Articles | Volume 17, issue 16
https://doi.org/10.5194/amt-17-4941-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-4941-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
Johannes Kistner
CORRESPONDING AUTHOR
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Lars Neuhaus
School of Mathematics and Science, Institute of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
ForWind – Center for Wind Energy Research, Oldenburg, Germany
Norman Wildmann
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Related authors
No articles found.
Jeffrey D. Thayer, Gerard Kilroy, and Norman Wildmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-38, https://doi.org/10.5194/wes-2025-38, 2025
Revised manuscript accepted for WES
Short summary
Short summary
With increasing wind energy in the German energy grid, it is crucial to better understand how different types of weather (including thunderstorms) can impact wind turbines and the surrounding atmosphere. We find rapid wind changes associated with the leading edge of thunderstorm outflows within the height range of wind turbines that would quickly increase wind power output, with longer-lasting changes in the near-surface atmosphere that would affect subsequent wind turbine operations.
Norman Wildmann and Laszlo Györy
EGUsphere, https://doi.org/10.5194/egusphere-2025-241, https://doi.org/10.5194/egusphere-2025-241, 2025
Short summary
Short summary
Fast temperature sensors are deployed on drones to accurately measure temperature changes and fluctuations in the atmosphere. Compared to standard sensors, these new sensors showed better accuracy, especially in rapidly changing temperatures. Over 100 drone flights confirmed the sensors' ability to measure temperature fast enough to compare to standard meteorological instruments. This new method provides valuable data for understanding atmospheric energy balance.
Lars Neuhaus, Matthias Wächter, and Joachim Peinke
Wind Energ. Sci., 9, 439–452, https://doi.org/10.5194/wes-9-439-2024, https://doi.org/10.5194/wes-9-439-2024, 2024
Short summary
Short summary
Future wind turbines reach unprecedented heights and are affected by wind conditions that have not yet been studied in detail. With increasing height, a transition to laminar conditions with a turbulent–non-turbulent interface (TNTI) becomes more likely. In this paper, the presence and fractality of this TNTI in the atmosphere are studied. Typical fractalities known from ideal laboratory and numerical studies and a frequent occurrence of the TNTI at heights of multi-megawatt turbines are found.
Linus Wrba, Antonia Englberger, Andreas Dörnbrack, Gerard Kilroy, and Norman Wildmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-12, https://doi.org/10.5194/wes-2024-12, 2024
Revised manuscript accepted for WES
Short summary
Short summary
It is crucial to understand the loads and power production of wind turbines under different atmospheric situations (e.g. night and day changes). Computational simulations are a widely used tool to get more knowledge of the performance and the wake of wind turbines. In this study realistic velocity profiles of the atmosphere are used as input for simulations so that these simulations become more realistic. The generated realistic flow is used as inflow for wind-turbine simulations.
Andreas Forstmaier, Jia Chen, Florian Dietrich, Juan Bettinelli, Hossein Maazallahi, Carsten Schneider, Dominik Winkler, Xinxu Zhao, Taylor Jones, Carina van der Veen, Norman Wildmann, Moritz Makowski, Aydin Uzun, Friedrich Klappenbach, Hugo Denier van der Gon, Stefan Schwietzke, and Thomas Röckmann
Atmos. Chem. Phys., 23, 6897–6922, https://doi.org/10.5194/acp-23-6897-2023, https://doi.org/10.5194/acp-23-6897-2023, 2023
Short summary
Short summary
Large cities emit greenhouse gases which contribute to global warming. In this study, we measured the release of one important green house gas, methane, in Hamburg. Multiple sources that contribute to methane emissions were located and quantified. Methane sources were found to be mainly caused by human activity (e.g., by release from oil and gas refineries). Moreover, potential natural sources have been located, such as the Elbe River and lakes.
Tamino Wetz and Norman Wildmann
Wind Energ. Sci., 8, 515–534, https://doi.org/10.5194/wes-8-515-2023, https://doi.org/10.5194/wes-8-515-2023, 2023
Short summary
Short summary
In the present study, for the first time, the SWUF-3D fleet of multirotors is deployed for field measurements on an operating 2 MW wind turbine (WT) in complex terrain. The fleet of multirotors has the potential to fill the meteorological gap of observations in the near wake of WTs with high-temporal and high-spatial-resolution wind vector measurements plus temperature, humidity and pressure. The flow up- and downstream of the WT is measured simultaneously at multiple spatial positions.
Norman Wildmann and Tamino Wetz
Atmos. Meas. Tech., 15, 5465–5477, https://doi.org/10.5194/amt-15-5465-2022, https://doi.org/10.5194/amt-15-5465-2022, 2022
Short summary
Short summary
Multicopter uncrewed aerial systems (UAS, also known as drones) are very easy to use systems for collecting data in the lowest part of the atmosphere. Wind and turbulence are parameters that are particularly important for understanding the dynamics in the atmosphere. Only with three-dimensional measurements of the wind can a full understanding can be achieved. In this study, we show how even the vertical wind through the UAS can be measured with good accuracy.
Frederik Berger, Lars Neuhaus, David Onnen, Michael Hölling, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 7, 1827–1846, https://doi.org/10.5194/wes-7-1827-2022, https://doi.org/10.5194/wes-7-1827-2022, 2022
Short summary
Short summary
We proof the dynamic inflow effect due to gusts in wind tunnel experiments with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg, where we created coherent gusts with an active grid. The effect is isolated in loads and rotor flow by comparison of a quasi-steady and a dynamic case. The observed effect is not caught by common dynamic inflow engineering models. An improvement to the Øye dynamic inflow model is proposed, matching experiment and corresponding FVWM simulations.
Julian Quimbayo-Duarte, Johannes Wagner, Norman Wildmann, Thomas Gerz, and Juerg Schmidli
Geosci. Model Dev., 15, 5195–5209, https://doi.org/10.5194/gmd-15-5195-2022, https://doi.org/10.5194/gmd-15-5195-2022, 2022
Short summary
Short summary
The ultimate objective of this model evaluation is to improve boundary layer flow representation over complex terrain. The numerical model is tested against observations retrieved during the Perdigão 2017 field campaign (moderate complex terrain). We observed that the inclusion of a forest parameterization in the numerical model significantly improves the representation of the wind field in the atmospheric boundary layer.
Andreas Luther, Julian Kostinek, Ralph Kleinschek, Sara Defratyka, Mila Stanisavljević, Andreas Forstmaier, Alexandru Dandocsi, Leon Scheidweiler, Darko Dubravica, Norman Wildmann, Frank Hase, Matthias M. Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Christoph Knote, Sanam N. Vardag, Anke Roiger, and André Butz
Atmos. Chem. Phys., 22, 5859–5876, https://doi.org/10.5194/acp-22-5859-2022, https://doi.org/10.5194/acp-22-5859-2022, 2022
Short summary
Short summary
Coal mining is an extensive source of anthropogenic methane emissions. In order to reduce and mitigate methane emissions, it is important to know how much and where the methane is emitted. We estimated coal mining methane emissions in Poland based on atmospheric methane measurements and particle dispersion modeling. In general, our emission estimates suggest higher emissions than expected by previous annual emission reports.
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022, https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary
Short summary
The remote sensing technique lidar is widely used for wind speed measurements for both industrial and academic applications. Lidars can measure wind statistics accurately but cannot fully capture turbulent fluctuations in the high-frequency range, since they are partly filtered out. This paper therefore investigates the turbulence spectrum measured by a continuous-wave lidar and analytically models the lidar's measured spectrum with a Lorentzian filter function and a white noise term.
Sven Krautwurst, Konstantin Gerilowski, Jakob Borchardt, Norman Wildmann, Michał Gałkowski, Justyna Swolkień, Julia Marshall, Alina Fiehn, Anke Roiger, Thomas Ruhtz, Christoph Gerbig, Jaroslaw Necki, John P. Burrows, Andreas Fix, and Heinrich Bovensmann
Atmos. Chem. Phys., 21, 17345–17371, https://doi.org/10.5194/acp-21-17345-2021, https://doi.org/10.5194/acp-21-17345-2021, 2021
Short summary
Short summary
Quantification of anthropogenic CH4 emissions remains challenging, but it is essential for near-term climate mitigation strategies. We use airborne remote sensing observations to assess bottom-up estimates of coal mining emissions from one of Europe's largest CH4 emission hot spots located in Poland. The analysis reveals that emissions from small groups of shafts can be disentangled, but caution is advised when comparing observations to commonly reported annual emissions.
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid H. Onarheim, and Marte Godvik
Atmos. Meas. Tech., 14, 6137–6157, https://doi.org/10.5194/amt-14-6137-2021, https://doi.org/10.5194/amt-14-6137-2021, 2021
Short summary
Short summary
The COTUR campaign explored the structure of wind turbulence above the ocean to improve the design of future multi-megawatt offshore wind turbines. Deploying scientific instruments offshore is both a financial and technological challenge. Therefore, lidar technology was used to remotely measure the wind above the ocean from instruments located on the seaside. The experimental setup is tailored to the study of the spatial correlation of wind gusts, which governs the wind loading on structures.
Julian Kostinek, Anke Roiger, Maximilian Eckl, Alina Fiehn, Andreas Luther, Norman Wildmann, Theresa Klausner, Andreas Fix, Christoph Knote, Andreas Stohl, and André Butz
Atmos. Chem. Phys., 21, 8791–8807, https://doi.org/10.5194/acp-21-8791-2021, https://doi.org/10.5194/acp-21-8791-2021, 2021
Short summary
Short summary
Abundant mining and industrial activities in the Upper Silesian Coal Basin lead to large emissions of the potent greenhouse gas methane. This study quantifies these emissions with continuous, high-precision airborne measurements and dispersion modeling. Our emission estimates are in line with values reported in the European Pollutant Release and Transfer Register (E-PRTR 2017) but significantly lower than values reported in the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2).
Tamino Wetz, Norman Wildmann, and Frank Beyrich
Atmos. Meas. Tech., 14, 3795–3814, https://doi.org/10.5194/amt-14-3795-2021, https://doi.org/10.5194/amt-14-3795-2021, 2021
Short summary
Short summary
A fleet of quadrotors is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to calculate the horizontal wind is based on the principle of aerodynamic drag and the related quadrotor dynamics. The validation reveals that an average accuracy of < 0.3 m s−1 for the wind speed and < 8° for the wind direction was achieved.
Alina Fiehn, Julian Kostinek, Maximilian Eckl, Theresa Klausner, Michał Gałkowski, Jinxuan Chen, Christoph Gerbig, Thomas Röckmann, Hossein Maazallahi, Martina Schmidt, Piotr Korbeń, Jarosław Neçki, Pawel Jagoda, Norman Wildmann, Christian Mallaun, Rostyslav Bun, Anna-Leah Nickl, Patrick Jöckel, Andreas Fix, and Anke Roiger
Atmos. Chem. Phys., 20, 12675–12695, https://doi.org/10.5194/acp-20-12675-2020, https://doi.org/10.5194/acp-20-12675-2020, 2020
Short summary
Short summary
A severe reduction of greenhouse gas emissions is necessary to fulfill the Paris Agreement. We use aircraft- and ground-based in situ observations of trace gases and wind speed from two flights over the Upper Silesian Coal Basin, Poland, for independent emission estimation. The derived methane emission estimates are within the range of emission inventories, carbon dioxide estimates are in the lower range and carbon monoxide emission estimates are slightly higher than emission inventory values.
Cited articles
Brosy, C., Krampf, K., Zeeman, M., Wolf, B., Junkermann, W., Schäfer, K., Emeis, S., and Kunstmann, H.: Simultaneous multicopter-based air sampling and sensing of meteorological variables, Atmos. Meas. Tech., 10, 2773–2784, https://doi.org/10.5194/amt-10-2773-2017, 2017. a, b
González-Rocha, J., Woolsey, C. A., Sultan, C., and Wekker, S. F. J. D.: Sensing Wind from Quadrotor Motion, J. Guid. Control Dynam., 42, 836–852, https://doi.org/10.2514/1.g003542, 2019. a, b
González-Rocha, J., Bilyeu, L., Ross, S. D., Foroutan, H., Jacquemin, S. J., Ault, A. P., and Schmale, D. G.: Sensing atmospheric flows in aquatic environments using a multirotor small uncrewed aircraft system (sUAS), Environmental Science: Atmospheres, 3, 305–315, https://doi.org/10.1039/d2ea00042c, 2023. a, b
IEC 2019: Wind energy generation systems - Part 1: Design requirements, Standard IEC61400-1:2019, International Electrotechnical Commission, Geneva, Switzerland, ISBN 978-2-8322-7972-4, 2019. a
ISO 2007: Meteorology - Wind measurements - Part 1: Wind tunnel test methods for rotating anemometer performance, Standard ISO17713-1:2007, Beuth Verlag, Berlin, Germany, https://doi.org/10.31030/9866977, 2007. a
Kistner, J., Wildmann, N., and Neuhaus, L.: High resolution wind speed measurements with multicopters of the SWUF-3D UAS fleet - calibration and verification in a wind tunnel with active grid, Zenodo [data set], https://doi.org/10.5281/zenodo.10047738, 2023. a
Kröger, L., Frederik, J., van Wingerden, J.-W., Peinke, J., and Hölling, M.: Generation of user defined turbulent inflow conditions by an active grid for validation experiments, J. Phys. Conf. Ser., 1037, 052002, https://doi.org/10.1088/1742-6596/1037/5/052002, 2018. a
Marino, M., Fisher, A., Clothier, R., Watkins, S., Prudden, S., and Leung, C. S.: An Evaluation of Multi-Rotor Unmanned Aircraft as Flying Wind Sensors, Int. J. Micro Air Veh., 7, 285–299, https://doi.org/10.1260/1756-8293.7.3.285, 2015. a
Molter, C. and Cheng, P. W.: ANDroMeDA - A Novel Flying Wind Measurement System, J. Phys. Conf. Ser., 1618, 032049, https://doi.org/10.1088/1742-6596/1618/3/032049, 2020. a
Neuhaus, L., Hölling, M., Bos, W. J., and Peinke, J.: Generation of Atmospheric Turbulence with Unprecedentedly Large Reynolds Number in a Wind Tunnel, Phys. Rev. Lett., 125, 154503, https://doi.org/10.1103/physrevlett.125.154503, 2020. a
Neuhaus, L., Berger, F., Peinke, J., and Hölling, M.: Exploring the capabilities of active grids, Exp. Fluids, 62, 130, https://doi.org/10.1007/s00348-021-03224-5, 2021. a, b
Neumann, P., Asadi, S., Lilienthal, A., Bartholmai, M., and Schiller, J.: Autonomous Gas-Sensitive Microdrone: Wind Vector Estimation and Gas Distribution Mapping, IEEE Robot. Autom. Mag., 19, 50–61, https://doi.org/10.1109/mra.2012.2184671, 2012. a, b
Neumann, P. P. and Bartholmai, M.: Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit, Sensor. Actuator. A-Phys., 235, 300–310, https://doi.org/10.1016/j.sna.2015.09.036, 2015. a, b, c
Nolan, P., Pinto, J., González-Rocha, J., Jensen, A., Vezzi, C., Bailey, S., de Boer, G., Diehl, C., Laurence, R., Powers, C., Foroutan, H., Ross, S., and Schmale, D.: Coordinated Unmanned Aircraft System (UAS) and Ground-Based Weather Measurements to Predict Lagrangian Coherent Structures (LCSs), Sensors, 18, 4448, https://doi.org/10.3390/s18124448, 2018. a
Palomaki, R. T., Rose, N. T., van den Bossche, M., Sherman, T. J., and Wekker, S. F. J. D.: Wind Estimation in the Lower Atmosphere Using Multirotor Aircraft, J. Atmos. Ocean. Tech., 34, 1183–1191, https://doi.org/10.1175/jtech-d-16-0177.1, 2017. a, b, c
Platis, A., Siedersleben, S. K., Bange, J., Lampert, A., Bärfuss, K., Hankers, R., Cañadillas, B., Foreman, R., Schulz-Stellenfleth, J., Djath, B., Neumann, T., and Emeis, S.: First in situ evidence of wakes in the far field behind offshore wind farms, Scientific Reports, 8, 2163, https://doi.org/10.1038/s41598-018-20389-y, 2018. a
Rautenberg, A., Allgeier, J., Jung, S., and Bange, J.: Calibration Procedure and Accuracy of Wind and Turbulence Measurements with Five-Hole Probes on Fixed-Wing Unmanned Aircraft in the Atmospheric Boundary Layer and Wind Turbine Wakes, Atmosphere, 10, 124, https://doi.org/10.3390/atmos10030124, 2019. a
The SciPy community: scipy optimize curve fit: https://scipy.github.io/devdocs/reference/generated/scipy.optimize.curve_fit.html (last access: 27 May 2024), 2023. a
Segales, A. R., Greene, B. R., Bell, T. M., Doyle, W., Martin, J. J., Pillar-Little, E. A., and Chilson, P. B.: The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research, Atmos. Meas. Tech., 13, 2833–2848, https://doi.org/10.5194/amt-13-2833-2020, 2020. a, b
Shelekhov, A., Afanasiev, A., Shelekhova, E., Kobzev, A., Tel'minov, A., Molchunov, A., and Poplevina, O.: Low-Altitude Sensing of Urban Atmospheric Turbulence with UAV, Drones, 6, 61, https://doi.org/10.3390/drones6030061, 2022. a, b
Shimura, T., Inoue, M., Tsujimoto, H., Sasaki, K., and Iguchi, M.: Estimation of Wind Vector Profile Using a Hexarotor Unmanned Aerial Vehicle and Its Application to Meteorological Observation up to 1000 m above Surface, J. Atmos. Ocean. Tech., 35, 1621–1631, https://doi.org/10.1175/jtech-d-17-0186.1, 2018. a
Simma, M., Mjøen, H., and Boström, T.: Measuring Wind Speed Using the Internal Stabilization System of a Quadrotor Drone, Drones, 4, 23, https://doi.org/10.3390/drones4020023, 2020. a, b
Thielicke, W., Hübert, W., Müller, U., Eggert, M., and Wilhelm, P.: Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer, Atmos. Meas. Tech., 14, 1303–1318, https://doi.org/10.5194/amt-14-1303-2021, 2021. a
Wang, J.-Y., Luo, B., Zeng, M., and Meng, Q.-H.: A Wind Estimation Method with an Unmanned Rotorcraft for Environmental Monitoring Tasks, Sensors, 18, 4504, https://doi.org/10.3390/s18124504, 2018. a
Wetz, T. and Wildmann, N.: Multi-point in situ measurements of turbulent flow in a wind turbine wake and inflow with a fleet of uncrewed aerial systems, Wind Energ. Sci., 8, 515–534, https://doi.org/10.5194/wes-8-515-2023, 2023. a, b, c, d
Wetz, T., Wildmann, N., and Beyrich, F.: Distributed wind measurements with multiple quadrotor unmanned aerial vehicles in the atmospheric boundary layer, Atmos. Meas. Tech., 14, 3795–3814, https://doi.org/10.5194/amt-14-3795-2021, 2021. a, b, c, d
Wetz, T., Zink, J., Bange, J., and Wildmann, N.: Analyses of Spatial Correlation and Coherence in ABL Flow with a Fleet of UAS, Bound.-Lay. Meteorol., 187, 673–701, https://doi.org/10.1007/s10546-023-00791-4, 2023. a
Wildmann, N. and Wetz, T.: Towards vertical wind and turbulent flux estimation with multicopter uncrewed aircraft systems, Atmos. Meas. Tech., 15, 5465–5477, https://doi.org/10.5194/amt-15-5465-2022, 2022. a, b
Wildmann, N., Rau, G. A., and Bange, J.: Observations of the Early Morning Boundary-Layer Transition with Small Remotely-Piloted Aircraft, Bound.-Lay. Meteorol., 157, 345–373, https://doi.org/10.1007/s10546-015-0059-z, 2015. a
zum Berge, K., Schoen, M., Mauz, M., Platis, A., van Kesteren, B., Leukauf, D., Bahlouli, A. E., Letzgus, P., Knaus, H., and Bange, J.: A Two-Day Case Study: Comparison of Turbulence Data from an Unmanned Aircraft System with a Model Chain for Complex Terrain, Bound.-Lay. Meteorol., 180, 53–78, https://doi.org/10.1007/s10546-021-00608-2, 2021. a
Short summary
We use a fleet of multicopter drones to measure wind. To improve the accuracy of this wind measurement and to evaluate this improvement, we conducted experiments with the drones in a wind tunnel under various conditions. This wind tunnel can generate different kinds and intensities of wind. Here we measured with the drones and with other sensors as a reference and compared the results. We were able to improve our wind measurement and show how accurately it works in different situations.
We use a fleet of multicopter drones to measure wind. To improve the accuracy of this wind...