Articles | Volume 17, issue 16
https://doi.org/10.5194/amt-17-4789-2024
https://doi.org/10.5194/amt-17-4789-2024
Research article
 | 
20 Aug 2024
Research article |  | 20 Aug 2024

Number- and size-controlled rainfall regimes in the Netherlands: physical reality or statistical mirage?

Marc Schleiss

Related authors

CLEAR: a new discrete multiplicative random cascade model for disaggregating path-integrated rainfall estimates from commercial microwave links
Martin Fencl and Marc Schleiss
EGUsphere, https://doi.org/10.5194/egusphere-2025-487,https://doi.org/10.5194/egusphere-2025-487, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
A new power-law model for μ–Λ relationships in convective and stratiform rainfall
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 17, 235–245, https://doi.org/10.5194/amt-17-235-2024,https://doi.org/10.5194/amt-17-235-2024, 2024
Short summary
Sensitivity analysis of DSD retrievals from polarimetric radar in stratiform rain based on the μ–Λ relationship
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 15, 4951–4969, https://doi.org/10.5194/amt-15-4951-2022,https://doi.org/10.5194/amt-15-4951-2022, 2022
Short summary
A year of attenuation data from a commercial dual-polarized duplex microwave link with concurrent disdrometer, rain gauge, and weather observations
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021,https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Something fishy going on? Evaluating the Poisson hypothesis for rainfall estimation using intervalometers: results from an experiment in Tanzania
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021,https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Bias correction and application of labeled smartphone pressure data for evaluating the best track of landfalling tropical cyclones
Ge Qiao, Yuyao Cao, Qinghong Zhang, Juanzhen Sun, Hui Yu, and Lina Bai
Atmos. Meas. Tech., 18, 829–841, https://doi.org/10.5194/amt-18-829-2025,https://doi.org/10.5194/amt-18-829-2025, 2025
Short summary
Double-moment normalization of hail size number distributions over Switzerland
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 17, 7143–7168, https://doi.org/10.5194/amt-17-7143-2024,https://doi.org/10.5194/amt-17-7143-2024, 2024
Short summary
The role of time averaging of eddy covariance fluxes on water use efficiency dynamics of maize
Arun Rao Karimindla, Shweta Kumari, Saipriya S R, Syam Chintala, and BVN P. Kambhammettu​​​​​​​
Atmos. Meas. Tech., 17, 5477–5490, https://doi.org/10.5194/amt-17-5477-2024,https://doi.org/10.5194/amt-17-5477-2024, 2024
Short summary
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 2: First measurements of the emissivity of water in the far-infrared
Laura Warwick, Jonathan E. Murray, and Helen Brindley
Atmos. Meas. Tech., 17, 4777–4787, https://doi.org/10.5194/amt-17-4777-2024,https://doi.org/10.5194/amt-17-4777-2024, 2024
Short summary
EMADDC: high quality, quickly available and high volume wind and temperature observations from aircraft using the Mode-S EHS infrastructure
Siebren de Haan, Paul de Jong, Michal Koutek, and Jan Sondij
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-110,https://doi.org/10.5194/amt-2024-110, 2024
Revised manuscript accepted for AMT
Short summary

Cited articles

Beard, K. V.: Terminal velocity and shape of cloud and precipitation drops aloft, J. Atmos. Sci., 33, 851–864, 1976. a, b
Beard, K. V.: Simple Altitude Adjustments to Raindrop Velocities for Doppler Radar Analysis, J. Atmos. Ocean. Tech., 2, 468–471, https://doi.org/10.1175/1520-0426(1985)002<0468:SAATRV>2.0.CO;2, 1985. a
Blanchard, D. C. and Spencer, A. T.: Experiments on the generation of raindrop-size distributions by drop breakup, J. Atmos. Sci., 27, 101–108, 1970. a
Brandes, E. A., Zhang, G., and Vivekanandan, J.: Drop Size Distribution Retrieval with Polarimetric Radar: Model and Application, J. Appl. Meteorol., 43, 461–475, https://doi.org/10.1175/1520-0450(2004)043<0461:DSDRWP>2.0.CO;2, 2004. a
Carbone, R. E. and Nelson, L. D.: The Evolution of Raindrop Spectra in Warm-Based Convective Storms as Observed and Numerically Modeled, J. Atmos. Sci., 35, 2302–2314, https://doi.org/10.1175/1520-0469(1978)035<2302:TEORSI>2.0.CO;2, 1978. a
Download
Short summary
Research is conducted to identify special rainfall patterns in the Netherlands using multiple types of rainfall sensors. A total of eight potentially unique events are analyzed, considering both the number and size of raindrops. However, no clear evidence supporting the existence of a special rainfall regime could be found. The results highlight the challenges in experimentally confirming well-established theoretical ideas in the field of precipitation sciences.
Share