Bouwmans, T., El Baf, F., and Vachon, B.: Statistical background modeling
for foreground detection: A survey, in: Handbook of
pattern recognition and computer vision, edited by: Chen, C. H., 4th edn., World Scientific, Singapore, 181–199, https://doi.org/10.1142/9789814273398_0008, 2010.
Colli, M., Lanza, L. G., La Barbera, P., and Chan, P. W.: Measurement
accuracy of weighing and tipping-bucket rainfall intensity gauges under
dynamic laboratory testing, Atmos. Res., 144, 186–194, https://doi.org/10.1016/j.atmosres.2013.08.007, 2014.
Deng, L. J., Huang, T. Z., Zhao, X. L., and Jiang, T. X.: A directional
global sparse model for single image rain removal, Appl. Math. Model., 59,
662–679, https://doi.org/10.1016/j.apm.2018.03.001, 2018.
Dong, R., Liao, J., Li, B., Zhou, H., and Crookes, D.: Measurements of
rainfall rates from videos, in: 2017 10th International Congress on Image and
Signal Processing, BioMedical Engineering and Informatics, Shanghai,
China, 14–16 October 2017, IEEE, 1–9, https://doi.org/10.1109/CISP-BMEI.2017.8302066, 2017.
Duthon, P., Bernardin, F., Chausse, F., and Colomb, M.: Benchmark for the
robustness of image features in rainy conditions, Mach. Vis. Appl., 29,
915–927, https://doi.org/10.1007/s00138-018-0945-8, 2018.
Famiglietti, J. S., Cazenave, A., Eicker, A., Reager, J. T., Rodell, M., and
Velicogna, I.: Satellites provide the big picture, Science, 349, 684–685, https://doi.org/10.1126/science.aac9238, 2015.
Friedrich, K., Kalina, E. A., Masters, F. J., and Lopez, C. R.: Drop-size
distributions in thunderstorms measured by optical disdrometers during
VORTEX2, Mon. Weather Rev., 141, 1182–1203, https://doi.org/10.1175/mwr-d-12-00116.1, 2013.
Guo, B., Han, Q., Chen, H., Shangguan, L., Zhou, Z., and Yu, Z.: The
emergence of visual crowdsensing: Challenges and opportunities, IEEE Commun.
Surv. Tutor., 19, 2526–2543, https://doi.org/10.1109/comst.2017.2726686, 2017.
Guo, H., Huang, H., Sun, Y. E., Zhang, Y., Chen, S., and Huang, L.: Chaac:
Real-time and fine-grained rain detection and measurement using smartphones,
IEEE Internet Things, 6, 997–1009, https://doi.org/10.1109/jiot.2018.2866690, 2019.
Haberlandt, U. and Sester, M.: Areal rainfall estimation using moving cars as rain gauges – a modelling study, Hydrol. Earth Syst. Sci., 14, 1139–1151, https://doi.org/10.5194/hess-14-1139-2010, 2010.
Hua, X. S.: The city brain: Towards real-time search for the real-world, in:
The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, New York, NY, USA, 8–12 July 2018, 1343–1344, https://doi.org/10.1145/3209978.3210214, 2018.
Jiang, S., Babovic, V., Zheng, Y., and Xiong, J.: Advancing opportunistic
sensing in hydrology: A novel approach to measuring rainfall with ordinary
surveillance cameras, Water Resour. Res., 55, 3004–3027, https://doi.org/10.1029/2018wr024480, 2019.
Jiang, T. X., Huang, T. Z., Zhao, X. L., Deng, L. J., and Wang, Y.:
Fastderain: A novel video rain streak removal method using directional
gradient priors, IEEE Trans. Image Process., 28, 2089–2102, https://doi.org/10.1109/tip.2018.2880512, 2018.
jinwook213: jinwook213/Rain_CCTV: J. Lee et al.: DSD and rain rate estimation with IR surveillance camera in dark conditions (v0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7601947, 2023.
Kathiravelu, G., Lucke, T., and Nichols, P.: Rain drop measurement
techniques: A review, Water, 8, 29, https://doi.org/10.3390/w8010029, 2016.
Keating, M. P.: Geometric, physical, and visual optics, 2nd edn.,
Butterworth-Heinemann, Oxford, UK, ISBN 0-409-90106-7, 2002.
Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P.,
Skofronick-Jackson, G., and Kirschbaum, D. B.: So, how much of the Earth's
surface is covered by rain gauges?, B. Am. Meteorol. Soc., 98, 69–78, https://doi.org/10.1175/bams-d-14-00283.1, 2017.
Kim, J. H., Sim, J. Y., and Kim, C. S.: Video deraining and desnowing using
temporal correlation and low-rank matrix completion, IEEE Trans. Image
Process., 24, 2658–2670, https://doi.org/10.1109/tip.2015.2428933, 2015.
Lee, J.: Estimation of raindrop size distribution and rain rate with infrared surveillance camera in dark conditions, figshare [data set], https://doi.org/10.6084/m9.figshare.c.6392430.v1, 2023.
Li, Y., Tan, R. T., Guo, X., Lu, J., and Brown, M. S.: Rain streak removal
using layer priors, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 27–30 June 2016, IEEE, 2736–2744, https://doi.org/10.1109/cvpr.2016.299, 2016.
Löffler-Mang, M. and Joss, J.: An optical disdrometer for measuring
size and velocity of hydrometeors, J. Atmos. Ocean. Tech., 17,
130–139, https://doi.org/10.1175/1520-0426(2000)017<0130:aodfms>2.0.co;2, 2000.
Marshall, J. S. and Palmer, W. M.: The distribution of raindrops with size,
J. Meteor., 5, 165–166, https://doi.org/10.1175/1520-0469(1948)005<0165:tdorws>2.0.co;2, 1948.
McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N. E. C., Franz, T. E., Shi, J., Gao, H., and Wood, E. F.: The future of Earth observation in hydrology, Hydrol. Earth Syst. Sci., 21, 3879–3914, https://doi.org/10.5194/hess-21-3879-2017, 2017.
Michaelides, S., Levizzani, V., Anagnostou, E., Bauer, P., Kasparis, T., and
Lane, J. E.: Precipitation: Measurement, remote sensing, climatology and
modeling, Atmos. Res., 94, 512–533, https://doi.org/10.1016/j.atmosres.2009.08.017, 2009.
Nemeth, K. and Hahn, J. M.: Enhanced precipitation identifier and new
generation of present weather sensor by OTT Messtechnik, in: WMO/CIMO Technical Conference, WMO IOM Report No. 82, WMO/TD-No. 1265, Geneva, Switzerland, 2005.
Nottle, A., Harborne, D., Braines, D., Alzantot, M., Quintana-Amate, S.,
Tomsett, R., Kaplan, L., Srivastava, M. B., Chakraborty, S., and Preece, A.:
Distributed opportunistic sensing and fusion for traffic congestion
detection, in: 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computed, Scalable Computing & Communications,
Cloud & Big Data Computing, Internet of People and Smart City Innovation, San Francisco, CA, USA, 4–8 August 2017, IEEE, 1–6, https://doi.org/10.1109/UIC-ATC.2017.8397425, 2017.
Overeem, A., Leijnse, H., and Uijlenhoet, R.: Two and a half years of
country-wide rainfall maps using radio links from commercial cellular
telecommunication networks, Water Resour. Res., 52, 8039–8065, https://doi.org/10.1002/2016wr019412, 2016.
Qasim, S., Khan, K. N., Yu, M., and Khan, M. S.: Performance evaluation of
background subtraction techniques for video frames, in: 2021 International
Conference on Artificial Intelligence, Islamabad, Pakistan, 5–7 April 2021, IEEE, 102–107, https://doi.org/10.1109/ICAI52203.2021.9445253, 2021.
Rabiei, E., Haberlandt, U., Sester, M., and Fitzner, D.: Rainfall estimation using moving cars as rain gauges – laboratory experiments, Hydrol. Earth Syst. Sci., 17, 4701–4712, https://doi.org/10.5194/hess-17-4701-2013, 2013.
Rabiei, E., Haberlandt, U., Sester, M., Fitzner, D., and Wallner, M.: Areal rainfall estimation using moving cars – computer experiments including hydrological modeling, Hydrol. Earth Syst. Sci., 20, 3907–3922, https://doi.org/10.5194/hess-20-3907-2016, 2016.
Santhaseelan, V. and Asari, V. K.: Utilizing local phase information to
remove rain from video, Int. J. Comput. Vis., 112, 71–89, https://doi.org/10.1007/s11263-014-0759-8, 2015.
Schmidt, J. M., Flatau, P. J., Harasti, P. R., Yates, R. D., Littleton, R.,
Pritchard, M. S., Fischer, J. M., Fischer, E. J., Kohri, W. J., Vetter, J.
R., Richman, S., Baranowski, D. B., Anderson, M. J., Fletcher, E., and
Lando, D. W.: Radar observations of individual rain drops in the free
atmosphere, P. Natl. Acad. Sci. USA, 109, 9293–9298, https://doi.org/10.1073/pnas.1117776109, 2012.
Smith, P. L.: Raindrop size distributions: Exponential or gamma – Does the
difference matter?, J. Appl. Meteorol. Climatol., 42, 1031–1034, https://doi.org/10.1175/1520-0450(2003)042<1031:rsdeog>2.0.co;2, 2003.
Testik, F. Y.: Outcome regimes of binary raindrop collisions, Atmos. Res., 94, 389–399, https://doi.org/10.1016/j.atmosres.2009.06.017, 2009.
Testik, F. Y. and Pei, B.: Wind effects on the shape of raindrop size
distribution, J. Hydrometeorol., 18, 1285–1303, https://doi.org/10.1175/jhm-d-16-0211.1, 2017.
Tokay, A. and Short, D. A.: Evidence from tropical raindrop spectra of the
origin of rain from stratiform versus convective clouds, J. Appl. Meteorol.
Clim., 35, 355–371, https://doi.org/10.1175/1520-0450(1996)035<0355:eftrso>2.0.co;2, 1996.
Trnovszký, T., Sýkora, P., and Hudec, R.: Comparison of background
subtraction methods on near infra-red spectrum video sequences, Proced.
Eng., 192, 887–892, https://doi.org/10.1016/j.proeng.2017.06.153, 2017.
Ulbrich, C. W.: Natural variations in the analytical form of the raindrop
size distribution, J. Appl. Meteorol. Clim., 22, 1764–1775, https://doi.org/10.1175/1520-0450(1983)022<1764:nvitaf>2.0.co;2, 1983.
Vivekanandan, J., Zhang, G., and Brandes, E.: Polarimetric radar estimators
based on a constrained gamma drop size distribution model, J. Appl.
Meteorol., 43, 217–230, https://doi.org/10.1175/1520-0450(2004)043<0217:preboa>2.0.co;2, 2004.
Wang, X., Wang, M., Liu, X., Glade, T., Chen, M., Xie, Y., Yuan, H., and
Chen, Y.: Rainfall observation using surveillance audio, Appl. Acoust., 186,
108478, https://doi.org/10.1016/j.apacoust.2021.108478, 2022.
Yang, P. and Ng, T. L.: Gauging through the crowd: A crowd-sourcing approach
to urban rainfall measurement and storm water modeling implications, Water
Resour. Res., 53, 9462–9478, https://doi.org/10.1002/2017wr020682, 2017.
Yuter, S. E. and Houze Jr., R. A.: Measurements of raindrop size
distributions over the Pacific warm pool and implications for
Z–
R
relations, J. Appl. Meteorol., 36, 847–867, https://doi.org/10.1175/1520-0450(1997)036<0847:morsdo>2.0.co;2, 1997.
Zen, R., Arsa, D. M. S., Zhang, R., Er, N. A. S., and Bressan, S.: Rainfall
estimation from traffic cameras, in: Database and Expert Systems Applications, edited by: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., and Khalil, I., Springer, Cham, Switzerland, 18–32, https://doi.org/10.1007/978-3-030-27615-7_2, 2019.
Zivkovic, Z. and van der Heijden, F.: Efficient adaptive density estimation
per image pixel for the task of background subtraction, Pattern Recognit.
Lett., 27, 773–780, https://doi.org/10.1016/j.patrec.2005.11.005, 2006.