Articles | Volume 16, issue 9
https://doi.org/10.5194/amt-16-2381-2023
https://doi.org/10.5194/amt-16-2381-2023
Research article
 | 
09 May 2023
Research article |  | 09 May 2023

Calibrating radar wind profiler reflectivity factor using surface disdrometer observations

Christopher R. Williams, Joshua Barrio, Paul E. Johnston, Paytsar Muradyan, and Scott E. Giangrande

Related authors

Wet-Radome Attenuation in ARM Cloud Radars and Its Utilization in Radar Calibration Using Disdrometer Measurements
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2615,https://doi.org/10.5194/egusphere-2024-2615, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Identifying insects, clouds, and precipitation using vertically pointing polarimetric radar Doppler velocity spectra
Christopher R. Williams, Karen L. Johnson, Scott E. Giangrande, Joseph C. Hardin, Ruşen Öktem, and David M. Romps
Atmos. Meas. Tech., 14, 4425–4444, https://doi.org/10.5194/amt-14-4425-2021,https://doi.org/10.5194/amt-14-4425-2021, 2021
Short summary
A Lagrangian convective transport scheme including a simulation of the time air parcels spend in updrafts (LaConTra v1.0)
Ingo Wohltmann, Ralph Lehmann, Georg A. Gottwald, Karsten Peters, Alain Protat, Valentin Louf, Christopher Williams, Wuhu Feng, and Markus Rex
Geosci. Model Dev., 12, 4387–4407, https://doi.org/10.5194/gmd-12-4387-2019,https://doi.org/10.5194/gmd-12-4387-2019, 2019
Short summary
Estimation of liquid water path below the melting layer in stratiform precipitation systems using radar measurements during MC3E
Jingjing Tian, Xiquan Dong, Baike Xi, Christopher R. Williams, and Peng Wu
Atmos. Meas. Tech., 12, 3743–3759, https://doi.org/10.5194/amt-12-3743-2019,https://doi.org/10.5194/amt-12-3743-2019, 2019
Short summary
Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra
Christopher R. Williams, Maximilian Maahn, Joseph C. Hardin, and Gijs de Boer
Atmos. Meas. Tech., 11, 4963–4980, https://doi.org/10.5194/amt-11-4963-2018,https://doi.org/10.5194/amt-11-4963-2018, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances
Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, and Daniel Cummins
Atmos. Meas. Tech., 17, 4757–4775, https://doi.org/10.5194/amt-17-4757-2024,https://doi.org/10.5194/amt-17-4757-2024, 2024
Short summary
Evaluation of the effects of different lightning protection rods on the data quality of C-band weather radars
Cornelius Hald, Maximilian Schaper, Annette Böhm, Michael Frech, Jan Petersen, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 17, 4695–4707, https://doi.org/10.5194/amt-17-4695-2024,https://doi.org/10.5194/amt-17-4695-2024, 2024
Short summary
Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers
Samuel K. Kristoffersen, William E. Ward, and Chris E. Meek
Atmos. Meas. Tech., 17, 3995–4014, https://doi.org/10.5194/amt-17-3995-2024,https://doi.org/10.5194/amt-17-3995-2024, 2024
Short summary
A new dual-frequency stratospheric–tropospheric and meteor radar: system description and first results
Qingchen Xu, Iain Murray Reid, Bing Cai, Christian Adami, Zengmao Zhang, Mingliang Zhao, and Wen Li
Atmos. Meas. Tech., 17, 2957–2975, https://doi.org/10.5194/amt-17-2957-2024,https://doi.org/10.5194/amt-17-2957-2024, 2024
Short summary
The Doppler wind, temperature, and aerosol RMR lidar system at Kühlungsborn, Germany – Part 1: Technical specifications and capabilities
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
Atmos. Meas. Tech., 17, 2789–2809, https://doi.org/10.5194/amt-17-2789-2024,https://doi.org/10.5194/amt-17-2789-2024, 2024
Short summary

Cited articles

Angevine, W. M., Buhr, M. P., Holloway, J. S., Trainer, M., Parrish, D. D., MacPherson, J. I., Kok, G. L., Schillawski, R. D., and Bowlby, D. H.: Local meteorological features affecting chemical measurements at a North Atlantic coastal site, J. Geophys. Res., 101, 28935–28945, 1996. 
Angevine, W. M., Grimsdell, A. W., McKeen, S. A., and Warnock, J. M.: Entrainment results from the Flatland boundary layer experiments, J. Geophys. Res., 103, 13689–13701, 1998. 
ARM: Radar Wind Profiler (915RWPPRECIPMOM), 2011-03-22 to 2019-08-18, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Compiled by Muradyan, P., Atmospheric Radiation Measurement user facility, ARM Data Center [data set], https://doi.org/10.5439/1025128, 1998a. 
ARM: Radar Wind Profiler (915RWPPRECIPSPEC), 2011-03-22 to 2019-08-18, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Compiled by Muradyan, P., Atmospheric Radiation Measurement user facility, ARM Data Center [data set], https://doi.org/10.5439/1025129, 1998b. 
ARM: Radar Wind Profiler (915RWPWINDMOM), 2014-03-06 to 2019-03-10, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Compiled by Muradyan, P., Atmospheric Radiation Measurement user facility, ARM Data Center [data set], https://doi.org/10.5439/1025136, 1998c. 
Download
Short summary
This study uses surface disdrometer observations to calibrate 8 years of 915 MHz radar wind profiler deployed in the central United States in northern Oklahoma. This study had two key findings. First, the radar wind profiler sensitivity decreased approximately 3 to 4 dB/year as the hardware aged. Second, this drift was slow enough that calibration can be performed using 3-month intervals. Calibrated radar wind profiler observations and Python processing code are available on public repositories.