Articles | Volume 17, issue 16
https://doi.org/10.5194/amt-17-4941-2024
https://doi.org/10.5194/amt-17-4941-2024
Research article
 | 
27 Aug 2024
Research article |  | 27 Aug 2024

High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid

Johannes Kistner, Lars Neuhaus, and Norman Wildmann

Related authors

The fractal turbulent–non-turbulent interface in the atmosphere
Lars Neuhaus, Matthias Wächter, and Joachim Peinke
Wind Energ. Sci., 9, 439–452, https://doi.org/10.5194/wes-9-439-2024,https://doi.org/10.5194/wes-9-439-2024, 2024
Short summary
Data assimilation of realistic boundary-layer flows for wind-turbine applications – An LES study
Linus Wrba, Antonia Englberger, Andreas Dörnbrack, Gerard Kilroy, and Norman Wildmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-12,https://doi.org/10.5194/wes-2024-12, 2024
Revised manuscript under review for WES
Short summary
Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach
Andreas Forstmaier, Jia Chen, Florian Dietrich, Juan Bettinelli, Hossein Maazallahi, Carsten Schneider, Dominik Winkler, Xinxu Zhao, Taylor Jones, Carina van der Veen, Norman Wildmann, Moritz Makowski, Aydin Uzun, Friedrich Klappenbach, Hugo Denier van der Gon, Stefan Schwietzke, and Thomas Röckmann
Atmos. Chem. Phys., 23, 6897–6922, https://doi.org/10.5194/acp-23-6897-2023,https://doi.org/10.5194/acp-23-6897-2023, 2023
Short summary
Multi-point in situ measurements of turbulent flow in a wind turbine wake and inflow with a fleet of uncrewed aerial systems
Tamino Wetz and Norman Wildmann
Wind Energ. Sci., 8, 515–534, https://doi.org/10.5194/wes-8-515-2023,https://doi.org/10.5194/wes-8-515-2023, 2023
Short summary
Towards vertical wind and turbulent flux estimation with multicopter uncrewed aircraft systems
Norman Wildmann and Tamino Wetz
Atmos. Meas. Tech., 15, 5465–5477, https://doi.org/10.5194/amt-15-5465-2022,https://doi.org/10.5194/amt-15-5465-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey
Atmos. Meas. Tech., 17, 4863–4889, https://doi.org/10.5194/amt-17-4863-2024,https://doi.org/10.5194/amt-17-4863-2024, 2024
Short summary
Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024,https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary
Cost-effective off-grid automatic precipitation samplers for pollutant and biogeochemical atmospheric deposition
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024,https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Modelling of cup anemometry and dynamic overspeeding in average wind speed measurements
Troels Friis Pedersen and Jan-Åke Dahlberg
Atmos. Meas. Tech., 17, 1441–1461, https://doi.org/10.5194/amt-17-1441-2024,https://doi.org/10.5194/amt-17-1441-2024, 2024
Short summary
Introducing the Video In Situ Snowfall Sensor (VISSS)
Maximilian Maahn, Dmitri Moisseev, Isabelle Steinke, Nina Maherndl, and Matthew D. Shupe
Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024,https://doi.org/10.5194/amt-17-899-2024, 2024
Short summary

Cited articles

Brosy, C., Krampf, K., Zeeman, M., Wolf, B., Junkermann, W., Schäfer, K., Emeis, S., and Kunstmann, H.: Simultaneous multicopter-based air sampling and sensing of meteorological variables, Atmos. Meas. Tech., 10, 2773–2784, https://doi.org/10.5194/amt-10-2773-2017, 2017. a, b
González-Rocha, J., Woolsey, C. A., Sultan, C., and Wekker, S. F. J. D.: Sensing Wind from Quadrotor Motion, J. Guid. Control Dynam., 42, 836–852, https://doi.org/10.2514/1.g003542, 2019. a, b
González-Rocha, J., Bilyeu, L., Ross, S. D., Foroutan, H., Jacquemin, S. J., Ault, A. P., and Schmale, D. G.: Sensing atmospheric flows in aquatic environments using a multirotor small uncrewed aircraft system (sUAS), Environmental Science: Atmospheres, 3, 305–315, https://doi.org/10.1039/d2ea00042c, 2023. a, b
Hattenberger, G., Bronz, M., and Condomines, J.-P.: Estimating wind using a quadrotor, Int. J. Micro Air Veh., 14, 175682932110708, https://doi.org/10.1177/17568293211070824, 2022. a, b
IEC 2019: Wind energy generation systems - Part 1: Design requirements, Standard IEC61400-1:2019, International Electrotechnical Commission, Geneva, Switzerland, ISBN 978-2-8322-7972-4, 2019. a
Download
Short summary
We use a fleet of multicopter drones to measure wind. To improve the accuracy of this wind measurement and to evaluate this improvement, we conducted experiments with the drones in a wind tunnel under various conditions. This wind tunnel can generate different kinds and intensities of wind. Here we measured with the drones and with other sensors as a reference and compared the results. We were able to improve our wind measurement and show how accurately it works in different situations.