018), Atmos. Environ., 244, 117902, https://doi.org/10.1016/j.atmosenv.2020.117902, 2021. a
Mellado, J. P.:
Cloud-top entrainment in stratocumulus clouds, Annu. Rev. Fluid Mech., 49, 145–169, https://doi.org/10.1146/annurev-fluid-010816-060231, 2017. a
Moeng, C.-H.:
A large-eddy-simulation model for the study of planetary boundary-layer Turbulence, J. Atmos. Sci., 41, 2052–2062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2, 1984. a, b, c
Moeng, C.-H. and Sullivan, P. P.:
A comparison of shear- and buoyancy-driven planetary boundary layer flows, J. Atmos. Sci., pp. 999–1022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2, 1994. a, b, c
Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A model of marine aerosol generation via whitecaps and wave disruption, Springer, Dordrecht, 167–174, https://doi.org/10.1007/978-94-009-4668-2_16, 1986. a, b
Monaldo, F. M., Jackson, C. R., and Pichel, W. G.:
Seasat to Radarsat-2: Research to operations, Oceanography, 26, 34–45, 2013. a
Monaldo, F. M., Li, X., Pichel, W. G., and Jackson, C. R.:
Ocean wind speed climatology from spaceborne SAR imagery, B. Am. Meteorol. Soc., 95, 565–569, https://doi.org/10.1175/BAMS-D-12-00165.1, 2014. a
Nissanka, I. D., Park, H. J., Freire, L. S., Chamecki, M., Reid, J. S., and Richter, D. H.:
Parameterized vertical concentration profiles for aerosols in the marine atmospheric boundary layer, J. Geophys. Res.-Atmos., 123, 9688–9702, https://doi.org/10.1029/2018JD028820, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Norris, S. J., Brooks, I. M., de Leeuw, G., Smith, M. H., Moerman, M., and Lingard, J. J. N.:
Eddy covariance measurements of sea spray particles over the Atlantic Ocean, Atmos. Chem. Phys., 8, 555–563, https://doi.org/10.5194/acp-8-555-2008, 2008. a, b
Norris, S. J., Brooks, I. M., Hill, M. K., Brooks, B. J., Smith, M. H., and Sproson, D. A.:
Eddy covariance measurements of the sea spray aerosol flux over the open ocean, J. Geophys. Res.-Atmos., 117, 1–15, https://doi.org/10.1029/2011JD016549, 2012. a, b, c
Pan, Z., Mao, F., Rosenfeld, D., Zhu, Y., Zang, L., Lu, X., Thornton, J. A., Holzworth, R. H., Yin, J., Efraim, A., and Gong, W.:
Coarse sea spray inhibits lightning, Nat. Commun., 13, 1–7, https://doi.org/10.1038/s41467-022-31714-5, 2022. a
Park, H. and Richter, D.: In situ particle sampling relationships to surface and turbulent fluxes using large eddy simulations with Lagrangian particles software code (1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7388276, 2022. a
Park, H. J., Sherman, T., Freire, L. S., Wang, G., Bolster, D., Xian, P., Sorooshian, A., Reid, J. S., and Richter, D. H.:
Predicting vertical concentration profiles in the marine atmospheric boundary layer with a Markov chain random walk model, J. Geophys. Res.-Atmos., 125, e2020JD032731, https://doi.org/10.1029/2020jd032731, 2020. a
Peng, T. and Richter, D.: Sea spray and its feedback effects: Assessing bulk algorithms of air–sea heat fluxes via direct numerical simulations, J. Phys. Oceanogr., 49, 1403–1421, https://doi.org/10.1175/JPO-D-18-0193.1, 2019. a
Porter, J. N. and Clarke, A. D.:
Aerosol size distribution models based on in situ measurements, J. Geophys. Res., 102, 6035–6045, 1997. a
Prajapati, J., Shukla, B. P., and Kumar, R.:
Orientation of marine atmospheric rolls in a SAR imagery using wavelet transform: A case study over Bay of Bengal, J. Earth Syst. Sci., 130, 34, https://doi.org/10.1007/s12040-020-01518-6, 2021. a
Reid, J. S., Jonsson, H. H., Smith, M. H., and Smirnov, A.:
Evolution of the vertical profile and flux of large sea-salt particles in a coastal zone, J. Geophys. Res.-Atmos., 106, 12039–12053, https://doi.org/10.1029/2000JD900848, 2001. a, b
Reid, J. S., Brooks, B., Crahan, K. K., Hegg, D. A., Eck, T. F., O'Neill, N., de Leeuw, G., Reid, E. A., and Anderson, K. D.:
Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site, J. Geophys. Res.-Atmos., 111, 1–26, https://doi.org/10.1029/2005JD006200, 2006. a, b, c, d
Reid, J. S., Hyer, E. J., Johnson, R. S., Holben, B. N., Yokelson, R. J., Zhang, J., Campbell, J. R., Christopher, S. A., Di Girolamo, L., Giglio, L., Holz, R. E., Kearney, C., Miettinen, J., Reid, E. A., Turk, F. J., Wang, J., Xian, P., Zhao, G., Balasubramanian, R., Chew, B. N., Janjai, S., Lagrosas, N., Lestari, P., Lin, N. H., Mahmud, M., Nguyen, A. X., Norris, B., Oanh, N. T., Oo, M., Salinas, S. V., Welton, E. J., and Liew, S. C.:
Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program, Atmos. Res., 122, 403–468, https://doi.org/10.1016/j.atmosres.2012.06.005, 2013. a
Reid, J. S., Lagrosas, N. D., Jonsson, H. H., Reid, E. A., Sessions, W. R., Simpas, J. B., Uy, S. N., Boyd, T. J., Atwood, S. A., Blake, D. R., Campbell, J. R., Cliff, S. S., Holben, B. N., Holz, R. E., Hyer, E. J., Lynch, P., Meinardi, S., Posselt, D. J., Richardson, K. A., Salinas, S. V., Smirnov, A., Wang, Q., Yu, L., and Zhang, J.:
Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: the scale-dependent role of monsoonal flows, the Madden–Julian Oscillation, tropical cyclones, squall lines and cold pools, Atmos. Chem. Phys., 15, 1745–1768, https://doi.org/10.5194/acp-15-1745-2015, 2015. a, b
Reid, J. S., Lagrosas, N. D., Jonsson, H. H., Reid, E. A., Atwood, S. A., Boyd, T. J., Ghate, V. P., Xian, P., Posselt, D. J., Simpas, J. B., Uy, S. N., Zaiger, K., Blake, D. R., Bucholtz, A., Campbell, J. R., Chew, B. N., Cliff, S. S., Holben, B. N., Holz, R. E., Hyer, E. J., Kreidenweis, S. M., Kuciauskas, A. P., Lolli, S., Oo, M., Perry, K. D., Salinas, S. V., Sessions, W. R., Smirnov, A., Walker, A. L., Wang, Q., Yu, L., Zhang, J., and Zhao, Y.:
Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior, Atmos. Chem. Phys., 16, 14057–14078, https://doi.org/10.5194/acp-16-14057-2016, 2016. a
Richter, D. H., Dempsey, A. E., and Sullivan, P. P.:
Turbulent Transport of Spray Droplets in the Vicinity of Moving Surface Waves, J. Phys. Oceanogr., 49, 1789–1807, https://doi.org/10.1175/jpo-d-19-0003.1, 2019. a
Richter, D. H., MacMillan, T., and Wainwright, C.:
A Lagrangian Cloud Model for the Study of Marine Fog, Bound.-Lay. Meteorol., 181, 523–542, https://doi.org/10.1007/s10546-020-00595-w, 2021. a
Ryder, C. L., Highwood, E. J., Walser, A., Seibert, P., Philipp, A., and Weinzierl, B.:
Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara, Atmos. Chem. Phys., 19, 15353–15376, https://doi.org/10.5194/acp-19-15353-2019, 2019. a
Salesky, S. T. and Anderson, W.:
Buoyancy effects on large-scale motions in convective atmospheric boundary layers: Implications for modulation of near-wall processes, J. Fluid Mech., 856, 135–168, https://doi.org/10.1017/jfm.2018.711, 2018. a
Schlosser, J. S., Dadashazar, H., Edwards, E., Hossein Mardi, A., Prabhakar, G., Stahl, C., Jonsson, H. H., and Sorooshian, A.:
Relationships Between Supermicrometer Sea Salt Aerosol and Marine Boundary Layer Conditions: Insights From Repeated Identical Flight Patterns, J. Geophys. Res.-Atmos., 125, 1–17, https://doi.org/10.1029/2019jd032346, 2020. a
Scipión, D. E., Chilson, P. B., Fedorovich, E., and Palmer, R. D.:
Evaluation of an LES-based wind profiler simulator for observations of a daytime atmospheric convective boundary layer, J. Atmos. Ocean. Tech., 25, 1423–1436, https://doi.org/10.1175/2007JTECHA970.1, 2008. a
Sessions, W. R., Reid, J. S., Benedetti, A., Colarco, P. R., da Silva, A., Lu, S., Sekiyama, T., Tanaka, T. Y., Baldasano, J. M., Basart, S., Brooks, M. E., Eck, T. F., Iredell, M., Hansen, J. A., Jorba, O. C., Juang, H.-M. H., Lynch, P., Morcrette, J.-J., Moorthi, S., Mulcahy, J., Pradhan, Y., Razinger, M., Sampson, C. B., Wang, J., and Westphal, D. L.:
Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME), Atmos. Chem. Phys., 15, 335–362, https://doi.org/10.5194/acp-15-335-2015, 2015. a
Srivastava, P. and Sharan, M.:
An Analytical Formulation of the Monin–Obukhov Stability Parameter in the Atmospheric Surface Layer Under Unstable Conditions, Bound.-Lay. Meteorol., 165, 371–384, https://doi.org/10.1007/s10546-017-0273-y, 2017. a
Stull, R.: An introduction to boundary layer meteorology, Atmospheric and Oceanographic Sciences Library, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-009-3027-8, 1988. a
Sühring, M., Metzger, S., Xu, K., Durden, D., and Desai, A.:
Trade-Offs in Flux Disaggregation: A Large-Eddy Simulation Study, Bound.-Lay. Meteorol., 170, 69–93, https://doi.org/10.1007/s10546-018-0387-x, 2019. a, b, c
Sullivan, P. P. and Patton, E. G.:
The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation, J. Atmos. Sci., 68, 2395–2415, https://doi.org/10.1175/JAS-D-10-05010.1, 2011. a, b
Sullivan, P. P., McWilliams, J., and Moeng, C.-H.:
A grid nesting method for large-eddy simulation of planetary boundary-layer flows, Bound.-Lay. Meteorol., 80, 167–202, https://doi.org/10.1007/BF00119016, 1996. a
Sutherland, P. and Melville, W. K.:
Field measurements of surface and near-surface turbulence in the presence of breaking waves, J. Phys. Oceanogr., 45, 943–965, https://doi.org/10.1175/JPO-D-14-0133.1, 2015. a
Toba, Y. and Chaen, M.:
Quantitative expression of the breaking of wind waves on the sea surface, Rec. Oceanogr. Works Jpn., 12, 11 pp., 1973. a
Veron, F.:
Ocean spray, Annu. Rev. Fluid Mech., 47, 507–538, https://doi.org/10.1146/annurev-fluid-010814-014651, 2015. a, b
Wainwright, C. E., Bonin, T. A., Chilson, P. B., Gibbs, J. A., Fedorovich, E., and Palmer, R. D.:
Methods for Evaluating the Temperature Structure-Function Parameter Using Unmanned Aerial Systems and Large-Eddy Simulation, Bound.-Lay. Meteorol., 155, 189–208, https://doi.org/10.1007/s10546-014-0001-9, 2015. a, b
Wang, L.-P. and Maxey, M. R.:
Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence, J. Fluid Mech., 256, 27–68, https://doi.org/10.1017/S0022112093002708, 1993. a
Watson-Parris, D., Schutgens, N., Reddington, C., Pringle, K. J., Liu, D., Allan, J. D., Coe, H., Carslaw, K. S., and Stier, P.:
In situ constraints on the vertical distribution of global aerosol, Atmos. Chem. Phys., 19, 11765–11790, https://doi.org/10.5194/acp-19-11765-2019, 2019. a
Weckwerth, T. M., Wilson, J. W., Wakimoto, R. M., and Crook, N. A.:
Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics, Mon. Weather Rev., 125, 505–526, https://doi.org/10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2, 1997.
a
Wei, W., Zhang, H., Wu, B., Huang, Y., Cai, X., Song, Y., and Li, J.:
Intermittent turbulence contributes to vertical dispersion of PM2.5 in the North China Plain: cases from Tianjin, Atmos. Chem. Phys., 18, 12953–12967, https://doi.org/10.5194/acp-18-12953-2018, 2018. a
Winkler, P.:
The growth of atmospheric aerosol particles with relative humidity, Phys. Scripta, 37, 223–230, https://doi.org/10.1088/0031-8949/37/2/008, 1988. a
Wu, H., Li, Z., Jiang, M., Liang, C., Zhang, D., Wu, T., Wang, Y., and Cribb, M.:
Contributions of traffic emissions and new particle formation to the ultrafine particle size distribution in the megacity of Beijing, Atmos. Environ., 262, 118652, https://doi.org/10.1016/j.atmosenv.2021.118652, 2021. a
Wu, J.:
Individual characteristics of whitecaps and volumetric description of bubbles, IEEE J. Oceanic Eng., 17, 150–158, https://doi.org/10.1109/48.126963, 1992. a, b
Wurman, J. and Winslow, J.:
Intense sub-kilometer-scale boundary layer rolls observed in hurricane Fran, Science, 280, 555–557, https://doi.org/10.1126/science.280.5363.555, 1998. a
Wyngaard, J. C.: Turbulence in the atmosphere, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511840524, 2010. a
Wyngaard, J. C. and Brost, R. A.: Top-Down and Bottom-Up Diffusion of a Scalar in the Convective Boundary Layer, J. Atmos. Sci., 41, 102–112, https://doi.org/10.1177/1096250614542175, 1984. a
Yamaguchi, R. T., Wang Q., Kalogiros, J., Ruiz-Plancarte, J., Bucholtz, A., Woods, R., Ortiz-Suslow, D., and Barge, J.: Spatial Variability of Optical Turbulence in the Coastal Region from In-situ Measurements Onboard a Novel Low-Flying Aerial Platform, in: Directed Energy Student Workshop, Mobile, AL, 25–29 April 2022, Directed Energy Professional Society, 22-EduWksp-014, https://protected.networkshosting.com/depsor/DEPSpages/DEsymp22.html, last access: 6 December 2022. a
Executive editor
Next to tackling the fundamental problem in the representativeness of point measurements of particles and retrieving the surface flux in a turbulent atmosphere, this manuscript provides a general framework to plan sampling strategies for aerosol field campaigns and provides tools to quantify related uncertainties.
Next to tackling the fundamental problem in the representativeness of point measurements of...
Short summary
We use numerical models to study field measurements of sea spray aerosol particles and conclude that both the atmospheric state and the methods of instrument sampling are causes for the variation in the production rate of aerosol particles: a critical metric to learn the aerosol's effect on processes like cloud physics and radiation. This work helps field observers improve their experimental design and interpretation of measurements because of turbulence in the atmosphere.
We use numerical models to study field measurements of sea spray aerosol particles and conclude...