Articles | Volume 16, issue 11
https://doi.org/10.5194/amt-16-2733-2023
https://doi.org/10.5194/amt-16-2733-2023
Research article
 | Highlight paper
 | 
02 Jun 2023
Research article | Highlight paper |  | 02 Jun 2023

Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder

Frank Werner, Nathaniel J. Livesey, Luis F. Millán, William G. Read, Michael J. Schwartz, Paul A. Wagner, William H. Daffer, Alyn Lambert, Sasha N. Tolstoff, and Michelle L. Santee

Related authors

Improved cloud detection for the Aura Microwave Limb Sounder (MLS): training an artificial neural network on colocated MLS and Aqua MODIS data
Frank Werner, Nathaniel J. Livesey, Michael J. Schwartz, William G. Read, Michelle L. Santee, and Galina Wind
Atmos. Meas. Tech., 14, 7749–7773, https://doi.org/10.5194/amt-14-7749-2021,https://doi.org/10.5194/amt-14-7749-2021, 2021
Short summary
Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: implementation and examples
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech., 14, 5107–5126, https://doi.org/10.5194/amt-14-5107-2021,https://doi.org/10.5194/amt-14-5107-2021, 2021
Short summary
Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: evaluation of candidate approaches with MODIS observations
Frank Werner and Hartwig Deneke
Atmos. Meas. Tech., 13, 1089–1111, https://doi.org/10.5194/amt-13-1089-2020,https://doi.org/10.5194/amt-13-1089-2020, 2020
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Instruments and Platforms
Maximizing the scientific application of Pandora column observations of HCHO and NO2
Prajjwal Rawat, James H. Crawford, Katherine R. Travis, Laura M. Judd, Mary Angelique G. Demetillo, Lukas C. Valin, James J. Szykman, Andrew Whitehill, Eric Baumann, and Thomas F. Hanisco
Atmos. Meas. Tech., 18, 2899–2917, https://doi.org/10.5194/amt-18-2899-2025,https://doi.org/10.5194/amt-18-2899-2025, 2025
Short summary
Comment on "Design study for an airborne N2O lidar" by Kiemle et al. (2024)
Joel F. Campbell, Bing Lin, and Zhaoyan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1448,https://doi.org/10.5194/egusphere-2025-1448, 2025
Short summary
Expanding Observational Capabilities of A Diode-Laser-Based Lidar Through Shot-To-Shot Modification of Laser Pulse Characteristics
Robert A. Stillwell, Adam Karboski, Matthew Hayman, and Scott M. Spuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1288,https://doi.org/10.5194/egusphere-2025-1288, 2025
Short summary
Retrieval simulations of a spaceborne differential absorption radar near the 380 GHz water vapor line
Luis F. Millán, Matthew D. Lebsock, and Marcin J. Kurowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-322,https://doi.org/10.5194/egusphere-2025-322, 2025
Short summary
SORAS (Stratospheric Ozone RAdiometer in Seoul), a ground-based 110 GHz microwave radiometer for measuring the stratospheric ozone vertical profile
Soohyun Ka and Jung Jin Oh
Atmos. Meas. Tech., 18, 1283–1299, https://doi.org/10.5194/amt-18-1283-2025,https://doi.org/10.5194/amt-18-1283-2025, 2025
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv [preprint], https://doi.org/10.48550/arXiv.1603.04467, 14 March 2016. a
Campos-Taberner, M., García-Haro, F. J., Martínez, B., Izquierdo-Verdiguier, E., Atzberger, C., Camps-Valls, G., and Gilabert, M. A.: Understanding deep learning in land use classification based on Sentinel-2 time series, Sci. Rep.-UK, 10, 17188, https://doi.org/10.1038/s41598-020-74215-5, 2020. a
Chollet, F. et al.: Keras, GitHub [code], https://github.com/fchollet/keras (last access: 26 May 2023), 2015. a
Del Frate, F., Iapaolo, M., Casadio, S., Godin-Beekmann, S., and Petitdidier, M.: Neural networks for the dimensionality reduction of GOME measurement vector in the estimation of ozone profiles, J. Quant. Spectrosc. Ra., 92, 275–291, https://doi.org/10.1016/j.jqsrt.2004.07.028, 2005. a
Diallo, M., Konopka, P., Santee, M. L., Müller, R., Tao, M., Walker, K. A., Legras, B., Riese, M., Ern, M., and Ploeger, F.: Structural changes in the shallow and transition branch of the Brewer–Dobson circulation induced by El Niño, Atmos. Chem. Phys., 19, 425–446, https://doi.org/10.5194/acp-19-425-2019, 2019. a
Download
Executive editor
The paper introduces a machine learning based retrieval algorithm for Aura/MLS, which could lead to a major update of the Aura/MLS NRT L2 products.
Short summary
The algorithm that produces the near-real-time data products of the Aura Microwave Limb Sounder has been updated. The new algorithm is based on machine learning techniques and yields data products with much improved accuracy. It is shown that the new algorithm outperforms the previous versions, even when it is trained on only a few years of satellite observations. This confirms the potential of applying machine learning to the near-real-time efforts of other current and future mission concepts.
Share