Articles | Volume 17, issue 9
https://doi.org/10.5194/amt-17-2957-2024
https://doi.org/10.5194/amt-17-2957-2024
Research article
 | 
16 May 2024
Research article |  | 16 May 2024

A new dual-frequency stratospheric–tropospheric and meteor radar: system description and first results

Qingchen Xu, Iain Murray Reid, Bing Cai, Christian Adami, Zengmao Zhang, Mingliang Zhao, and Wen Li

Related authors

Research on 16-day Planetary Waves in the Mid-latitude Troposphere, Stratosphere, Mesosphere, and Lower Thermosphere with Langfang Dual-frequency ST-M Radar Data
Zengmao Zhang, Xiong Hu, Qingchen Xu, Bing Cai, and Junfeng Yang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-27,https://doi.org/10.5194/angeo-2024-27, 2025
Preprint under review for ANGEO
Short summary
Development of an in situ Acoustic Anemometer to Measure Wind in the Stratosphere for SENSOR
Liang Song, Xiong Hu, Feng Wei, Zhaoai Yan, Qingchen Xu, and Cui Tu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-424,https://doi.org/10.5194/amt-2021-424, 2021
Preprint withdrawn
Short summary
Development of an in situ Acoustic Anemometer to Measure Wind in the Stratosphere for SENSOR
Song Liang, Hu Xiong, Wei Feng, Yan Zhaoai, Xu Qingchen, and Tu Cui
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-76,https://doi.org/10.5194/amt-2021-76, 2021
Preprint withdrawn
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Chilean Observation Network De Meteor Radars (CONDOR): multi-static system configuration and wind comparison with co-located lidar
Zishun Qiao, Alan Z. Liu, Gunter Stober, Javier Fuentes, Fabio Vargas, Christian L. Adami, and Iain M. Reid
Atmos. Meas. Tech., 18, 1091–1104, https://doi.org/10.5194/amt-18-1091-2025,https://doi.org/10.5194/amt-18-1091-2025, 2025
Short summary
ScintPi measurements of low-latitude ionospheric irregularity drifts using the spaced-receiver technique and SBAS signals
Josemaria Gomez Socola, Fabiano S. Rodrigues, Isaac G. Wright, Igo Paulino, and Ricardo Buriti
Atmos. Meas. Tech., 18, 909–919, https://doi.org/10.5194/amt-18-909-2025,https://doi.org/10.5194/amt-18-909-2025, 2025
Short summary
Quantitative error analysis of polarimetric phased-array radar weather measurements to reveal radar performance and configuration potential
Junho Ho, Zhe Li, and Guifu Zhang
Atmos. Meas. Tech., 18, 619–638, https://doi.org/10.5194/amt-18-619-2025,https://doi.org/10.5194/amt-18-619-2025, 2025
Short summary
Spectral performance analysis of the Fizeau interferometer onboard ESA's Aeolus wind lidar satellite
Michael Vaughan, Kevin Ridley, Benjamin Witschas, Oliver Lux, Ines Nikolaus, and Oliver Reitebuch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-202,https://doi.org/10.5194/amt-2024-202, 2024
Revised manuscript accepted for AMT
Short summary
Optimization of a direct-detection UV wind lidar architecture for 3D wind reconstruction at high altitude
Thibault Boulant, Tomline Michel, and Matthieu Valla
Atmos. Meas. Tech., 17, 7049–7064, https://doi.org/10.5194/amt-17-7049-2024,https://doi.org/10.5194/amt-17-7049-2024, 2024
Short summary

Cited articles

Balsley, B. B. and Gage, K. S.: The MST radar technique: Potential for middle atmospheric studies, Pure Appl. Geophys., 118, 452–493, https://doi.org/10.1007/BF01586464, 1980. 
Cai, B., Xu, Q. C., Hu, X., Cheng, X., Yang, J. F., and Li, W.: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth Planet. Phys., 5, 270–279, https://doi.org/10.26464/epp2021029, 2021. 
Cervera, M. A. and Reid, I. M.: Comparison of simultaneous wind measurements using colocated VHF meteor radar and MF spaced antenna radar systems, Radio Sci., 30, 1245–1261, https://doi.org/10.1029/95RS00644, 1995. 
Chen, G., Cui, X., Chen, F., Zhao, Z., Wang, Y., Yao, Q., Wang, C., Lü, D., Zhang, S., Zhang, X., Zhou, X., Huang, L., and Gong, W.: MST Radars of Chinese Meridian Project: System Description and Atmospheric Wind Measurement, IEEE T. Geosci. Remote, 54, 4513–4523, 2016. 
Czechowsky, P., Reid, I. M., Rüster, R., and Schmidt, G.: VHF radar echoes observed in the summer and winter polar mesosphere over Andøya, Norway, J. Geophys. Res.-Atmos., 94, 5199–5217, https://doi.org/10.1029/JD094iD04p05199, 1989. 
Download
Short summary
To have better understanding of the dynamics of the lower and middle atmosphere, we installed a newly designed dual-frequency radar system that uses 53.8 MHz for near-ground to 20 km wind measurements and 35.0 MHz for 70 to 100 km wind measurements. The initial results show its good performance, along with the analysis of typical winter gravity wave activities.
Share