Articles | Volume 18, issue 6
https://doi.org/10.5194/amt-18-1373-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-1373-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Testing ground-based observations of wave activity in the (lower and upper) atmosphere as possible (complementary) indicators of streamer events
Institute of Atmospheric Physics CAS, Bocni II 1401, Prague, 14100, Czech Republic
Lisa Kuchelbacher
Earth Observation Center, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Weßling, Germany
Jaroslav Chum
Institute of Atmospheric Physics CAS, Bocni II 1401, Prague, 14100, Czech Republic
Tereza Sindelarova
Institute of Atmospheric Physics CAS, Bocni II 1401, Prague, 14100, Czech Republic
Franziska Trinkl
Earth Observation Center, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Weßling, Germany
now at: Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Katerina Podolska
Institute of Atmospheric Physics CAS, Bocni II 1401, Prague, 14100, Czech Republic
Related authors
No articles found.
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys., 43, 511–534, https://doi.org/10.5194/angeo-43-511-2025, https://doi.org/10.5194/angeo-43-511-2025, 2025
Short summary
Short summary
Traveling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of traveling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at midlatitudes.
Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner
Atmos. Meas. Tech., 18, 1591–1607, https://doi.org/10.5194/amt-18-1591-2025, https://doi.org/10.5194/amt-18-1591-2025, 2025
Short summary
Short summary
Information on the energy transported by atmospheric gravity waves (GWs) is crucial for improving atmosphere models. Most space-based studies report the potential energy. We use Aeolus wind data to estimate the kinetic energy (density). However, the data quality is a challenge for such analyses, as the accuracy of the data is in the range of typical GW amplitudes. We find a temporal coincidence between enhanced or breaking planetary waves and enhanced gravity wave kinetic energy density.
Jaroslav Chum, Ronald Langer, Ivana Kolmašová, Ondřej Lhotka, Jan Rusz, and Igor Strhárský
Atmos. Chem. Phys., 24, 9119–9130, https://doi.org/10.5194/acp-24-9119-2024, https://doi.org/10.5194/acp-24-9119-2024, 2024
Short summary
Short summary
Lightning and extreme weather can endanger people and technology. Despite advances in science, not all the factors that lead to the formation of thunderclouds, to their charging and to lightning ignition are known in detail. This paper shows that lightning frequency may, to some extent, be modulated by solar activity and solar wind. Namely, in the region of the South Atlantic Anomaly of the Earth's magnetic field, it correlates with the polarity and intensity of the solar wind.
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023, https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Short summary
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow for more than 10 years (2009–2020) at 47.42°N, 10.98°E. This allows unique analyses of data quality aspects and their impact on the obtained results. During solar cycle 24 the influence of the sun was strong (∼6 K per 100 sfu). A quasi-2-year oscillation (QBO) of ±1 K is observed mainly during the maximum of the solar cycle. Unlike the stratospheric QBO the variation has a period of or below 24 months.
Cited articles
Assink, J. D., Waxler, R., Smets, P., and Evers, L. G.: Bidirectional infrasonic ducts associated with sudden stratospheric warm-ing events, J. Geophys. Res.-Atmos., 119, 1140–1153, 2014.
Bittner, M., Höppner, K., Pilger, C., and Schmidt, C.: Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards, Nat. Hazards Earth Syst. Sci., 10, 1431–1442, https://doi.org/10.5194/nhess-10-1431-2010, 2010.
Blanc, E.: Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: A summary, Ann. Geophys., 3, 673–688, 1985.
Blixt, E. M., Nasholm, S. P., Gibbons, S. J., Evers, L. G., Charlton-Perez, A. J., Orsolini, Y. J., and Kvaerna, T.: Estimating tropo-spheric and stratospheric winds using infrasound from explosions, J. Acoust. Soc. Am., 146, 973–982, https://doi.org/10.1121/1.5120183, 2019.
Blom, P.: Modeling infrasonic propagation through a spherical atmospheric layer: Analysis of the stratospheric pair, J. Acoust. Soc. Am., 145, 2198–2208, https://doi.org/10.1121/1.5096855, 2019.
Blom, P. and Waxler, R.: Impulse propagation in the nocturnal boundary layer: Analysis of the geometric component, J. Acoust. Soc. Am., 131, 3680–3690, https://doi.org/10.1121/1.3699174, 2012.
Bondár, I., Šindelářová, T., Ghica, D., Mitterbauer, U., Liashchuk, A., Baše, J., Chum, J., Czanik, C., Ionescu, C., Neagoe, C., Pásztor, M., and Le Pichon, A.: Central and Eastern European Infrasound Network: Contribution to Infrasound Monitoring, Geophys. J. Int., 230, 565–579, https://doi.org/10.1093/gji/ggac066, 2022.
Brachet, N., Brown, D., Le Bras R., Cansi, Y., Mialle, P., and Coyne, J.: Monitoring the Earth's Atmosphere with the Global IMS Infrasound Network, in: Infrasound Monitoring for Atmospheric Studies, edited by: Le Pichon, A., Blanc, E., and Hauchecorne A., Springer Science+Business Media B.V., 77–118, https://doi.org/10.1007/978-1-4020-9508-5_3, 2010.
Campus, P. and Christie, D. R.: Worldwide Observations of Infrasonic Waves, in: Infrasound Monitoring for Atmospheric Studies, edited by: Le Pichon, A., Blanc, E., and Hauchecorne A., Springer Science+Business Media B.V., https://doi.org/10.1007/978-1-4020-9508-5_6, 2010.
Cansi, Y.: An automatic seismic event processing for detection and location: The P.M.C.C. method, Geophys. Res. Lett., 22, 1021–1024, https://doi.org/10.1029/95GL00468, 1995.
Ceranna, L., Matoza, R., Hupe, P., Le Pichon, A., and Landès, M.: Systematic Array Processing of a Decade of Global IMS Infrasound Data, in: Infrasound Monitoring for Atmospheric Studies. Challenges in Middle Atmospheric Dynamics and Societal Benefits, edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A., Springer Nature Switzerland AG, https://doi.org/10.1007/978-3-319-75140-5_13, 2019.
Chum, J. and Podolská, K.: 3D analysis of GW propagation in the ionosphere, Geophys. Res. Lett., 45, 11562–11571, https://doi.org/10.1029/2018GL079695, 2018.
Chum, J., Podolská, K., Rusz, J., Baše, J., and Tedoradze, N.: Statistical investigation of gravity wave characteristics in the ionosphere, Earth Planets Space, 73, 60, https://doi.org/10.1186/s40623-021-01379-3, 2021.
DLR: Ozone column measurements (TCO), Department Atmospheric Processors (ATP), German Aerospace Center (DLR), https://atmos.eoc.dlr.de/ (last access: January 2022), 2018.
Drob, D. P., Picone, J. M., and Garcés, M.: Global morphology of infrasound propagation, J. Geophys. Res.-Atmos., 108, 4680, https://doi.org/10.1029/2002JD003307, 2003.
Evers, L. G. and Haak, H. W.: The Characteristics of Infrasound, its Propagation and Some Early History, in: Infrasound Monitoring for Atmospheric Studies, edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A., Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-9508-5_1, 2010.
Evers, L. G. and Siegmund, P.: Infrasonic signature of the 2009 major sudden stratosphericwarming, Geophys. Res. Lett., 36, L23808, https://doi.org/10.1029/2009GL041323, 2009.
Evers, L. G., van Geyt, A. R. J., Smets, P., and Fricke, J. T.: Anomalous infrasound propagation in a hot stratosphere and the existence of extremely small shadow zones, J. Geophys. Res., 117, D06120, https://doi.org/10.1029/2011JD017014, 2012.
Eyring, V., Dameris, M., Grewe, V., Langbein, I., and Kouker, W.: Climatologies of subtropical mixing derived from 3D models, Atmos. Chem. Phys., 3, 1007–1021, https://doi.org/10.5194/acp-3-1007-2003, 2003.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003.
Garcès, M., Willis, M., Hetzer, C., Le Pichon, A., and Drob, D.: On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere, Geophys. Res. Lett., 31, L19304, https://doi.org/10.1029/2004GL020696, 2004.
Garcès, M. A.: On infrasound standards, part 1: Time, frequency, and energy scaling, InfraMatics, 2, 13–35, https://doi.org/10.4236/inframatics.2013.22002, 2013.
Georges, T. M.: H. F. Doppler studies of travelling ionospheric disturbances, J. Atmos. Terr. Phys., 30, 735–746, 1968.
Gerlach, C., Földvary, L., Švehla, D., Gruber, T., Wermuth, M., Sneeuw, N., and Steigenberger, P.: A CHAMP-only gravity field model from kinematic orbits using the energy integral, Geophys. Res. Lett., 30, 2037, https://doi.org/10.1029/2003GL018025, 2003.
Hetzer, C. H., Drob, D. P., and Zabel, K.: The NCPA-G2S request system, https://g2s.ncpa.olemiss.edu (last access: 4 February 2024), 2019.
Huang, K. M., Zhang, S. D., and Yi, F: Reflection and transmission of atmospheric gravity waves in a stably sheared horizontal wind field, J. Geophys. Res.-Atmos., 115, D16103, https://doi.org/10.1029/2009JD012687, 2010.
Hupe, P., Ceranna, L., Pilger, C., de Carlo, M., Le Pichon, A., Kaifler, B., and Rapp, M.: Assessing middle atmosphere weather models using infrasound detections from microbaroms, Geophys. J. Int., 216, 1761–1767 https://doi.org/10.1093/gji/ggy520, 2019.
James, P. M.: A climatology of ozone mini-holes over the Northern Hemisphere, Int. J. Climatol., 18, 12871303, https://doi.org/10.1002/(SICI)1097-0088(1998100)18:12<1287::AID-JOC315>3.0.CO;2-4, 1998.
Kramer, R., Wüst, S., Schmidt, C., and Bittner, M.: Gravity wave characteristics in the middle atmosphere during the CESAR campaign at Palma de Mallorca in 2011/2012: Impact of extratropical cyclones and cold fronts, J. Atmos. Sol.-Terr. Phy., 128, 8–23, https://doi.org/10.1016/j.jastp.2015.03.001, 2015.
Kramer, R., Wüst, S., and Bittner, M.: Investigation of gravity wave activity based on operational radiosonde data from 13 years (1997–2009): Climatology and possible induced variability, J. Atmos. Sol.-Terr. Phy., 140, 23–33, https://doi.org/10.1016/j.jastp.2016.01.014, 2016.
Krüger, K., Langematz, U., Grenfell, J. L., and Labitzke, K.: Climatological features of stratospheric streamers in the FUB-CMAM with increased horizontal resolution, Atmos. Chem. Phys., 5, 547–562, https://doi.org/10.5194/acp-5-547-2005, 2005.
Landès, M., Ceranna, L., Le Pichon, A., and Matoza, R. S.: Localization of microbarom sources using the IMS infrasound network, J. Geophys. Res.-Atmos., 117, D06102, https://doi.org/10.1029/2011JD016684, 2012.
Leovy, C. B., Sun, C. R., Hitchman, M. H., Remsberg, E. E., Russell III, J. M., Gordley, L. L., and Lyjak, L. V.: Transport of ozone in the middle stratosphere: Evidence for planetary wave breaking, J. Atmos. Sci., 42, 230–244, 1985.
Le Pichon, A. and Blanc, E.: Probing high-altitude winds using infrasound, J. Geophys. Res., 110, D20104, https://doi.org/10.1029/2005JD006020, 2005.
Le Pichon, A. and Cansi, Y.: PMCC for infrasound data processing, InfraMatics, 2, 1–9, 2003.
Le Pichon, A., Ceranna, L., Garcès, M., Drob, D., and Millet, C.: On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere, J. Geophys. Res., 111, D11106, https://doi.org/10.1029/2005JD006690, 2006.
Le Pichon, A., Vergoz, J., Blanc, E., Guilbert, J., Ceranna, L., Evers, L., and Brachet, N.: Assessing the performance of the International Monitoring System's infrasound network: Geographical coverage and temporal variabilities, J. Geophys. Res., 114, D08112, https://doi.org/10.1029/2008JD010907, 2009.
Lonzaga, J. B.: A theoretical relation between the celerity and trace velocity of infrasonic phases, J. Acoust. Soc. Am., 138, EL242–EL247, https://doi.org/10.1121/1.4929628, 2015.
Loyola, D. G., Koukouli, M. E., Valks, P., Balis, D. S., Hao, N., van Roozendael, M., Spurr, R. J. D., Zimmer, W., Kiemle, S., Lerot, C., and Lambert, J.-C.: The GOME-2 total column ozone product: Retrieval algorithm and ground-based validation, J. Geophys. Res., 116, D07302, https://doi.org/10.1029/2010JD014675, 2011.
Marty, J.: The IMS Infrasound Network: Current Status and Technolofical Developments, in: Infrasound Monitoring for Atmospheric Studies. Challenges in Middle Atmosphere Dynamics and Societal Benefits, edited by: Le Pichon, A., Blanc, E., and Hauchecorn, A., Springer Nature Switzerland AG, 3–62, https://doi.org/10.1007/978-3-319-75140-5_1, 2019.
McIntyre, M. E. and Palmer, T. N.: Breaking planetary waves in the stratosphere, Nature, 305, 593–600, 1983.
Munro, R., Eisinger, M., Anderson, C., Callies, J., Corpaccioli, E., Lang, R., and Albinana, A. P.: GOME-2 on MetOp, in: Proc. of The 2006 EUMETSAT Meteorological Satellite Conference, 12–16 June 2006, Helsinki, Finland, vol. 1216, p. 48, 2006.
Munro, R., Lang, R., Klaes, D., Poli, G., Retscher, C., Lindstrot, R., Huckle, R., Lacan, A., Grzegorski, M., Holdak, A., Kokhanovsky, A., Livschitz, J., and Eisinger, M.: The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing – an overview, Atmos. Meas. Tech., 9, 1279–1301, https://doi.org/10.5194/amt-9-1279-2016, 2016.
Offermann, D., Grossmann, K. U., Barthol, P., Knieling, P., Riese, M., and Trant, R.: Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) experiment and middle atmosphere variability, J. Geophys. Res.-Atmos., 104, 16311–16325, 1999.
Peters, D., Hoffmann, P., and Alpers, M.: On the appearance of inertia-gravity waves on the north-easterly side of an anticyclone, Meteorol. Z., 12, 25–35, 2003.
Polvani, L. M. and Plumb, R. A.: Rossby wave breaking, microbreaking, filamentation, and secondary vortex formation: The dynamics of a perturbed vortex, J. Atmos. Sci., 49, 462–476, 1992.
Pramitha, M., Venkat Ratnam, M., Taori, A., Krishna Murthy, B. V., Pallamraju, D., and Vijaya Bhaskar Rao, S.: Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique, Atmos. Chem. Phys., 15, 2709–2721, https://doi.org/10.5194/acp-15-2709-2015, 2015.
Rauthe, M., Gerding, M., Höffner, J., and Lübken, F. J.: Lidar temperature measurements of gravity waves over Kühlungsborn (54° N) from 1 to 105 km: A winter-summer comparison, J. Geophys. Res.-Atmos., 111, D24108, https://doi.org/10.1029/2006JD007354, 2006.
Smets, P. S. M. and Evers, L. G.: The life cycle of a sudden stratospheric warming from infrasonic ambient noise observa-tions, J. Geophys. Res.-Atmos., 119, 12084–12099, 2014.
Spurr, R., Loyola, D., Heue, K. P., Van Roozendael, M., and Lerot, C.: S5P/TROPOMI Total Ozone ATBD. Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center), Weßling, Germany, Tech. Rep. S5P-L2-DLR-ATBD-400A, 2022.
Sutherland, L. C. and Bass, H. E.: Atmospheric absorption in the atmosphere up to 160 km, J. Acoust. Soc. Am., 115, 1012–1032, https://doi.org/10.1121/1.1631937, 2004.
Szuberla, C. A. L. and Olson, J. V.: Uncertainties associated with parameter estimation in atmospheric infrasound rays, J. Acoust. Soc. Am., 115, 253–258, https://doi.org/10.1121/1.1635407, 2004.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sens. Environ., 120, 70–83, 2012.
Waugh, D. W.: Contour surgery simulations of a forced polar vortex, J. Atmos. Sci., 50, 714–730, 1993.
WAVEWATCHIII® Development Group: User manual and system documentation of WAVEWATCH III® version 6.07, Tech. Rep. 333, NOAA/NWS/NCEP/MMAB, https://www.researchgate.net/profile/Roberto-Padilla-Hernandez/publication/336069899_User_manual_and_system_ documentation_of_WAVEWATCH_III_R_version_607/links/ 5d8cc9ea458515202b6cc245/User-manual-and-system-documentation-of-WAVEWATCH-III-R-version-607.pdf (last access: January 2023), 2019.
Waxler, R. and Assink, J.: Propagation Modeling Through Realistic Atmosphere and Benchmarking, in: Infrasound Monitoring for Atmospheric Studies. Challenges in Middle Atmosphere Dynamics and Societal Benefits, edited by: Le Pichon, A., Blanc, E., and Hauchecorn, A., Springer Nature Switzerland AG, 3–62, https://doi.org/10.1007/978-3-319-75140-5_15, 2019.
Wüst, S. and Bittner, M.: Non-linear resonant wave–wave interaction (triad): Case studies based on rocket data and first application to satellite data, J. Atmos. Sol.-Terr. Phy., 68, 959–976, 2006.
Wüst, S., Offenwanger, T., Schmidt, C., Bittner, M., Jacobi, C., Stober, G., Yee, J.-H., Mlynczak, M. G., and Russell III, J. M.: Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer, Atmos. Meas. Tech., 11, 2937–2947, https://doi.org/10.5194/amt-11-2937-2018, 2018.
Short summary
Waves are important as main drivers of different stratispheric patterns (streamers). We analyse changes in waves and infrasound characteristics related to streamers using continuous Doppler soundings and arrays of microbarometers in Czechia. Ground measurements using infrasound arrays showed that gravity wave propagation azimuths were more random during streamers than during calm conditions. Measurements in the ionosphere during streamers did not differ from those expected for the given time.
Waves are important as main drivers of different stratispheric patterns (streamers). We analyse...